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Lecturer: Weiming Feng (ETH Zürich)

In this lecture, we will discuss some basic knowledge about down-up walks [ALOV19] and
spectral independence [ALO20]. The spectral independence is a new technique for analyzing the
mixing time of Glauber dynamics and, more generally, down-up walks. We cannot cover all the
details in this lecture, but one can refer to the resources on the course webpage for more details.

1 Glauber dynamics and down-up walks

Let π be a distribution over [q]V with support Ω ⊆ [q]V . We can think π as the uniform
distribution over proper q-colorings of a graph G = (V,E). In each step, given the current state
X ∈ Ω, the Glauber dynamics picks a vertex v ∈ V uniformly at random and resamples Xv from
the conditional marginal distribution π

XV −v
v , where the notation π

XV −v
v means πv(· | XV−v),

which is the marginal distribution on v conditional on XV−v. We use P ∈ Ω× Ω → R to
denote the transition matrix of Glauber dynamics. One transition of Glauber dynamics can be
decomposed into the following down-walk step and up-walk step. Let X ∈ Ω denote the current
state.

• Down-walk step: Pick a vertex v ∈ V uniformly at random and remove the value of Xv

to obtain a partial configuration XV−v. Formally, define the set of partial configurations

Ωn−1 = {σ ∈ [q]S | S ⊆ V ∧ |S| = n− 1 ∧ πS(σ) > 0},

where πS denote the marginal distribution on S projected from π. Here, πS(σ) > 0 means
σ can be extended to a valid full configuration in Ω. In Ωn−1, we use the index n− 1 to
emphasize the size of the partial configuration is n− 1. Also define

Ωn = Ω.

The down walk transition matrix D : Ωn × Ωn−1 → R is defined by for any σ ∈ Ωn, any
τ ∈ Ωn−1 such that τ is a partial configuration on S ⊆ V ,

D(σ, τ) =

{
1
n if σS = τ ,

0 otherwise.

• Up-walk step: In the up-walk steps, we go from Ωn−1 back to Ωn. Given a partial
configuration τ ∈ [q]S such that τ ∈ Ωn−1, we can uniquely identify the missing vertex
v = V − S and obtain a random σ ∈ Ωn such that σS = τ and σv ∼ πτ

v . Formally, the
transition matrix U : Ωn−1 × Ωn → R≥0 can be written as

U(τ, σ) =

{
πτ
v (σv) if σS = τ,

0 otherwise.

Now, the transition matrix P can be written as

P = DU.
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Next, we let πn = π and πn−1 = πnD. Intuitively, to draw a random sample X ∼ πn−1, one
can first sample X ∼ π and drop the value at a uniform random index v ∈ V . By definition, it
is easy to verify that πn−1U = πn = π, so that πP = π.

By decomposing P as a pair of down-walk and up-walk, we can proved some property of
the transition matrix P . Let ⟨f, g⟩πn =

∑
x∈Ωn

πn(x)f(x)g(x) be the weighted inner product
defined over Ωn. Similarly, let ⟨f ′, g′⟩πn−1 =

∑
τ∈Ωn−1

πn−1(τ)f
′(τ)g′(τ) be the weighted inner

product defined over Ωn−1. The following observation holds.

Observation 1.1 ([AL20]). D and U is a pair of adjoint operators such that

∀f ∈ RΩn , g ∈ RΩn−1 , ⟨f,Dg⟩πn = ⟨Uf, g⟩πn−1 .

Proof. We can compute

⟨f,Dg⟩πn =
∑
σ∈πn

πn(σ)f(σ)
∑

τ∈Ωn−1

D(σ, τ)g(τ) =
1

n

∑
σ∈Ωn

πn(σ)f(σ)
∑
v∈V

g(σV−v)

=
∑
v∈V

∑
σ∈Ωn

πn−1(σV−v)π
σV −v
v (σv)f(σ)g(σV−v)

=
∑

τ∈Ωn−1

πn−1(τ)g(τ)
∑
σ∈Ωn

U(τ, σ)f(σ)

= ⟨Uf, g⟩πn−1 .

