Down-up walks and spectral independence

USTC, Hefei, China, Jan 17, 2025 Lecturer: Weiming Feng (ETH Zürich)

In this lecture, we will discuss some basic knowledge about down-up walks [\[ALOV19\]](#page-7-0) and spectral independence [\[ALO20\]](#page-7-1). The spectral independence is a new technique for analyzing the mixing time of Glauber dynamics and, more generally, down-up walks. We cannot cover all the details in this lecture, but one can refer to the resources on the course webpage for more details.

1 Glauber dynamics and down-up walks

Let π be a distribution over $[q]^V$ with support $\Omega \subseteq [q]^V$. We can think π as the uniform distribution over proper q-colorings of a graph $G = (V, E)$. In each step, given the current state $X \in \Omega$, the Glauber dynamics picks a vertex $v \in V$ uniformly at random and resamples X_v from the conditional marginal distribution $\pi_v^{X_{V-v}}$, where the notation $\pi_v^{X_{V-v}}$ means $\pi_v(\cdot \mid X_{V-v})$, which is the marginal distribution on v conditional on X_{V-v} . We use $P \in \Omega \times \Omega \to \mathbb{R}$ to denote the transition matrix of Glauber dynamics. One transition of Glauber dynamics can be decomposed into the following down-walk step and up-walk step. Let $X \in \Omega$ denote the current state.

• Down-walk step: Pick a vertex $v \in V$ uniformly at random and remove the value of X_v to obtain a partial configuration X_{V-n} . Formally, define the set of partial configurations

$$
\Omega_{n-1} = \{ \sigma \in [q]^S \mid S \subseteq V \land |S| = n - 1 \land \pi_S(\sigma) > 0 \},
$$

where π_S denote the marginal distribution on S projected from π . Here, $\pi_S(\sigma) > 0$ means σ can be extended to a valid full configuration in Ω. In $Ω_{n-1}$, we use the index $n-1$ to emphasize the size of the partial configuration is $n - 1$. Also define

$$
\Omega_n=\Omega.
$$

The down walk transition matrix $D: \Omega_n \times \Omega_{n-1} \to \mathbb{R}$ is defined by for any $\sigma \in \Omega_n$, any $\tau \in \Omega_{n-1}$ such that τ is a partial configuration on $S \subseteq V$,

$$
D(\sigma, \tau) = \begin{cases} \frac{1}{n} & \text{if } \sigma_S = \tau, \\ 0 & \text{otherwise.} \end{cases}
$$

• Up-walk step: In the up-walk steps, we go from Ω_{n-1} back to Ω_n . Given a partial configuration $\tau \in [q]^S$ such that $\tau \in \Omega_{n-1}$, we can uniquely identify the missing vertex $v = V - S$ and obtain a random $\sigma \in \Omega_n$ such that $\sigma_S = \tau$ and $\sigma_v \sim \pi_v^{\tau}$. Formally, the transition matrix $U: \Omega_{n-1} \times \Omega_n \to \mathbb{R}_{\geq 0}$ can be written as

$$
U(\tau,\sigma) = \begin{cases} \pi_v^{\tau}(\sigma_v) & \text{if } \sigma_S = \tau, \\ 0 & \text{otherwise.} \end{cases}
$$

Now, the transition matrix P can be written as

$$
P = DU.
$$

Next, we let $\pi_n = \pi$ and $\pi_{n-1} = \pi_n D$. Intuitively, to draw a random sample $X \sim \pi_{n-1}$, one can first sample $X \sim \pi$ and drop the value at a uniform random index $v \in V$. By definition, it is easy to verify that $\pi_{n-1}U = \pi_n = \pi$, so that $\pi P = \pi$.

By decomposing P as a pair of down-walk and up-walk, we can proved some property of the transition matrix P. Let $\langle f, g \rangle_{\pi_n} = \sum_{x \in \Omega_n} \pi_n(x) f(x) g(x)$ be the weighted inner product defined over Ω_n . Similarly, let $\langle f', g' \rangle_{\pi_{n-1}} = \sum_{\tau \in \Omega_{n-1}}^{\infty} \pi_{n-1}(\tau) f'(\tau) g'(\tau)$ be the weighted inner product defined over Ω_{n-1} . The following observation holds.

