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1 Glauber dynamics

In the last lecture, we have seen the Metropolis-Hastings chain for graph q-coloring. In this
lecture, we will consider another well-known Markov chain, called Glauber dynamics. Again, we
will start from the Glauber dynamics for graph q-coloring.

• Start from an arbitrary proper coloring X ∈ [q]V .

• For each t from 1 to T :

1. Sample a vertex v ∈ V uniformly at random.

2. Resample Xv ∼ µ
XV −v
v , which is the marginal distribution on v conditional XV−v. In

other words, Xv is a uniform random color from [q] \XN(v), where N(v) is the set of
neighbors of v in G.

• Return the coloring X.

Exercise 1.1. Show that the Glauber dynamics mixes in time O(nδ n log n) if q ≥ (2+ δ)∆ using
the coupling method.

The above chain can be easily generalized to a general high-dimensional distribution µ over
[q]V . In this lecture, we will study the mixing time of the Glauber dynamics. However, instead
of using the coupling method, we will use the spectral analysis. Specifically, we will study the
eigenvalues of the transition matrix of the Glauber dynamics to bound the mixing time.

2 The spectral analysis and reversible Markov chains

Let P be the transition matrix of a reversible Markov chain over the state space Ω with stationary
distribution π. The ⟨·, ·⟩π is the weighted inner product defined by ⟨f, g⟩π =

∑
x∈Ω f(x)g(x)π(x).

Proposition 2.1 ([LPW17, Sec 12.1]). The matrix P has N real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN

with corresponding eigenvectors v1, v2, . . . , vN such that eigenvectors form an orthonormal basis
of RN with respect to the weighted inner product ⟨·, ·⟩π (i.e. ⟨vi, vj⟩π = 1[i = j]) and for t ≥ 1,

P t(x, y)

π(y)
=

N∑
i=1

λt
ivi(x)vi(y).

• The largest eigenvalue λ1 = 1, and the corresponding eigenvector is v1 = 1. If P is
irreducible, the eigenspace of λ1 is one-dimensional, which means λ2 < λ1.

• If P is irreducible and aperiodic, then −1 is not an eigenvalue of P .

By the detailed balance condition, we have

∀x, y ∈ Ω, π(x)P (x, y) = π(y)P (y, x).
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We can define a symmetric matrix Q by

Q(x, y) =

√
π(x)

π(y)
P (x, y) =

√
π(y)

π(x)
P (y, x) = Q(y, x).

Define the diagonal matrix D by Dx,x = π(x). Then we have

Q = D1/2PD−1/2.

Let |Ω| = N . Since Q is real symmetric, it has real eigenvalues. Let λ1 ≥ λ2 ≥ . . . ≥ λN be the
eigenvalues of Q with corresponding orthonormal eigenvectors φ1, φ2, . . . , φN . Define vectors
v1, v2, . . . , vN by vi = D−1/2φi. Then we have

Pvi = PD−1/2φi = D−1/2D1/2PD−1/2φi = D−1/2Qφi = D−1/2λiφi = λivi.

Hence, v1, v2, . . . , vN are the eigenvectors of P with corresponding eigenvalues λ1, λ2, . . . , λN .
Let ⟨f, g⟩π define the weighted inner product by ⟨f, g⟩π =

∑
x∈Ω f(x)g(x)π(x). Then we have

⟨vi, vj⟩π = ⟨D−1/2φi, D
−1/2φj⟩π = ⟨φi, φj⟩ = 1[i = j].

Hence, v1, v2, . . . , vN are orthonormal with respect to the weighted inner product ⟨·, ·⟩π. Any
vector f ∈ RN can be written as

f =

N∑
i=1

⟨f, vi⟩πvi.

This is because the coefficient vector xi = ⟨f, vi⟩π is the solution of linear system V x = f , where
V is the matrix with columns v1, v2, . . . , vN . The equation holds because the inverse of V is
V TD and (V TDf)(x) = ⟨f, x⟩π. Again, it is not hard to verify that P can be decomposed as

P =

N∑
i=1

λiviv
T
i D ⇐⇒ P (x, y)

π(y)
=

N∑
i=1

λivi(x)vi(y).

Consider

P 2 =

(
N∑
i=1

λiviv
T
i D

)(
N∑
i=1

λiviv
T
i D

)
=
∑
ij

λiλjvi⟨vi, vj⟩πvTj D =
∑
i

λ2
i viv

T
i D.

Next, we take a look at the eigenvalues λ1, λ2, . . . , λN of the transition matrix P . Since the
row sum of P is 1, we have maxi |λi| ≤ 1. The largest eigenvalue λ1 = 1, and the corresponding
eigenvector is v1 = 1. We show that, if P is irreducible, the eigenspace of λ1 is one-dimensional.
Let f be an eigenvector with eigenvalue λ1 = 1. Then we have

(Pf)(x) =
∑
y∈Ω

P (x, y)f(y) = Ey∼P (x,·) [f(y)] = f(x).