Glauber dynamics transition matrix is PSD With this observation, we can quickly prove
the transition matrix P of Glauber dynamics is PSD. For any h ∈ RΩn , we have

⟨h, Ph⟩πn = ⟨h,DUh⟩πn = ⟨Uh,Uh⟩πn−1 ≥ 0.

Let h be the eigenvector corresponding to the minimum eigenvalue λmin of P . It holds that

⟨h, Ph⟩πn = λmin · ⟨h, h⟩πn ≥ 0 =⇒ λmin ≥ 0,

where the implication holds because ⟨h, h⟩πn > 0.

Alternative proof: spectral gap implies mixing We now reprove the fact that the spectral
gap implies mixing time for Glauber dynamics using the decomposition of down-up walks. Let
f : R≥0 → R be a convex function such that f(1) = 0. Let π and µ be two distributions over
Ω such that µ is absolutely continuous with respect to π (denoted by µ ≪ π), which means
π(x) = 0 =⇒ µ(x) = 0. Define their f -divergence by

Df (µ∥π) = Eπ

[
f
(µ
π

)]
− f

(
Eπ

[µ
π

])
= Eπ

[
f
(µ
π

)]
− f(1) = Eπ

[
f
(µ
π

)]
.

The f -divergence can be viewed as a “distance” between two distributions. For example, if
we set f(x) = 1

2 |x − 1|, then Df (µ∥π) = dTV (µ, π) is the total variation distance. If we set
f(x) = (x−1)2, then Df is known as χ2-divergence. If we set f(x) = x lnx, then Df is known as
the relative entropy or KL-divergence. We need the following well-known fact about f -divergence.

Lemma 1.2 (data processing inequality). Let P be an arbitrary transition matrix from Ω to
some space Ω′. For any two distributions µ1, µ2 over Ω such that µ1 ≪ µ2, it holds that

Df (µ1P∥µ2P ) ≤ Df (µ1∥µ2).
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The data processing inequality follows from the convexity of f . The proof can be found in
many textbooks such as [PW25].

We also need to use the following property of down-up walks. For two functions (vectors)

f, g, we use f
g to denote the function (vector) such that f

g (x) =
f(x)
g(x) .

Lemma 1.3. Note that πn = π. For any distribution µ over Ωn,
µD
πnD

= U µ
πn

.

Proof. For any x ∈ Ωn−1 such that x ∈ [q]S , on the one hand,

µD

πnD
(x) =

∑
y∈Ωn:yS=x µ(y)/n∑
y∈Ωn:yS=x π(y)/n

=
µS(x)

πS(x)
.

One the other hand, let v = V − S,

U
µ

πn
=

∑
y∈Ωn:yS=x

πx
v (yv)

µ(y)

π(y)
=

∑
y∈Ωn:yS=x

π(y)

πS(x)

µ(y)

π(y)
=

µS(x)

πS(x)
.

Now, let us focus on the χ2-divergence, which is closely related to the spectral gap. Let π be
the stationary distribution of Glauber dynamics. Let µ0 be an arbitrary initial distribution. Let
µt = µ0P

t be the distribution after t steps. We show that Dχ2(µt∥π) decays exponentially with
t. Define the function ht =

µt

π
1. Note that Eπ [ht] = 1 and Dχ2(µt∥π) = Varπ [ht]. Then

Dχ2(µt+1∥π) = Dχ2(µtP∥πP ) = Dχ2(µtDU∥πDU) ≤ Dχ2(µtD∥πD),

where the last inequality holds from the data processing inequality. We want to compare
Dχ2(µt+1∥π) to Dχ2(µt∥π). The above inequality shows that it suffices to compare Dχ2(µtD∥πD)

to Dχ2(µt∥π). Note that Dχ2(µt∥π) = Varπn [ht] and Dχ2(µtD∥πD) = Varπn−1

[
µtD
πnD

]
=

Varπn−1

[
U µt

πn

]
, where the last equation holds from Lemma 1.2 Then, we have

Dχ2(µt∥π)−Dχ2(µt+1∥π) ≥ Dχ2(µt∥π)−Dχ2(µtD∥πD)