Observation 1.1 ($[AL20]$). D and U is a pair of adjoint operators such that

$$
\forall f \in \mathbb{R}^{\Omega_n}, g \in \mathbb{R}^{\Omega_{n-1}}, \quad \langle f, Dg \rangle_{\pi_n} = \langle Uf, g \rangle_{\pi_{n-1}}.
$$

Proof. We can compute

$$
\langle f, Dg \rangle_{\pi_n} = \sum_{\sigma \in \pi_n} \pi_n(\sigma) f(\sigma) \sum_{\tau \in \Omega_{n-1}} D(\sigma, \tau) g(\tau) = \frac{1}{n} \sum_{\sigma \in \Omega_n} \pi_n(\sigma) f(\sigma) \sum_{v \in V} g(\sigma_{V-v})
$$

\n
$$
= \sum_{v \in V} \sum_{\sigma \in \Omega_n} \pi_{n-1}(\sigma_{V-v}) \pi_v^{\sigma_{V-v}}(\sigma_v) f(\sigma) g(\sigma_{V-v})
$$

\n
$$
= \sum_{\tau \in \Omega_{n-1}} \pi_{n-1}(\tau) g(\tau) \sum_{\sigma \in \Omega_n} U(\tau, \sigma) f(\sigma)
$$

\n
$$
= \langle Uf, g \rangle_{\pi_{n-1}}.
$$

Glauber dynamics transition matrix is PSD With this observation, we can quickly prove the transition matrix P of Glauber dynamics is PSD. For any $h \in \mathbb{R}^{\Omega_n}$, we have

$$
\langle h, Ph \rangle_{\pi_n} = \langle h, DUh \rangle_{\pi_n} = \langle Uh, Uh \rangle_{\pi_{n-1}} \ge 0.
$$

Let h be the eigenvector corresponding to the minimum eigenvalue λ_{\min} of P. It holds that

$$
\langle h, Ph \rangle_{\pi_n} = \lambda_{\min} \cdot \langle h, h \rangle_{\pi_n} \ge 0 \implies \lambda_{\min} \ge 0,
$$

where the implication holds because $\langle h, h \rangle_{\pi_n} > 0$.

Alternative proof: spectral gap implies mixing We now reprove the fact that the spectral gap implies mixing time for Glauber dynamics using the decomposition of down-up walks. Let $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ be a convex function such that $f(1) = 0$. Let π and μ be two distributions over $Ω$ such that $μ$ is absolutely continuous with respect to $π$ (denoted by $μ \ll π$), which means $\pi(x) = 0 \implies \mu(x) = 0$. Define their f-divergence by

$$
D_f(\mu||\pi) = \mathbf{E}_{\pi} \left[f\left(\frac{\mu}{\pi}\right) \right] - f\left(\mathbf{E}_{\pi} \left[\frac{\mu}{\pi}\right] \right) = \mathbf{E}_{\pi} \left[f\left(\frac{\mu}{\pi}\right) \right] - f(1) = \mathbf{E}_{\pi} \left[f\left(\frac{\mu}{\pi}\right) \right].
$$

The f-divergence can be viewed as a "distance" between two distributions. For example, if we set $f(x) = \frac{1}{2}|x-1|$, then $D_f(\mu||\pi) = d_{TV}(\mu, \pi)$ is the total variation distance. If we set $f(x) = (x-1)^2$, then D_f is known as χ^2 -divergence. If we set $f(x) = x \ln x$, then D_f is known as the relative entropy or KL-divergence. We need the following well-known fact about f -divergence.

Lemma 1.2 (data processing inequality). Let P be an arbitrary transition matrix from Ω to some space Ω' . For any two distributions μ_1, μ_2 over Ω such that $\mu_1 \ll \mu_2$, it holds that

$$
D_f(\mu_1 P \|\mu_2 P) \le D_f(\mu_1 \|\mu_2).
$$

The data processing inequality follows from the convexity of f . The proof can be found in many textbooks such as [\[PW25\]](#page-8-0).

We also need to use the following property of down-up walks. For two functions (vectors) f, g , we use $\frac{f}{g}$ $\frac{f}{g}$ to denote the function (vector) such that $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$.

Lemma 1.3. Note that $\pi_n = \pi$. For any distribution μ over Ω_n , $\frac{\mu D}{\pi_n D} = U \frac{\mu}{\pi_n D}$ $\frac{\mu}{\pi_n}$.