Let x ∈ Ω satisfying f(x) = maxy∈Ω f(y). Then, for any y ∈ Ω such that P (x, y) > 0, since
f(x) is the average of f(y)’s, we have f(y) = f(x). Otherwise, there exists y ∈ Ω such that
f(y) > f(x). We can repeat the above argument to show that if the Markov chain is irreducible,
then f is a constant vector.

Exercise 2.2. Use the same argument as above to show that if P is irreducible and aperiodic,
then −1 is not an eigenvalue of P . For any eigenvector f with eigenvalue −1, one can use the
sign of f(x) to partition the state space Ω into two parts. If P (x, y) > 0, then x and y are in
different parts.
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3 The spectral gap and relaxation time

Now, let us focus on the case that P is a positive semidefinite matrix. If P is not, we can replace
P by 1

2(P + I), which means in every step, the chain stays in the same state with probability
1/2 and makes the transition defined by P with probability 1/2. Define the spectral gap

γ = 1− λ2.

For PSD P , define the relaxation time Trel by

Trel =
1

γ
.

In general case when P is not PSD, the relaxation time is defined by 1
γ∗ , where γ∗ = 1 − λ∗

the called the absolute spectral gap, and λ∗ = max{|λ| : λ is an eigenvalue of P, λ ̸= 1}. In this
mini-course, we will mainly focus on the case that P is PSD.

Theorem 3.1 (mixing time upper bound). Let πmin = minx∈Ω π(x). Then

Tmix (ε) = O

(
Trel · log

1

επmin

)
.

Proof. By the spectral decomposition, we have

P t(x, y)

π(y)
=

N∑
i=1

λt
ivi(x)vi(y) = 1 +

N∑
i=2

λt
ivi(x)vi(y)︸ ︷︷ ︸

error term

.

We show the error term shrinks with time t. Using Cauchy-Schwarz inequality, we have

(
P t(x, y)

π(y)
− 1

)2

=

(
N∑
i=2

λt
ivi(x)vi(y)

)2

≤

(
N∑
i=2

λt
iv

2
i (x)

)(
N∑
i=2

λt
iv

2
i (y)

)

≤ λ2t
2

(
N∑
i=2

v2i (x)

)(
N∑
i=2

v2i (y)

)
.

For general transition matrix P (not necessarily PSD), we can replace the λ2 in the above
inequality by λ∗ = max{|λ| : λ is an eigenvalue of P and λ ̸= 1}. Note that vi’s form an
orthonormal basis with respect to the weighted inner product ⟨·, ·⟩π. Let δx denote the indicator
function of x, i.e. δx(y) = 1[x = y]. Then we have

1 = δx(x) =

N∑
i=1

⟨δx, vi⟩πvi(x) =
N∑
i=2

v2i (x)π(x).

Hence, ∣∣∣P t(x, y)

π(y)
− 1
∣∣∣ ≤ λt

2 ·
1√

π(x)π(y)
≤ λt

2

πmin
.

Since 2dTV

(
P t(x, ·), π

)
is all

∣∣∣P t(x,y)
π(y) − 1

∣∣∣ for y ∈ Ω averaged by distribution π, if we set the

time t = O(Trel log
1

επmin
), then the total variation distance is at most ε.
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Theorem 3.2 (mixing time lower bound). The mixing time can be lower bound by

Tmix(ε) = Ω

(
Trel · log

1

ε

)
.

Proof. Let v2 be the eigenvector corresponding to the second largest eigenvalue λ2. Then we have
Eπ [Pv2] =

∑
x π(x)

∑
y P (x, y)v2(y) =

∑
x,y π(y)P (y, x)v2(y) = Eπ [v2]. Note that λ ̸= 1. If

λ2 = 0, then Eπ [v2] = Eπ [0] = 0. If λ2 ̸= 0, then Eπ [v2] = λ2Eπ [v2], which implies Eπ [v2] = 0.
We can write the following inequality

|λt
2v2(x)| =

∣∣∣∣∣∑
y

P t(x, y)v2(y)−
∑
y

π(y)v2(y)

∣∣∣∣∣ ≤∑
y

|v2(y)|π(y)
∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣
≤
∑
y

∥v2∥∞π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ .
If we take x such that |v2(x)| = ∥v2∥∞, then

λt
2 ≤

∑
y

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ = 2dTV

(
P t(x, ·), π

)
.

This gives the lower bound of the mixing time.