= Varπn [ht]−Varπn−1 [Uht]

(by Eπn [ht] = Eπn−1 [Uht] = 1) = ⟨ht, ht⟩πn − ⟨Uht, Uht⟩πn−1

(by Observation 1.1 ) = ⟨ht, ht⟩πn − ⟨ht, DUht⟩πn

= ⟨ht, (I − P )ht⟩πn

≥ γVarπn [ht] = γDχ2(µt∥π).

where γ = inff :Varπ [f ]>0
E(f,f)
Varπ [f ]

is the spectral gap. Rearranging the inequality, we have

Dχ2(µt+1∥π) ≤ (1− γ)Dχ2(µt∥π).

Hence, the χ2 divergence decays exponentially with rate (1 − γ). We have Dχ2(µt∥π) ≤
(1− γ)tDχ2(µ0∥π). The maximum χ2-divergence between µ0 and π is achieved when µ0(x) = 1
such that π(x) = πmin. Hence, Dχ2(µt∥π) ≤ (1− γ)t( 1

πmin
)2.

Exercise 1.4. Find a relation between χ2-divergence and total variation distance and use it to
bound the mixing time of Glauber dynamics.

1The definition means ht(x) =
µt(x)
π(x)

for all x ∈ Ω
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2 Multi-level down-up walks

We give a generalized version of down-up walks. Let π = πn be a distribution over Ω = Ωn ⊆ [q]V ,
where |V | = n. We have defined Ωn−1 in previous section. We can generalize this to any k ≤ n.
For any 0 ≤ k < n, define Ωk as follows

Ωk = {σ ∈ [q]S : S ⊆ V ∧ |S| = k ∧ πS(σ) > 0},

which contains all feasible partial configurations of size k. We can define the down-walk between
every two adjacent levels. Define the k → (k − 1) down-walk Dk→(k−1) as follows. Given a state

X ∈ Ωk, say X ∈ [q]S for some S ⊆ V with |S| = k, one step of the chain does as follows:

• pick a vertex v ∈ S uniformly at random;

• remove the configuration of X on v to obtain XS−v ∈ Ωk−1.

For any two levels ℓ > k, we can define the down-walk Dℓ→k such that

Dℓ→k = Dℓ→(ℓ−1)D(ℓ−1)→(ℓ−2) . . . D(k+1)→k.

The distribution π can also be generalized to every level k such that

πk = πnDn→k.

Similarly, we can define the up-walk from Ωk to Ωk+1 as follows. Given a state X ∈ Ωk where
X ∈ [q]S , one step of the chain does as follows:

• pick a vertex v ∈ V − S uniformly at random;

• sample Xv from the distribution πX
v and then extend the configuration X further at the

position v to obtain a new configuration X ∈ Ωk+1.

Alternatively, the up-walk can be interpreted as follows. We say X ∈ [q]S is a sub-configuration of
Y ∈ [q]S

′
if S ⊆ S′. Given a state X ∈ Ωk, one step of the chain moves X to a new configuration

σ ∈ Ωk+1 with probability

Uk→(k+1)(X,σ) = PrY∼πk+1
[Y = σ | X is a sub-configuration of Y ]

∝ 1[X is a sub-configuration of σ] · πk+1(σ).

Again, for different levels ℓ < k, we can define the up-walk Uℓ→k by

Uℓ→k = Uℓ→(ℓ+1)U(ℓ+1)→(ℓ+2) . . . U(k−1)→k.