Proof. For any $x \in \Omega_{n-1}$ such that $x \in [q]^S$, on the one hand,

$$
\frac{\mu D}{\pi_n D}(x) = \frac{\sum_{y \in \Omega_n: y_S = x} \mu(y)/n}{\sum_{y \in \Omega_n: y_S = x} \pi(y)/n} = \frac{\mu_S(x)}{\pi_S(x)}.
$$

One the other hand, let $v = V - S$,

$$
U\frac{\mu}{\pi_n} = \sum_{y \in \Omega_n: y_S = x} \pi_v^x(y_v) \frac{\mu(y)}{\pi(y)} = \sum_{y \in \Omega_n: y_S = x} \frac{\pi(y)}{\pi_S(x)} \frac{\mu(y)}{\pi(y)} = \frac{\mu_S(x)}{\pi_S(x)}.
$$

Now, let us focus on the χ^2 -divergence, which is closely related to the spectral gap. Let π be the stationary distribution of Glauber dynamics. Let μ_0 be an arbitrary initial distribution. Let $\mu_t = \mu_0 P^t$ be the distribution after t steps. We show that $D_{\chi^2}(\mu_t || \pi)$ decays exponentially with t. Define the function $h_t = \frac{\mu_t}{\pi}$ $\frac{a_{t}}{\pi}$. Note that $\mathbf{E}_{\pi}[h_t] = 1$ $\mathbf{E}_{\pi}[h_t] = 1$ and $\tilde{D}_{\chi^2}(\mu_t || \pi) = \mathbf{Var}_{\pi}[h_t]$. Then

$$
D_{\chi^2}(\mu_{t+1} \| \pi) = D_{\chi^2}(\mu_t P \| \pi P) = D_{\chi^2}(\mu_t D U \| \pi D U) \le D_{\chi^2}(\mu_t D \| \pi D),
$$

where the last inequality holds from the data processing inequality. We want to compare $D_{\chi^2}(\mu_{t+1}||\pi)$ to $D_{\chi^2}(\mu_t||\pi)$. The above inequality shows that it suffices to compare $D_{\chi^2}(\mu_t D||\pi D)$ to $D_{\chi^2}(\mu_t\|\pi)$. Note that $D_{\chi^2}(\mu_t\|\pi) = \textbf{Var}_{\pi_n}[h_t]$ and $D_{\chi^2}(\mu_t D\|\pi D) = \textbf{Var}_{\pi_{n-1}}\left[\frac{\mu_t D}{\pi_n D}\right]$ $\left[\frac{\mu_t D}{\pi_n D}\right] =$ $\textbf{Var}_{\pi_{n-1}}\left[U\frac{\mu_t}{\pi_n}\right]$ $\left(\frac{\mu_t}{\pi_n}\right)$, where the last equation holds from Lemma [1.2](#page-1-0) Then, we have

$$
D_{\chi^2}(\mu_t \|\pi) - D_{\chi^2}(\mu_{t+1} \|\pi) \ge D_{\chi^2}(\mu_t \|\pi) - D_{\chi^2}(\mu_t D \|\pi D)
$$

\n
$$
= \mathbf{Var}_{\pi_n} [h_t] - \mathbf{Var}_{\pi_{n-1}} [Uh_t]
$$

\n(by $\mathbf{E}_{\pi_n} [h_t] = \mathbf{E}_{\pi_{n-1}} [Uh_t] = 1$)
$$
= \langle h_t, h_t \rangle_{\pi_n} - \langle Uh_t, Uh_t \rangle_{\pi_{n-1}}
$$

\n(by Observation 1.1)
$$
= \langle h_t, h_t \rangle_{\pi_n} - \langle h_t, DUh_t \rangle_{\pi_n}
$$

\n
$$
= \langle h_t, (I - P)h_t \rangle_{\pi_n}
$$

\n
$$
\ge \gamma \mathbf{Var}_{\pi_n} [h_t] = \gamma D_{\chi^2}(\mu_t \|\pi).
$$

where $\gamma = \inf_{f: \mathbf{Var}_{\pi}[f] > 0} \frac{\mathcal{E}(f, f)}{\mathbf{Var}_{\pi}[f]}$ $\frac{\mathcal{E}(I,J)}{\text{Var}_{\pi}[f]}$ is the spectral gap. Rearranging the inequality, we have

$$
D_{\chi^2}(\mu_{t+1} \| \pi) \le (1 - \gamma) D_{\chi^2}(\mu_t \| \pi).
$$

Hence, the χ^2 divergence decays exponentially with rate $(1 - \gamma)$. We have $D_{\chi^2}(\mu_t || \pi) \leq$ $(1 - \gamma)^t D_{\chi^2}(\mu_0 \|\pi)$. The maximum χ^2 -divergence between μ_0 and π is achieved when $\mu_0(x) = 1$ such that $\pi(x) = \pi_{\min}$. Hence, $D_{\chi^2}(\mu_t || \pi) \leq (1 - \gamma)^t (\frac{1}{\pi_m})$ $\frac{1}{\pi_{\min}})^2$.

