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Abstract

In classic distributed graph problems, each instance on a graph specifies a space of
feasible solutions (e.g. all proper (∆ + 1)-list-colorings of the graph), and the task of
distributed algorithm is to construct a feasible solution using local information.

We study distributed sampling and counting problems, in which each instance spec-
ifies a joint distribution of feasible solutions. The task of distributed algorithm is to
sample from this joint distribution, or to locally measure the volume of the probability
space via the marginal probabilities. The latter task is also known as inference, which
is a local counterpart of counting.

For self-reducible classes of instances, the following equivalences are established in
the LOCAL model up to polylogarithmic factors:

• For all joint distributions, approximate inference and approximate sampling are
computationally equivalent.

• For all joint distributions defined by local constraints, exact sampling is reducible
to either one of the above tasks.

• If further, sequentially constructing a feasible solution is trivial locally, then all
above tasks are easy if and only if the joint distribution exhibits strong spatial
mixing.

Combining with the state of the arts of strong spatial mixing, we obtain efficient
sampling algorithms in the LOCAL model for various important sampling problems,
including: an O(

√
∆ log3 n)-round algorithm for exact sampling matchings in graphs

with maximum degree ∆, and an O(log3 n)-round algorithm for sampling according
to the hardcore model (weighted independent sets) in the uniqueness regime, which
along with the Ω(diam) lower bound in [3] for sampling according to the hardcore
model in the non-uniqueness regime, gives the first computational phase transition for
distributed sampling.
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1 Introduction

In local computation, classic distributed graph problems are formulated in such a way that
each instance I on a graph G = (V,E) specifies a set ΩI of feasible solutions y = (yv)v∈V ,
and the goal of the distributed algorithm is to construct a feasible solution y ∈ ΩI by
outputting yv at each node v ∈ V . As a paradigm, we consider the list-coloring problem,
where each instance I gives a graph G = (V,E) with each node v ∈ V associated with a
list Lv of available colors. Then the set ΩI contains all proper list-colorings y with yv ∈ Lv
for every v ∈ V , satisfying yu 6= yv for all edges uv ∈ E.

Alternatively, we can consider the set of feasible solutions ΩI as the sample space of
a probability distribution and imagine that each instance I specifies a joint distribution
µI of feasible solutions y = (yv)v∈V ∈ ΩI . A distributed graph problem is then given by
a class of joint distributions µI indexed by instances I. (In the paradigm of list-coloring
problem, we may take each µI as the uniform distribution over all proper list-colorings of
instance I.) To each class of joint distributions of this form, there correspond a number of
naturally defined problems.

• Construction: Exhibit a feasible solution y = (yv)v∈V satisfying µI(y) > 0, where
each node v ∈ V outputs yv. This is the task for classic distributed graph problems.
(e.g. Construct a proper list-coloring of instance I.)

• Sampling: Generate a random solution Y = (Yv)v∈V distributed according to µI ,
where each node v ∈ V outputs Yv. (e.g. Generate uniformly a proper list-coloring
of instance I at random.)

• Inference (Counting): Each node calculates the marginal probabilities of the random
variable Yv being specific values, where the random vector Y = (Yv)v∈V is drawn
from µI . (e.g. Each node v ∈ V calculates the probabilities of v being assigned
specific colors in a uniform random proper list-coloring of instance I.)

We choose the inference problem as a local version of counting, as the marginal prob-
abilities are typical local knowledges regarding the volume of probability space. A more
standard global definition of counting is to estimate the number of feasible solutions |ΩI |
(or the total weights if the joint distribution µI is non-uniform), which is unsuitable to
study for local computation because it computes a global information. However, it is well
known that for self-reducible problems, such global information can be decomposed via
the chain rule into the marginal probabilities computed by inference problems [11]. Fur-
thermore, the inference problem itself is especially well-motivated by distributed machine
learning [17].

Previous studies in local computation were focused on the complexity of constructing a
feasible solution. The studies of sampling problems in local computation were started very
recently [3, 4]. Several fundamental questions regarding the local complexities of sampling
and counting need to be answered.
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Question 1: What is the relation between sampling and counting in local computation?
It is well known that for self-reducible problems, approximate counting and approx-

imate sampling are inter-reducible on polynomial-time Turing machines [10]. A natural
question is whether this is true for local computation. To see the nontriviality of the
question, recall that the generic reduction from sampling to counting has to be sequential
because the procedure is fully-adaptive: Each individual variable is sampled according to
the marginal distribution conditioning on the outcomes of previous samplings. To under-
stand the relation between counting and sampling in local computation, one has to answer
the following question first:

“How much non-adaptively can we sample a random vector Y = (Yi) by ac-
cessing to marginal distributions of individual variables Yi?”

which by itself is a fundamental question with a broader background.

Question 2: What are the roles of approximation in sampling and counting in local com-
putation?