3 Spectral independence

We are ready to give the definition of spectral independence, a powerful tool to analyze the mixing
time of Glauber dynamics. The Glauber dynamics for π is the down-up walk Dn→(n−1)U(n−1)→n

between levels n and n− 1. To prove the mixing of Glauber dynamics, the spectral independence
considers the down-up walk P∨1,n = Dn→1U1→n between level n and level 1.

Definition 3.1 (SI: down-up-walk-based definition). Let C ≥ 1 be a constant. A distribution π
over [q]V is said to be C-spectral independence (C-SI) if the second largest eigenvalue of 1 ↔ n
down-up walk P∨1,n = Dn→1U1→n at most C

n , where n = |V | denote the size of V .
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There is an equivalent and more popular definition of spectral independence. Consider the
1 ↔ n up-down walk P∧1,n = U1→nDn→1 over Ω1. Note that two matrices AB and BA have the
same eigenvalues except for some zeros. One can verify that P∨1,n = Dn→1U1→n is PSD (using
the same proof as that for Glauber dynamics). The up-down walk P∧1,n and down-up walk P∨1,n
have the same second largest eigenvalue. Compared to the down-up walk, the up-down walk
P∧1,n is very simple. Every state in Ω1 is a value at a single vertex. We can use a pair (v, c) to
denote a state. Hence

Ω1 = {vc | πv(c) > 0}.

The transition matrix P∧1,n has a simple form such that for any (v, a), (u, b) ∈ Ω1,

P∧1,n(va, ub) =
1

n
πv←a
u (b) =

1

n
PrX∼π [Xu = b | Xv = a] .

It is easy to verify that P∧1,n is reversible with respect to π1 and for any (v, c) ∈ Ω1,

π1(vc) =
πv(c)

n
.

Lemma 3.2. Show that the λ2 of up-down walk P∧1,n is at least 1
n , which is the reason why we

assume C ≥ 1 in the definition of spectral independence.

Proof. Fix a variable v and color c such that πv(c) ∈ (0, 1). Define t such that t
n = πv(c). Let

A = {vc}, B = {va | a ̸= c}, and C = Ω1 −A−B. Define f such that for any a ∈ A, f(a) = n
t ,

for any b ∈ B, f(b) = − n
1−t , and for any c ∈ C, f(c) = 0. We can verify that

Eπ1 [f ] = πv(c)f(a) +
1− t

n
f(b) = 0.

Note that the up-down walk cannot make transitions between A and B. Hence, to compute
the Dirichlet form, we only need to consider transitions between A anc C and transitions between
B and C. We have

E(f, f) =
∑
a∈A

π1(a)
∑
c∈C

P∧1,n(a, c)
n2

t2
+
∑
b∈B

π1(b)
∑
c∈C

P∧1,n(b, c)
n2

(1− t)2

=
t

n

(
1− 1

n

)
n2

t2
+

1− t

n

(
1− 1

n

)
n2

(1− t)2

=

(
1− 1

n

)(
n

t
+

n

1− t

)
.

In the first equation, we only enumerate a ∈ A and c ∈ C to sum over all possible transitions
from A to C. We ignore transitions from C to A due to the reversibility property of P∧1,n (also,

we remove the factor 1
2). The same argument applies to transitions from B to C. A simple

calculation shows that

⟨f, f⟩π1 =
t

n

n2

t2
+

1− t

n

n2

(1− t)2
=

n

t
+

n

1− t
.

Hence, the spectral gap of P∧1,n satisfies

inf
h:h⊥π11

E(h, h)
⟨h, h⟩π1

≤ E(f, f)
⟨f, f⟩π1

= 1− 1

n
.
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In the last lecture, we show that any reversible Markov chain P admits a spectral decompo-
sition P =

∑
i λiviv

T
i D, where λi is the eigenvalue, vi is the eigenvector and D is the diagonal

matrix generated by the stationary distribution. We can apply this result to the up-down walk.
Note that λ1 = 1 and v1 = 1. We can remove the term contributed by the top eigenvalue to
obtain

A = P∧1,n − 11Tdiag(π1) ⇔ A(va, ub) =
1

n
(πv←a

u (b)− πu(b)) ,

which motivates the following definition of influence matrix Ψ : Ω1 × Ω1 → R such that

Ψπ(va, ub) = πv←a
u (b)− πu(b).