Exercise 1.4. Find a relation between χ^2 -divergence and total variation distance and use it to bound the mixing time of Glauber dynamics.

¹The definition means $h_t(x) = \frac{\mu_t(x)}{\pi(x)}$ for all $x \in \Omega$

2 Multi-level down-up walks

We give a generalized version of down-up walks. Let $\pi = \pi_n$ be a distribution over $\Omega = \Omega_n \subseteq [q]^V$, where $|V| = n$. We have defined Ω_{n-1} in previous section. We can generalize this to any $k \leq n$. For any $0 \leq k < n$, define Ω_k as follows

$$
\Omega_k = \{ \sigma \in [q]^S : S \subseteq V \wedge |S| = k \wedge \pi_S(\sigma) > 0 \},\
$$

which contains all feasible partial configurations of size k . We can define the down-walk between every two adjacent levels. Define the $k \to (k-1)$ down-walk $D_{k \to (k-1)}$ as follows. Given a state $X \in \Omega_k$, say $X \in [q]^S$ for some $S \subseteq V$ with $|S| = k$, one step of the chain does as follows:

- pick a vertex $v \in S$ uniformly at random;
- remove the configuration of X on v to obtain $X_{S-v} \in \Omega_{k-1}$.

For any two levels $\ell > k$, we can define the down-walk $D_{\ell \to k}$ such that

$$
D_{\ell \to k} = D_{\ell \to (\ell-1)} D_{(\ell-1) \to (\ell-2)} \dots D_{(k+1) \to k}.
$$

The distribution π can also be generalized to every level k such that

$$
\pi_k = \pi_n D_{n \to k}.
$$

Similarly, we can define the up-walk from Ω_k to Ω_{k+1} as follows. Given a state $X \in \Omega_k$ where $X \in [q]^S$, one step of the chain does as follows:

- pick a vertex $v \in V S$ uniformly at random;
- sample X_v from the distribution π_v^X and then extend the configuration X further at the position v to obtain a new configuration $X \in \Omega_{k+1}$.

Alternatively, the up-walk can be interpreted as follows. We say $X \in [q]^S$ is a sub-configuration of $Y \in [q]^{S'}$ if $S \subseteq S'$. Given a state $X \in \Omega_k$, one step of the chain moves X to a new configuration $\sigma \in \Omega_{k+1}$ with probability

$$
U_{k \to (k+1)}(X, \sigma) = \mathbf{Pr}_{Y \sim \pi_{k+1}} [Y = \sigma | X \text{ is a sub-configuration of } Y]
$$

$$
\propto \mathbf{1}[X \text{ is a sub-configuration of } \sigma] \cdot \pi_{k+1}(\sigma).
$$

Again, for different levels $\ell < k$, we can define the up-walk $U_{\ell \to k}$ by

$$
U_{\ell \to k} = U_{\ell \to (\ell+1)} U_{(\ell+1) \to (\ell+2)} \dots U_{(k-1) \to k}.
$$

3 Spectral independence

We are ready to give the definition of spectral independence, a powerful tool to analyze the mixing time of Glauber dynamics. The Glauber dynamics for π is the down-up walk $D_{n\to(n-1)}U_{(n-1)\to n}$ between levels n and $n-1$. To prove the mixing of Glauber dynamics, the spectral independence considers the down-up walk $P_{1,n}^{\vee} = D_{n \to 1} U_{1 \to n}$ between level n and level 1.

Definition 3.1 (SI: down-up-walk-based definition). Let $C \geq 1$ be a constant. A distribution π over $[q]^V$ is said to be C-spectral independence (C-SI) if the second largest eigenvalue of $1 \leftrightarrow n$ down-up walk $P_{1,n}^{\vee} = D_{n \to 1} U_{1 \to n}$ at most $\frac{C}{n}$, where $n = |V|$ denote the size of V.