4 Bound spectral gap via coupling

Theorem 4.1 ([Che98]). Let Ω a metric space with metric ρ satisfying ρ(x, y) ≥ 1 if x ̸= y. Let
θ ∈ (0, 1). Suppose for any x, y ∈ Ω, X ∼ P (x, ·) and Y ∼ P (y, ·) can be coupled such that

ρ(X,Y ) ≤ θρ(x, y).

For any eigenvalue λ ̸= 1 of P , |λ| ≤ θ. In particular, the spectral gap of P is at least 1− θ.

Remark 4.2. For Metropolis-Hastings chain for graph q-coloring, ρ can be set to be the
Hamming distance. The above theorem shows that if q ≥ (2 + δ)∆, then the spectral gap of the
Metropolis-Hastings chain is at least Ω( δn).

Proof. Let f : Ω → R be a function. Define the Lipschitz constant L(f) of f by

L(f) = sup
x,y∈Ω:x ̸=y

|f(x)− f(y)|
ρ(x, y)

.

Let f be an eigenvector of P with eigenvalue λ. Let X ∼ P (x, ·) and Y ∼ P (y, ·) be the coupled
random variables. By linearity of expectation and triangle inequality, we have

|Pf(x)− Pf(y)| = |E [f(X)]−E [f(Y )] | ≤ EX,Y [|f(X)− f(Y )|] .

Using Lipschitz constant, we have

|Pf(x)− Pf(y)| ≤ L(f) ·EX,Y [ρ(X,Y )] ≤ L(f)θρ(x, y).

On the other hand, the above inequality holds for any x, y ∈ Ω. This implies

L(Pf) ≤ θL(f).

Taking f as the eigenvector of λ implies

L(Pf) = L(λf) = |λ|L(f) ≤ θL(f).

Hence, |λ| ≤ θ because f is not a constant function so that L(f) > 0.
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5 Markov chain comparison

Now, we know that the spectral gap of Metropolis-Hastings chain for graph q-coloring is at least
Ω( δn). We show how to prove the spectral gap of Glauber dynamics is also Ω( δn) by comparing the

spectral gap of two Markov chains, which implies O(n
2

δ log q) mixing time for Glauber dynamics
because πmin ≥ 1/qn. One may notice that in Exercise 1.1, we have already used the coupling
method to prove a faster O(n log n) mixing time of Glauber dynamics. Why do we need to prove
this O(n2) mixing time? Here are the reasons.

• This example shows that compared to coupling stepwise contraction, the spectral gap often
gives a slower mixing time.

• However, we use coloring as a running example in this mini-course. For other models (such
as graph matching), it is hard to find a coupling proof of the mixing time but one can
analyze the spectral gap. The upper and lower bounds for mixing time shows that up to a
log 1

πmin
factor (which is typically a polynomial in n), the mixing time is fully determined

by the spectral gap.

We first give some abstract results on Markov chain comparison. Let P be a reversible
Markov chain over Ω with stationary distribution π. For any functions f, g : Ω → R, define the
Dirichlet form of f by

E(f, f) = ⟨(I − P )f, f⟩π.

Using the detailed balance condition, we can verify that

E(f, f) = 1

2

∑
x,y∈Ω

π(x)P (x, y)(f(x)− f(y))2.

Exercise 5.1. Verify the above identity.

Theorem 5.2. The spectral gap of P can be characterized by the Dirichlet form as follows.

γ = min
f ̸=0,f⊥π1

E(f, f)
⟨f, f⟩π

,

where f ⊥π 1 denotes ⟨f, 1⟩π = 0.

Proof. Let v1, v2, . . . , vN be the eigenvectors of P with corresponding eigenvalues λ1, λ2, . . . , λN .
Since f ⊥π 1, we have f =

∑N
i=2⟨f, vi⟩πvi. We have

E(f, f) = ⟨f, f⟩π − ⟨Pf, f⟩π =
N∑
i=2

(1− λi)⟨f, vi⟩2π ≥ (1− λ2)
N∑
i=2

⟨f, vi⟩2π = (1− λ2)⟨f, f⟩π.

On the other hand, we can take f = v2 to make the equality hold.

For any function f . The variance of f is defined by

Varπ [f ] = Eπ

[
f2
]
−Eπ [f ]

2 = ⟨f, f⟩π − E[π]f2.

Consider the function f̂ = f −Eπ [f ]. It is easy to show that E(f̂ , f̂) = E(f, f) and Varπ [f ] =
Varπ[f̂ ] = ⟨f̂ , f̂⟩π. The equation in Theorem 5.2 can be written as

γ = min
f ̸=0,f⊥π1

E(f, f)
⟨f, f⟩π

= min
f ̸=0,f⊥π1

E(f −E [f ] , f −E [f ])

⟨f −E [f ] , f −E [f ]⟩π
= min

Varπ [f ] ̸=0

E(f, f)
Varπ [f ]

.
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Theorem 5.3. Let γG and γM be the relaxation time of the Glauber dynamics and Metropolis-
Hastings chain, respectively. Then

γG ≥ γM = Ω

(
δ

n

)
.

