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1 Sampling from high-dimensional distributions

Let [q] = {0, 1, . . . , q − 1} be a finite domain of size q. Let V be a set of variables of size n. Let
π be a high-dimensional distribution with support

Ω = {σ ∈ [q]V | π(σ) > 0}.

Example 1.1 (running example: graph coloring). Let G = (V,E) be a graph. Let [q] be a set of
colors. Let Ω ⊆ [q]V be the set of all proper colorings of G. We use π to denote the uniform
distribution over Ω, e.g. the uniform distribution over all proper colorings in G.

Example 1.2 (hardcore model). Let G = (V,E) be a graph. For any σ ∈ {0, 1}V , we say σ is
an independent set if all vertices v ∈ V such that σv = 1 form an independent set in G. Let Ω
denote the set of all independent sets in G. Let λ > 0 be a weight parameter. We define π as a
distribution over Ω by

∀σ ∈ Ω, π(σ) =
λ|σ|∑
τ∈Ω λ|τ | ,

where |σ| =
∑

v∈V σv is the 1-norm of σ.

Example 1.3 (Ising model). Let J ∈ RV×V be a symmetric matrix such that Juv = Jvu. Let
h ∈ RV be a vector. Let Ω = {−1,+1}V be the set of all spin configurations. The Gibbs
distribution over Ω is defined by

∀σ ∈ Ω, π(σ) =
1

Z
exp

1

2

∑
v,u∈V

Juvσvσu +
∑
v∈V

hvσv

 ,

where Z =
∑

σ∈Ω exp(12
∑

v,u∈V Juvσvσu +
∑

v∈V hvσv).

We consider the following problem of sampling from high-dimensional distributions.

• Input: the description of π, where the description has size poly(n) but typically |Ω| = eΩ(n).

• Output: a (possibly approximate) random sample X from π.

For example, the uniform distribution of graph coloring can be described by the graph
G = (V,E) and an integer q. However, if q ≥ (1 + δ)∆, where ∆ is the maximum degree of G
and δ > 0 is a constant, then the number of proper colorings is at least (q −∆)n.

The Markov chain Monte Carlo (MCMC) method is a popular method for sampling from
high-dimensional distributions. For proper graph q-colorings, the following algorithm is the
well-known Metropolis-Hastings chain [Jer95].

• Start from an arbitrary proper coloring X ∈ [q]V .

• For each t from 1 to T :
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1. Sample a vertex v ∈ V uniformly at random and a color c ∈ [q] uniformly at random.

2. Define the candidate coloring X ′ ∈ [q]V by X ′
v = c and X ′

u = Xu for all u ̸= v.

3. If X ′ is a proper coloring, set X = X ′.

• Return the coloring X.

The goal of this lecture is to show that if q > (2 + δ)∆, then the Metropolis-Hastings chain
returns a good approximate sample from π if T = O(nδ log n).

2 Basic definitions for Markov chains

Let Ω be a finite set which is the state space. A Markov chain (Xt)t≥0 on Ω is specified by
transition matrix P ∈ RΩ×Ω

≥0 such that

Pr
[
Xt = xt | ∀t′ < t,Xt′ = xt′

]
= Pr [Xt = xt | Xt−1 = xt−1] = P (xt−1, xt).

A distribution π (viewed as a row vector) on Ω is a stationary of P if

πP = π.

A Markov chain is irreducible if for any x, y ∈ Ω, there is a t ≥ 0 such that P t(x, y) > 0.

Lemma 2.1. An irreducible Markov chain has a unique stationary distribution.

Proof Sketch. To show the existence of the stationary distribution, one can explicitly construct
a π satisfying π = πP using the stopping time [LPW17, Sec 1.5.3]. Specifically, we can fix an
arbitrary z ∈ Ω and construct a vector π̃ such that for any x ∈ Ω,

π̃(x) = E [strating from z, the number of visiting x before returning to z ] .

For irreducible Markov chains, one can show that

τ+z = E [strating from z, the number of steps before returning to z] < ∞.

A stationary distribution is then given by π(x) = π̃(x)/τ+z . (Exercise: verify it.)
To show the uniqueness, one can check the rank of the kernel space of the matrix P−I [LPW17,

Sec 1.5.4]. Consider any vector h such that h = Ph, which means h is an eigenvector of P with
eigenvalue 1. Let x ∈ Ω be the state such that h(x) = maxz h(z). It holds that

h(x) =
∑
z

P (x, z)h(z).