There is an equivalent and more popular definition of spectral independence. Consider the $1 \leftrightarrow n$ up-down walk $P_{1,n}^{\wedge} = U_{1 \to n} D_{n \to 1}$ over Ω_1 . Note that two matrices AB and BA have the same eigenvalues except for some zeros. One can verify that $P_{1,n}^{\vee} = D_{n\to 1}U_{1\to n}$ is PSD (using the same proof as that for Glauber dynamics). The up-down walk $P_{1,n}^{\wedge}$ and down-up walk $P_{1,n}^{\vee}$ have the same second largest eigenvalue. Compared to the down-up walk, the up-down walk $P_{1,n}^{\wedge}$ is very simple. Every state in Ω_1 is a value at a single vertex. We can use a pair (v, c) to denote a state. Hence

$$
\Omega_1 = \{ vc \mid \pi_v(c) > 0 \}.
$$

The transition matrix $P_{1,n}^{\wedge}$ has a simple form such that for any $(v, a), (u, b) \in \Omega_1$,

$$
P_{1,n}^{\wedge}(va, ub) = \frac{1}{n} \pi_u^{v \leftarrow a}(b) = \frac{1}{n} \mathbf{Pr}_{X \sim \pi} \left[X_u = b \mid X_v = a \right].
$$

It is easy to verify that $P_{1,n}^{\wedge}$ is reversible with respect to π_1 and for any $(v, c) \in \Omega_1$,

$$
\pi_1(vc) = \frac{\pi_v(c)}{n}.
$$

Lemma 3.2. Show that the λ_2 of up-down walk $P_{1,n}^{\wedge}$ is at least $\frac{1}{n}$, which is the reason why we assume $C \geq 1$ in the definition of spectral independence.

Proof. Fix a variable v and color c such that $\pi_v(c) \in (0,1)$. Define t such that $\frac{t}{n} = \pi_v(c)$. Let $A = \{vc\}, B = \{va \mid a \neq c\}, \text{ and } C = \Omega_1 - A - B. \text{ Define } f \text{ such that for any } a \in A, f(a) = \frac{n}{t},$ for any $b \in B$, $f(b) = -\frac{n}{1-t}$, and for any $c \in C$, $f(c) = 0$. We can verify that

$$
\mathbf{E}_{\pi_1}[f] = \pi_v(c)f(a) + \frac{1-t}{n}f(b) = 0.
$$

Note that the up-down walk cannot make transitions between A and B . Hence, to compute the Dirichlet form, we only need to consider transitions between A and C and transitions between B and C. We have

$$
\mathcal{E}(f, f) = \sum_{a \in A} \pi_1(a) \sum_{c \in C} P_{1,n}^{\wedge}(a, c) \frac{n^2}{t^2} + \sum_{b \in B} \pi_1(b) \sum_{c \in C} P_{1,n}^{\wedge}(b, c) \frac{n^2}{(1-t)^2}
$$

= $\frac{t}{n} \left(1 - \frac{1}{n}\right) \frac{n^2}{t^2} + \frac{1-t}{n} \left(1 - \frac{1}{n}\right) \frac{n^2}{(1-t)^2}$
= $\left(1 - \frac{1}{n}\right) \left(\frac{n}{t} + \frac{n}{1-t}\right).$

In the first equation, we only enumerate $a \in A$ and $c \in C$ to sum over all possible transitions from A to C. We ignore transitions from C to A due to the reversibility property of $P_{1,n}^{\wedge}$ (also, we remove the factor $\frac{1}{2}$). The same argument applies to transitions from B to C. A simple calculation shows that

$$
\langle f, f \rangle_{\pi_1} = \frac{t}{n} \frac{n^2}{t^2} + \frac{1-t}{n} \frac{n^2}{(1-t)^2} = \frac{n}{t} + \frac{n}{1-t}.
$$

Hence, the spectral gap of $P_{1,n}^{\wedge}$ satisfies

$$
\inf_{h:h \perp_{\pi_1} \mathbf{1}} \frac{\mathcal{E}(h,h)}{\langle h,h \rangle_{\pi_1}} \le \frac{\mathcal{E}(f,f)}{\langle f,f \rangle_{\pi_1}} = 1 - \frac{1}{n}.
$$