Proof. Let PG denote the transition matrix of the Glauber dynamics. Let PM denote the
transition matrix of the Metropolis-Hastings chain. Since two chains has the same stationary
distribution π, we show that for any function f , the ratio of the Dirichlet form satisfies∑

x,y π(x)PG(x, y)(f(x)− f(y))2∑
x,y π(x)PM (x, y)(f(x)− f(y))2

≥ 1,

where we use the convention that 0
0 = 1. To bound the ratio, it suffices to consider all x ̸= y

such that PM (x, y) > 0. Then, x and y differ only at one vertex. It holds that PM (x, y) = 1
nq

and PG(x, y) >
1
nq . This proves the ratio bound. The spectral gap of PG can be written as

γG = min
Varπ [f ] ̸=0

EG(f, f)
Varπ [f ]

≥ 1

2
,

where EG denotes the Dirichlet form of PG. Let f the function that can achieve the minimum.
We have

γG =
EG(f, f)
Varπ [f ]

≥ EM (f, f)

Varπ [f ]
≥ min

g:Varπ [g]̸=0

EM (g, g)

Varπ [g]
= γM .

Theorem 5.2 also provides a way to upper bound the spectral gap by choosing an arbitrary
function f . If the transition matrix P is PSD, an upper bound of spectral gap implies a lower
bound of relaxation time, which implies a lower bound of mixing time.

Theorem 5.4. Suppose q > (1 + δ)∆, where δ > 0 is a constant. The spectral gaps of Glauber
dynamics and Metropolis-Hastings chain for graph coloring can be upper bounded by

γG, γM ≤ O

(
1

n

)
.

Proof. Fix an arbitrary vertex v. We partition all colorings Ω into two parts ΩR and ΩRc , where
ΩR contains all colorings such that v takes the color 0, say the color red. Define a function f
such that for all x ∈ ΩR, f(x) = q − 1 and for all x ∈ ΩRc , f(x) = −1. It is easy to verify that
f ⊥π 1 and f ̸= 0. We can compute

⟨f, f⟩π =
∑
x∈Ω

π(x) =
(q − 1)2

q
+

q − 1

q
= q − 1.

For the Dirichlet form of both Glauber dynamics and Metropolis-Hastings chain, we can bound

E(f, f) = 1

2

∑
x∈ΩR,y∈ΩRc

π(x)P (x, y)(f(x)− f(y))2 +
1

2

∑
x∈ΩRc ,y∈ΩR

π(x)P (x, y)(f(x)− f(y))2

≤ 1

2

∑
x∈ΩR,y∈ΩRc

π(x)P (x, y)q2 +
1

2

∑
x∈ΩRc ,y∈ΩR

π(x)P (x, y)q2

= q2
∑

x∈ΩR,y∈ΩRc

π(x)P (x, y). (by reversibility)
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The last term can be written as
∑

x∈ΩR
π(x)

∑
y∈ΩRc

P (x, y), where the sum of transition
probabilities is at most 1/n. This is because to move from x to ΩRc , the chain needs to pick

vertex v, which happens with probability 1/n. Hence, the last term is at most q2

qn = q
n .

E(f, f) = q

n
.

This implies γG, γM ≤ O( 1n).

Finally, given the bounds on spectral gap, to bound the relaxation time and mixing time of
Glauber dynamics, we need to verify that the transition matrix PG is PSD. The simplest trick
is to consider lazy Glauber dynamics, where in every step, the chain is lazy with probability
1/2. However, the transition matrix of lazy Glauber dynamics is indeed PSD [DGU14]. We will
prove this fact in next lecture. We can directly use Theorem 3.1 and Theorem 3.2 to get the
mixing time of Glauber dynamics:

Tmix

(
1

2e

)
= O

(
Trel · log

1

πmin

)
= O

(
n2

δ
log q

)
,

Tmix(ε) = Ω

(
Trel · log

1

ε

)
= Ω

(
n log

1

ε

)
.

There are many advanced techniques to compare the spectral gap of Markov chains. For
example, one can compare a Markov chain P (say Glauber dynamics or Metropolis-Hastings) to
the one step mixing chain Q, where Q(x, y) = π(y) for all x, y ∈ Ω. The spectral gap of Q is 1.
One can use a path of transitions in P to mimic one transition in Q. The spectral gap of P can
be captured by the length of the paths and the congestion of the paths. This kind of techniques
is called the canonical path [Jer03] and the path method [LPW17, Sec 13.4].
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