Consider all z’s such that P (x, z) > 0. Since h(x) is the average of there h(z)’s, it must hold
that h(z) = h(x). Otherwise, there exists a z such that P (x, z) > 0 but h(z) > h(x). We can
repeat this argument on all z’s. Since the chain is irreducible, it must hold that h is a constant
function. Note that (P − I)h = 0. Then, P − I has rank |Ω| − 1. Note that π is a solution to
π(P − I) = 0. The solution space has dimension 1. Therefore, there is at most one vector π
such that the sum of π is 1. The above proof explicitly construct a stationary distribution. This
proves the uniqueness of the stationary distribution.
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A Markov chain P is reversible with respect to π if the detailed balance equation holds

∀x, y ∈ Ω, π(x)P (x, y) = π(y)P (y, x).

The detailed balance equation gives a quick way to verify the stationary distribution:

∀x, (πP )(x) =
∑
y

π(y)P (y, x) =
∑
y

π(x)P (x, y) = π(x).

Next, we say an irreducible Markov chain is aperiodic if for any x ∈ Ω, gcd{t > 0 | P t(x, x) >
0} = 1. The Markov chain convergence theorem shows that if a Markov chain P is irreducible
and aperiodic, then the distribution of Xt converges to the stationary π as T → ∞. To make
the formal statement, we need the following definition.

Definition 2.2 (total variation distance). Let µ and π be two distributions over Ω. Their total
variation distance (TV-distance) is defined by

dTV (µ, π) =
1

2

∑
x∈Ω

|µ(x)− π(x)| = max
A⊆Ω

(µ(A)− π(A)) . (1)

The TV-distance is also denoted by ∥µ− π∥TV.

Exercise 2.3. Prove the second equality in (1).

The following theorem is proved in [LPW17, Sec 4.3].

Theorem 2.4 (convergence theorem). If a Markov chain P is irreducible, aperiodic, and
reversible with respect to π, then

lim
t→∞

max
x∈Ω

dTV

(
P t(x, ·), π

)
= 0.

Proof Sketch. We give the sketch of the proof in [LPW17, Sec 4.3].

• Step-1: show that for irreducible and aperiodic Markov chains, there exists r > 0 such
that for any x, y ∈ Ω, P r(x, y) > 0 [LPW17, Proposition 1.7].

• Step-2: let Π denote the matrix such that every row vector is π. From step-1, it holds
that there exists a small 0 < θ < 1 such that P r = (1− θ)Π + θQ, where Q is a stochastic
matrix (every entry is in [0, 1] and every row sum is 1). Verify that ΠP = Π and QΠ = Π
and use an induction argument to show that for any k ≥ 1, P rk = (1− θk)Π + θkQk.

• Step-3: show that for any j > 0, P rk+j − Π = θk(QkP j − ΠP j) = θk(QkP j − Π). The
reason for adding j is that rk only capture the number that is a multiple of r, but rk + j
captures all large numbers. Bound the total variation distance by bounding the RHS.

You can either complete the proof by yourself or read the full proof in [LPW17, Sec 4.3].

One can verify that for graph q-coloring, the Glauber dynamics chain is aperiodic and
reversible, furthermore, it is irreducible if q ≥ ∆+ 2. Now, the main question is how many steps
one needs to simulate a Markov chain in order to draw an approximate sample from π.

Definition 2.5 (mixing time). The mixing time of Markov chain P is defined by

Tmix(ε) = min{t | max
x∈Ω

dTV

(
P t(x, ·), π

)
≤ ε}.

Simulating Tmix(ε) steps is enough to generate an ε-close sample in total variation distance
because the TV-distance is non-increasing due to the data processing inequality

dTV

(
P t+1(x, ·), π

)
= dTV

(
P t(x, ·)P , πP

)
≤ dTV

(
P t(x, ·), π

)
.
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3 Coupling of Markov chains

Definition 3.1 (coupling of distributions). Let µ and π be two distributions over Ω. A coupling
is a joint random variable (X,Y ) ∈ Ω× Ω such that X ∼ µ and Y ∼ π.

Let Ω = {0, 1}. Let µ(0) = 1
2 and µ(1) = 1

2 . Let π(0) = 1
3 and π(1) = 2

3 . There are many
couplings between µ and π. For example, X ∼ µ and Y ∼ π can be independent; or one can
first sample a real number r ∈ [0, 1] u.a.r. and then let X = 0 iff r ≤ 1

2 and Y = 0 iff r ≤ 1
3 .

Lemma 3.2 (coupling lemma). Let µ and π be two distributions. For any coupling (X,Y ),

dTV (µ, π) ≤ Pr [X ̸= Y ] .