In the last lecture, we show that any reversible Markov chain P admits a spectral decomposition $P = \sum_i \lambda_i v_i v_i^T D$, where λ_i is the eigenvalue, v_i is the eigenvector and D is the diagonal matrix generated by the stationary distribution. We can apply this result to the up-down walk. Note that $\lambda_1 = 1$ and $v_1 = 1$. We can remove the term contributed by the top eigenvalue to obtain

$$
A = P_{1,n}^{\wedge} - \mathbf{1} \mathbf{1}^T \text{diag}(\pi_1) \quad \Leftrightarrow \quad A(va, ub) = \frac{1}{n} \left(\pi_u^{v \leftarrow a}(b) - \pi_u(b) \right),
$$

which motivates the following definition of influence matrix $\Psi : \Omega_1 \times \Omega_1 \to \mathbb{R}$ such that

$$
\Psi_{\pi}(va, ub) = \pi_u^{v \leftarrow a}(b) - \pi_u(b).
$$

The definition of the influence matrix is very intuitive. The difference $\pi_u^{v\leftarrow a}(b) - \pi_u(b)$ can be viewed as the influence on u taking the value b from the event that v taking the value a . The following definition of spectral independence is well-known.

Definition 3.3 (SI: influence-matrix-based definition). Let $C \geq 1$ be a constant. A distribution π is said to be C-SI if the largest eigenvalue of influence matrix Ψ_{π} is at most C.

The above definition of spectral independence was discovered in $[CGSV21]$ $[CGSV21]$. However, the notion of spectral independence was first introduced in $ALO20$ for Boolean distributions ($q =$ 2). The definition of influence matrix in [\[ALO20\]](#page-7-1) is different from the definition here and the definition only works for Boolean distributions.

3.1 Spectral independence implies rapid mixing

We show the spectral independence implies the mixing of down-up walks. Then, we add a minor additional assumption to prove the mixing of Glauber dynamics.

Let $k \geq 1$. Define the k-block dynamics as the $n \leftrightarrow (n-k)$ down-up walks such that

$$
P_k^B = P_{n,n-k}^{\vee} = D_{n \to (n-k)} U_{(n-k) \to n}.
$$

In words, at every step, given $X \in \Omega$, P_k^B samples a subset $S \subseteq V$ with $|S| = k$ uniformly at random, and then resamples X_S from the conditional distribution $\pi_S^{X_{V-S}}$ S^{N-S} .

Observation 3.4. The Glauber dynamics is 1-block dynamics.

To introduce the mixing result for general k-block dynamics, we first introduce the notation of conditional distributions. Let $\Lambda \subseteq V$ be a subset of variables. Let $\sigma \in [q]^{\Lambda}$ be a feasible partial configuration on Λ . We use $\pi^{\sigma}_{V-\Lambda}$ to denote the marginal distribution on $V-\Lambda$ conditional on σ. For example, in graph coloring, given the partial coloring σ, for any vertex v ∈ V − Λ, v can only take colors in a list $L_v^{\sigma} = [q] - {\sigma_u \mid u \in \Lambda}$ is a neighbor of v .

Theorem 3.5. Let $C \geq 1$ be a constant. Let $\ell > C$. Let π be a distribution over $[q]^V$ with $|V| = n$. If for any feasible partial configuration $\sigma \in [q]^{V-S}$ where $S \subseteq V$ and $|S| > \ell$, the conditional distribution π_S^{σ} is C-SI, then the spectral gap of ℓ -block dynamics is at least

$$
\prod_{i=\ell+1}^n \left(1 - \frac{C}{i}\right) \approx \exp\left(-\sum_{i=\ell+1}^n \frac{C}{n}\right) \approx \left(\frac{\ell}{n}\right)^C.
$$

Remark 3.6. For a conditional distribution $\pi_{V-\Lambda}^{\sigma}$ with $|V-\Lambda|=k$, Definition [3.1](#page-3-0) holds for $\pi^{\sigma}_{V-\Lambda}$ means the second largest eigenvalue of $k \leftrightarrow 1$ down-up walk transition matrix at most $\frac{C}{k}$, which is equivalent to Definition [3.3](#page-5-0) such that $\lambda_{\max}(\Psi_{\pi^{\sigma}_{V-A}}) \leq C$.

Remark 3.7. The above theorem requires that the spectral independence holds not only for π but also for all conditional distributions induced by π . In many papers, the spectral independence is also directed defined as Definition [3.1](#page-3-0) and Definition [3.3](#page-5-0) hold for π and all conditional distributions induced by π .