The definition of the influence matrix is very intuitive. The difference πv←a
u (b)− πu(b) can be

viewed as the influence on u taking the value b from the event that v taking the value a. The
following definition of spectral independence is well-known.

Definition 3.3 (SI: influence-matrix-based definition). Let C ≥ 1 be a constant. A distribution
π is said to be C-SI if the largest eigenvalue of influence matrix Ψπ is at most C.

The above definition of spectral independence was discovered in [CGŠV21]. However, the
notion of spectral independence was first introduced in [ALO20] for Boolean distributions (q =
2). The definition of influence matrix in [ALO20] is different from the definition here and the
definition only works for Boolean distributions.

3.1 Spectral independence implies rapid mixing

We show the spectral independence implies the mixing of down-up walks. Then, we add a minor
additional assumption to prove the mixing of Glauber dynamics.

Let k ≥ 1. Define the k-block dynamics as the n ↔ (n− k) down-up walks such that

PB
k = P∨n,n−k = Dn→(n−k)U(n−k)→n.

In words, at every step, given X ∈ Ω, PB
k samples a subset S ⊆ V with |S| = k uniformly at

random, and then resamples XS from the conditional distribution π
XV −S

S .

Observation 3.4. The Glauber dynamics is 1-block dynamics.

To introduce the mixing result for general k-block dynamics, we first introduce the notation
of conditional distributions. Let Λ ⊆ V be a subset of variables. Let σ ∈ [q]Λ be a feasible partial
configuration on Λ. We use πσ

V−Λ to denote the marginal distribution on V − Λ conditional on
σ. For example, in graph coloring, given the partial coloring σ, for any vertex v ∈ V − Λ, v can
only take colors in a list Lσ

v = [q]− {σu | u ∈ Λ is a neighbor of v}.

Theorem 3.5. Let C ≥ 1 be a constant. Let ℓ > C. Let π be a distribution over [q]V with
|V | = n. If for any feasible partial configuration σ ∈ [q]V−S where S ⊆ V and |S| > ℓ, the
conditional distribution πσ

S is C-SI, then the spectral gap of ℓ-block dynamics is at least

n∏
i=ℓ+1

(
1− C

i

)
≈ exp

(
−

n∑
i=ℓ+1

C

n

)
≈
(
ℓ

n

)C

.

Remark 3.6. For a conditional distribution πσ
V−Λ with |V − Λ| = k, Definition 3.1 holds for

πσ
V−Λ means the second largest eigenvalue of k ↔ 1 down-up walk transition matrix at most C

k ,
which is equivalent to Definition 3.3 such that λmax(Ψπσ

V −Λ
) ≤ C.
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Remark 3.7. The above theorem requires that the spectral independence holds not only
for π but also for all conditional distributions induced by π. In many papers, the spectral
independence is also directed defined as Definition 3.1 and Definition 3.3 hold for π and all
conditional distributions induced by π.

Proof. For any f : Ω → R, let Ek(f, f) denote the Dirichlet form for PB
k . For any subset Λ, let

ΩΛ denote the set of all feasible configurations on Λ and let Λc = V − Λ. By definition,

Ek(f, f) =
1

2

∑
x∈Ω

π(x)
∑
y∈Ω

PB
k (x, y)(f(x)− f(y))2

=
1

2
(
n
k

) ∑
S⊆V :|S|=k

∑
σ∈ΩSc

ySc=xSc=σ

πSc(σ)
∑

xS∈[q]S ,yS∈[q]S
πσ
S(xS)π

σ
S(yS)(f(x)− f(y))2.