The equality can be achieved by the optimal coupling.

Proof. For any coupling (X,Y ), it must hold that Pr [X = Y = σ] ≤ min{µ(σ), π(σ)} for all
σ ∈ Ω. Otherwise, the coupling is invalid. We have

Pr [X ̸= Y ] = 1−
∑
σ∈Ω

Pr [X = Y = σ] = 1−
∑
σ∈Ω

min{µ(σ), π(σ)} = dTV (µ, π) .

To verify the last equation, we can write

dTV (µ, π) = 1−min{µ(σ), π(σ)} =
∑
σ∈Ω

(µ(σ)−min{µ(σ), π(σ)})

=
∑

µ(σ)>ν(σ)

(µ(σ)− ν(σ))

= max
A⊆Ω

(µ(A)− ν(A)).

Exercise 3.3. Construct a coupling such that Pr [X = Y = σ] = min{µ(σ), π(σ)}.

Definition 3.4 (coupling of Markov chains). Let µ0, µ1 be two distributions over Ω. Let (Xt)t≥1

be a Markov chain with transition matrix P and X1 ∼ π0. Let (Yt)t≥1 be a Markov chain with
transition matrix P and Y1 ∼ π1. A coupling of Markov chains is a joint process (Xt, Yt)t≥0

such that (Xt)t≥0 and (Yt)t≥0 both follow their correct marginal distributions.

The above definition considers two Markov chains with the same transition matrix but start
from two different initial distributions. In many applications, we often couple (Xt, Yt) step by
step. This kind of coupling is called the Markovian coupling. Due to the Markovian property,
we often assume that in a coupling, once Xt = Yt, then Xt′ = Yt′ for all t

′ > t. Suppose µ0 is a
Dirac distribution such that µ0(x) = 1 and µ1 = π is the stationary distribution. We have

dTV

(
P t(x, ·), π

)
≤ Pr [Xt ̸= Yt] .

This is because X ∼ P t(x, ·) and Yt ∼ π as Y0 ∼ π and πP = π. Hence, (Xt, Yt) forms a coupling
of the distributions (P t(x, ·), π). The above inequality follows from the coupling lemma.

Theorem 3.5 (geometric decay). Let τ = Tmix(
1
4e). For any ε > 0,

Tmix(ε) ≤ O

(
τ log

1

ε

)
.
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Proof. By the definition of τ , using triangle inequality of TV-distance, for any x, y ∈ Ω, we have

dTV

(
P t(x, ·), P t(y, ·)

)
≤ dTV

(
P t(x, ·), π

)
+ dTV

(
π, P t(y, ·)

)
≤ 1

2e
.

By coupling lemma, givenX0 = x and Y0 = y, we can coupleXτ and Yτ such that Pr [Xτ ̸= Yτ ] ≤
1/(2e). If Xτ = Yτ , we can couple two chains such that Xt = Yt for all t > τ . Otherwise, we
couple X2τ conditional on Xτ and Yτ . Repeating this process, we have

max
x∈Ω

dTV

(
P kτ (x, ·), π

)
≤ max

x,y∈Ω
dTV

(
P kτ (x, ·), P kτ (y, ·)

)
≤ Pr [Xkτ ̸= Ykτ ] ≤

(
1

2e

)k

,

which implies the bound on mixing time.

4 Application to graph coloring

Theorem 4.1 ([Jer95]). Let δ > 0 be a constant, if q ≥ (2 + δ)∆, then the mixing time of
Metropolis-Hastings chain is Tmix(ε) = O(nδ n log n

ε ).

Proof. Let x and y be two proper colorings. We construct a coupling of Metropolis-Hastings
chains such that X0 = x, Y0 = y and Pr [Xt ̸= Yt] ≤ ε. Then, the mixing result follows from the
coupling lemma:

max
x

dTV

(
P t(x, ·), µ

)
≤ max

x,y
dTV

(
P t(x, ·), P t(y, ·)

)
≤ Pr [Xt ̸= Yt] ≤ ε.

Specifically, we show that there is a one step coupling (Xt−1, Yt−1) → (Xt, Yt) such that for any
x, y ∈ Ω, it holds that

E [H(Xt, Yt) | Xt−1 = x ∧ Yt−1 = y] ≤
(
1−O

(
δ

n

))
H(x, y), (2)

where H(x, y) = |{v ∈ V | xv ̸= yv}| is the Hamming distance between x and y. (2) implies

E [H(XT , YT )] ≤
(
1−O

(
δ

n

))T

n ≤ ε.