Proof. For any $f: \Omega \to \mathbb{R}$, let $\mathcal{E}_k(f, f)$ denote the Dirichlet form for P_k^B . For any subset Λ , let Ω_{Λ} denote the set of all feasible configurations on Λ and let $\Lambda^{c} = V - \Lambda$. By definition,

$$
\mathcal{E}_k(f, f) = \frac{1}{2} \sum_{x \in \Omega} \pi(x) \sum_{y \in \Omega} P_k^B(x, y) (f(x) - f(y))^2
$$

=
$$
\frac{1}{2 {n \choose k}} \sum_{S \subseteq V : |S| = k} \sum_{\substack{\sigma \in \Omega_{S^c} \\ y_{S^c} = x_{S^c} = \sigma}} \pi_{S^c}(\sigma) \sum_{x_S \in [q]^S, y_S \in [q]^S} \pi_S^{\sigma}(x_S) \pi_S^{\sigma}(y_S) (f(x) - f(y))^2.
$$

Note that $\mathbf{Var}_{\mu}[f] = \frac{1}{2}$ $\frac{1}{2} \sum_{x,y} \mu(x) \mu(y) (f(x) - f(y))^2$ for any distribution μ . Let Ω_S^{σ} denote the support of π_{S}^{σ} . Let f^{σ} denote a function from Ω_{S}^{σ} to R such that for any $\tau \in \Omega_{S}^{\sigma}$, $f^{\sigma}(\tau) = f(\tau \sigma)$, where $\tau\sigma$ is a full configuration obtained by concatenating τ and σ . Let $\binom{V}{k}$ $\binom{V}{k}$ denote all subsets $\Lambda \subseteq V$ such that $|\Lambda| = k$. Let $S \sim {V_k \choose k}$ $\binom{V}{k}$ denote a uniform random element in $\binom{V}{k}$ $\binom{V}{k}$. Then

$$
\mathcal{E}_k(f,f) = \mathbf{E}_{S \sim {V \choose k}} \left[\mathbf{E}_{\sigma \sim \pi_{S^c}} \left[\mathbf{Var}_{\pi_S^{\sigma}}[f^{\sigma}] \right] \right].
$$

Our starting point is Definition [3.1,](#page-3-0) which shows that P_{n-1}^B for π has spectral gap $1-\frac{C_n}{n}$ $\frac{C}{n}$:

$$
\operatorname{Var}_{\pi}[f] \leq \left(1 - \frac{C}{n}\right)^{-1} \operatorname{E}_{S \sim \binom{V}{n-1}} \left[\operatorname{E}_{\sigma \sim \pi_{S^c}} \left[\operatorname{Var}_{\pi_S^{\sigma}}[f^{\sigma}]\right]\right].
$$

Next, we apply Definition [3.1](#page-3-0) for conditional distribution π_S^{σ} on the inner variance term. Since π_S^{σ} is a joint distribution over $n-1$ variables in S, we have

$$
\operatorname{\mathbf{Var}}_{\pi^{\sigma}_S}[f^{\sigma}] \leq \left(1 - \frac{C}{n-1}\right)^{-1} \operatorname{\mathbf{E}}_{T \sim \binom{S}{n-2}} \left[\operatorname{\mathbf{E}}_{\tau \sim \pi^{\sigma}_{S-T}} \left[\operatorname{\mathbf{Var}}_{\pi^{\sigma \tau}_T}[f^{\sigma \tau}]\right]\right].
$$

Combining the two inequalities, we have

$$
\operatorname{Var}_{\pi}[f] \leq \left(1 - \frac{C}{n}\right)^{-1} \left(1 - \frac{C}{n-1}\right)^{-1} \operatorname{E}_{S \sim \binom{V}{n-2}} \left[\operatorname{E}_{\sigma \sim \pi_{S^c}} \left[\operatorname{Var}_{\pi_S^{\sigma}}[f^{\sigma}]\right]\right].
$$

Repeating this process until the size of S becomes ℓ , we have

$$
\mathbf{Var}_{\pi}[f] \leq \prod_{i=\ell+1}^{n} \left(1 - \frac{C}{i}\right)^{-1} \mathbf{E}_{S \sim {V \choose \ell}} \left[\mathbf{E}_{\sigma \sim \pi_{S^c}} \left[\mathbf{Var}_{\pi_S^{\sigma}}[f^{\sigma}]\right]\right]. \tag{1}
$$

This proves the theorem.