Note that Varµ [f ] =
1
2

∑
x,y µ(x)µ(y)(f(x)− f(y))2 for any distribution µ. Let Ωσ

S denote the
support of πσ

S . Let f
σ denote a function from Ωσ

S to R such that for any τ ∈ Ωσ
S , f

σ(τ) = f(τσ),
where τσ is a full configuration obtained by concatenating τ and σ. Let

(
V
k

)
denote all subsets

Λ ⊆ V such that |Λ| = k. Let S ∼
(
V
k

)
denote a uniform random element in

(
V
k

)
. Then

Ek(f, f) = ES∼(Vk)
[
Eσ∼πSc

[
Varπσ

S
[fσ]

]]
.

Our starting point is Definition 3.1, which shows that PB
n−1 for π has spectral gap 1− C

n :

Varπ [f ] ≤
(
1− C

n

)−1
ES∼( V

n−1)
[
Eσ∼πSc

[
Varπσ

S
[fσ]

]]
.

Next, we apply Definition 3.1 for conditional distribution πσ
S on the inner variance term. Since

πσ
S is a joint distribution over n− 1 variables in S, we have

Varπσ
S
[fσ] ≤

(
1− C

n− 1

)−1
ET∼( S

n−2)

[
Eτ∼πσ

S−T

[
Varπστ

T
[fστ ]

]]
.

Combining the two inequalities, we have

Varπ [f ] ≤
(
1− C

n

)−1(
1− C

n− 1

)−1
ES∼( V

n−2)
[
Eσ∼πSc

[
Varπσ

S
[fσ]

]]
.

Repeating this process until the size of S becomes ℓ, we have

Varπ [f ] ≤
n∏

i=ℓ+1

(
1− C

i

)−1
ES∼(Vℓ )

[
Eσ∼πSc

[
Varπσ

S
[fσ]

]]
. (1)

This proves the theorem.

To prove the mixing of Glauber dynamics, we cannot simply set ℓ = 1 regardless of C. This
is because 1 − C

i can be negative if i < C. However, we can further assume that for any πσ
S ,

where σ ∈ Sc and |S| = k, the largest eigenvalue of the influence matrix Ψ for πσ
S is at most kη

for some constant η < 1, or equivalently, the second largest eigenvalue of the k ↔ 1 down-up
walk is at most η < 1. Then, we can keep doing the proof until ℓ = 1.

The above proof only shows a (large) polynomial mixing time of Glauber dynamics. For
graphical models (e.g. graph coloring), where the underlying graph has bounded degree,
see [CLV21] for a proof of O(n log n) optimal mixing from the spectral independence. Also,
see [AJK+21, CFYZ21, CFYZ22, CE22] for the optimal mixing for certain graphical models on
general graphs with unbounded degree.
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3.2 Establish spectral independence from total influence

To verify the spectral independence condition, Definition 3.3 requires us to compute the max
eigenvalue of the influence matrix. This is usually not easy. Instead, we can bound the total
influence, which is the sum of influences.

λmax(Ψ) ≤ ∥Ψ∥∞ = max
va

∑
ub

|Ψ(va, ub)|.

Sometimes, it is easier to work with the following n by n influence matrix Ψ′ : V × V → R. For
any two variables v, u ∈ V , define the influence from u to v by

Ψ′(v, u) = max
a,b

dTV

(
πv←a
u , πv←b

u

)
.

To upper bound the top eigenvalue of Ψ, the task can be reduced to upper bound the total
influence of Ψ′ such that

∥Ψ′∥∞ = max
v

∑
u

|Ψ′(v, u)|.

For graph q-coloring on graph G, one can obtain a constant the total influence bound if

• G has constant degree and q ≥ 1.809∆ [CV24];

• G is triangle-free and q ≥ 1.763∆ [FGYZ21, CGŠV21];

• G has constant degree and constant large girth, and q ≥ ∆+ 3 [CLMM23].

The spectral independence shows O(n log n) mixing time in bounded degree graphs [CLV21].
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