By Markov inequality, Pr [XT ̸= YT ] = Pr [H(XT , YT ) ≥ 1] < ε.
To show (2), we first consider a special case where x, y disagree only at one vertex v0. Say

X(v0) = 0 and Y (v0) = 1. The coupling is defined as follows

• two chains sample the same vertex v ∈ V u.a.r.

• if v is not a neighbor of v0, then two chains sample the same color cX = cY ∈ [q] u.a.r.;

• if v is a neighbor of v0, we first sample cX ∈ [q] u.a.r. and then set cY = cX if cX /∈ {0, 1}
and cY = 1− cX otherwise. In words, we swap the role of {0, 1} in two chains.

For any vertex w ̸= v0 and w is not a neighbor of v0, it is easy to see Xt(w) = Yt(w) with
probability 1.

For vertex v0, the event Xt(v0) = Yt(v0) happens if v0 is picked and the color cX = cY does
not appear in the neighborhood of v0. The probability of this event is at least

Pr [Xt(v0) = Yt(v0)] ≥
1

n
· q −∆

q
.
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For vertex u is a neighbor of v0. The event Xt(u) ̸= Yt(u) happens only if u is picked, cX = 1,
and cY = 0. The probability of this event is at most

Pr [Xt(u) ̸= Yt(u)] ≤
1

n
· 1
q
.

Putting everything together, we have

E [H(Xt, Yt) | Xt−1 = x ∧ Yt−1 = y] = 1− 1

n
· q −∆

q
+∆ · 1

n
· 1
q

≤ 1− 1

n

(
1− 2∆

q

)
≤ 1−O

(
δ

n

)
.

What if x and y differ at many vertices. We can apply the path coupling technique [BD97].
Say H(x, y) = k. We can construct a sequence of colorings σ0, σ1, . . . , σk such that σ0 = x
and σk = y and σi and σi+1 differ at exactly one vertex. Then, for each pair of σi, σi+1, we
can construct a coupling Ci such that conditional on Xt−1 = σi and Yt−1 = σi+1, Ci generates
a random pair (σ′

i, σ
′
i+1) such that E

[
H(σ′

i, σ
′
i+1)

]
is at most 1 − O

(
δ
n

)
. We first use C0 to

generate (σ′
0, σ

′
1). Next, C1 defines a joint distribution of (σ′

1, σ
′
2), we condition on the value

of σ′
1 to generate σ′

2. This step is valid, because the marginal distribution of σ′
1 in C0 and C1

are identical. Repeating this process, we can generate (σ′
1, σ

′
2), . . . , (σ

′
k−1, σ

′
k), which gives us a

random sequence σ′
0, σ

′
1, . . . , σ

′
k. The random pair σ′

0, σ
′
k forms a one step coupling from x and

y. We have

E [H(Xt, Yt) | Xt−1 = x ∧ Yt−1 = y] = E
[
H(σ′

0, σ
′
k)
]

(triangle-inequality) ≤ E

[
k−1∑
i=0

H(σ′
i, σ

′
i+1)

]

(linearity of expectation) ≤
k−1∑
i=0

E
[
H(σ′

i, σ
′
i+1)

]
≤

(
1−O

(
δ

n

))
H(x, y).

There is still one missing part in the above proof. We split x, y into a path σ0, σ1, . . . , σk,
where σi in the middle can be an infeasible coloring. However, the above Metropolis chain is
only defined over proper colorings, which make the random coloring σ′

i undefined. This issue
can be fixed by consider the following more general Metropolis-Hastings chain.

• Start from an arbitrary proper coloring X ∈ [q]V .

• For each t from 1 to T :

1. Sample a vertex v ∈ V uniformly at random and a color c ∈ [q] uniformly at random.

2. Define the candidate coloring X ′ ∈ [q]V by X ′
v = c and X ′

u = Xu for all u ̸= v.

3. If X ′ is a proper coloring, If the coloring X ′ is locally feasible at vertex v, i.e., for
any neighbor w of v, X ′

w ̸= X ′
v, then set X = X ′.

• Return the coloring X.
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This Markov chain is defined over all colorings [q]V including infeasible ones. If we further
restrict the chain to proper colorings, then the chain is equivalent to the Metropolis-Hastings
chain defined in the beginning of this lecture.

There are many advanced couplings to analyze the mixing time of Markov chains for graph
q-colorings. See the survey [FV07] by Frieze and Vigoda for more details. So far, the best known
algorithm for sampling graph q-colorings is the flipping chain, which mixes in time O(n log n)
when q ≥ 1.809∆ [CV24].
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