To prove the mixing of Glauber dynamics, we cannot simply set $\ell = 1$ regardless of C. This is because $1 - \frac{C}{i}$ $\frac{C}{i}$ can be negative if $i < C$. However, we can further assume that for any π_S^{σ} , where $\sigma \in S^c$ and $|S| = k$, the largest eigenvalue of the influence matrix Ψ for π_S^{σ} is at most $k\eta$ for some constant $\eta < 1$, or equivalently, the second largest eigenvalue of the $k \leftrightarrow 1$ down-up walk is at most $\eta < 1$. Then, we can keep doing the proof until $\ell = 1$.

The above proof only shows a (large) polynomial mixing time of Glauber dynamics. For graphical models (e.g. graph coloring), where the underlying graph has bounded degree, see [CLV21] [CLV21] [CLV21] for a proof of $O(n \log n)$ optimal mixing from the spectral independence. Also, see [\[AJK](#page-7-3)+21, [CFYZ21,](#page-7-4) [CFYZ22,](#page-8-3) [CE22\]](#page-7-5) for the optimal mixing for certain graphical models on general graphs with unbounded degree.

 \Box

3.2 Establish spectral independence from total influence

To verify the spectral independence condition, Definition [3.3](#page-5-0) requires us to compute the max eigenvalue of the influence matrix. This is usually not easy. Instead, we can bound the total influence, which is the sum of influences.

$$
\lambda_{\max}(\Psi) \le \|\Psi\|_{\infty} = \max_{va} \sum_{ub} |\Psi(va, ub)|.
$$

Sometimes, it is easier to work with the following n by n influence matrix $\Psi' : V \times V \to \mathbb{R}$. For any two variables $v, u \in V$, define the influence from u to v by

$$
\Psi'(v, u) = \max_{a, b} d_{\text{TV}}\left(\pi_u^{v \leftarrow a}, \pi_u^{v \leftarrow b}\right).
$$

To upper bound the top eigenvalue of Ψ , the task can be reduced to upper bound the total influence of Ψ' such that

$$
\|\Psi'\|_\infty = \max_v \sum_u |\Psi'(v, u)|.
$$

For graph q -coloring on graph G , one can obtain a constant the total influence bound if

- *G* has constant degree and $q \ge 1.809\Delta$ [\[CV24\]](#page-8-4);
- G is triangle-free and $q \ge 1.763\Delta$ [\[FGYZ21,](#page-8-5) CGŠV21];
- G has constant degree and constant large girth, and $q \geq \Delta + 3$ [\[CLMM23\]](#page-8-6).

The spectral independence shows $O(n \log n)$ mixing time in bounded degree graphs [\[CLV21\]](#page-8-2).

References

- [AJK+21] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong. Entropic independence in high-dimensional expanders: Modified log-sobolev inequalities for fractionally log-concave polynomials and the ising model. arXiv preprint arXiv:2106.04105, 2021.
- [AL20] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and applications. In STOC, pages 1198–1211, 2020.
- [ALO20] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional expanders and applications to the hardcore model. In FOCS, pages 1319–1330, 2020.
- [ALOV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid. In $STOC$, pages 1–12, 2019.
- [CE22] Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds for markov chains. In FOCS, pages 110–122, 2022.
- [CFYZ21] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Rapid mixing of glauber dynamics via spectral independence for all degrees. In FOCS, pages 137–148, 2021.
- [CFYZ22] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Optimal mixing for two-state anti-ferromagnetic spin systems. In FOCS, pages 588–599, 2022.
- [CGŠV21] Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Rapid mixing for colorings via spectral independence. In SODA, pages 1548–1557, 2021.
- [CLMM23] Zongchen Chen, Kuikui Liu, Nitya Mani, and Ankur Moitra. Strong spatial mixing for colorings on trees and its algorithmic applications. In FOCS, pages 810–845, 2023.
- [CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: entropy factorization via high-dimensional expansion. In STOC, pages 1537–1550, 2021.
- [CV24] Charlie Carlson and Eric Vigoda. Flip dynamics for sampling colorings: Improving $(11/6-\epsilon)$ using a simple metric. $CoRR$, abs/2407.04870, 2024.
- [FGYZ21] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid mixing from spectral independence beyond the boolean domain. In SODA, pages 1558–1577, 2021.
- [PW25] Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge University Press, 2025. [https://people.lids.mit.edu/yp/homepage/](https://people.lids.mit.edu/yp/homepage/data/itbook-export.pdf) [data/itbook-export.pdf](https://people.lids.mit.edu/yp/homepage/data/itbook-export.pdf).