Due to the pioneering works of Valiant [22] and Stockmeyer [21], on Turing machines
exact counting can be much harder then approximate counting. Similar phenomena occur
for local computation: Due to a straightforward information-theoretical argument, exact
inference is impossible to compute locally unless for joint distributions with zero long-range
correlation.

For sampling, a celebrated result of Jerrum, Valiant, and Vazirani [10] shows that on
polynomial-time Turing machines, for self-reducible problems, approximate sampling can
be boosted into exact sampling via a rejection sampling procedure (the JVV sampler),
such that the algorithm succeeds with high probability (with certifiable failures) and con-
ditioning on success the output is distributed precisely according to the joint distribution
µI specified by the instance I. Our question is whether there is a distributed variant of the
JVV sampler. Answering this question also involves investigating a fundamental problem:
“Can rejection sampling be made local?” Considering that the rejection sampling as a
basic Monte Carlo method has been studied for more than half a century, this is certainly
worth studying in local computation.

Question 3: What makes a sampling or counting problem solvable by local computations?
Finally, we want to characterize the easiness of sampling and counting in local computa-

tion by the properties of joint distributions. For sampling and counting on polynomial-time
Turing machines, a phase transition of computational complexity is witnessed at the thresh-
old for the decay of correlation (strong spatial mixing) [23, 19]. We wonder whether similar
computational phase transitions exist for local computation.

1.1 Our results

We study the local complexities of self-reducible sampling and counting problems, and
provide answers to above fundamental questions.
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We formulate distributed sampling and inference (counting) problems by classes of
joint distributions of solutions. Besides general joint distributions, we focus on the joint
distributions with following properties naturally arising from local computation:

(?) Joint distributions defined by local constraints. These are the counterparts of locally
checkable labelings (LCL) in the world of sampling and counting. In our paper, these
joint distributions are called local Gibbs distributions (Definition 2.3 and 2.4).

(??) Joint distributions for which constructing a feasible solution is trivial for a sequential
local oblivious procedure. For example, this includes distributions over (∆ + 1)-list-
colorings, but not the distributions over ∆-list-colorings. The property is related
to the ergodicity of the local dynamics on feasible solutions. In our paper, joint
distributions of this property are called locally admissible (Definition 2.5).

Main results: For self-reducible classes of instances, we show the followings hold for
sampling and inference (counting) in the LOCAL model:

• Approximate inference and approximate sampling are inter-reducible, in a sense that
if one of the tasks is tractable in the LOCAL model so is the other one (Theorem 3.2
and Theorem 3.4), where an approximate problem is tractable in the LOCAL model
if the problem is solvable for any n and δ > 0, where n is the number of nodes and δ
is the approximation error, within time complexity poly(log n, log 1

δ ).

• If property (?) is satisfied, then approximate inference, approximate sampling, and
exact sampling are all inter-reducible. With the above results, this is proved by a
distributed JVV sampler that successfully terminates within polylog(n) rounds with
high probability, and conditioning on success, returns a solution distributed precisely
as the desired distribution (Theorem 4.2).

• If further, property (??) is satisfied, then all above tasks are easy if and only if
the joint distribution exhibits certain degrees of strong spatial mixing (Theorem 5.1
and Corollary 5.3), a decay of correlation property which is critically related to the
computational complexity of approximate counting [23, 19].

Minor results: As by-products of above results, we obtain two boosting lemmas:

• If property (?) is satisfied, then approximate inference with bounded additive (total
variation) error can be boosted to with bounded multiplicative error (Lemma 4.1).

• If further, property (??) is satisfied, then strong spatial mixing in total variation dis-
tance implies strong spatial mixing with decay in multiplicative error (Corollary 5.2).

This explains why so far the known strong spatial mixing results for several major
problems (e.g. independent sets, matchings, and graph colorings) were all proved in
this stronger form with decay in multiplicative error [23, 2, 5, 6].
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Interestingly, the second boosting result states a proposition in probability theory, which
seems unrelated to distributed algorithms, but is proved by us via local computation.

Applications in the LOCAL model: The main results in above together with the state
of the arts of strong spatial mixing [2, 23, 6, 12, 20], imply the following exact sampling
algorithms for various important sampling problems and statistical physics models:

• An O(
√

∆ log3 n)-round algorithm for exact sampling matchings in graphs with max-
imum degree ∆.

• An O(log3 n)-round exact sampling according to the hardcore model (weighted inde-
pendent sets) in the uniqueness regime, which along with the Ω(diam) lower bound
in a previous work [3] for sampling according to the hardcore model in the non-
uniqueness regime, gives the first computational phase transition for distributed sam-
pling and counting.

• O(log3 n)-round exact sampling algorithms for sampling according to various anti-
ferromagnetic models, including: anti-ferromagnetic 2-spin model in the uniqueness
regime, weighted hypergraph matchings in the uniqueness regime, proper q-colorings
of triangle-free graphs when q ≥ α∆ where α > α∗ and α∗ ≈ 1.763 is the positive
root of the euqation x = e1/x.

1.2 Organization of the paper

Models and definitions are introduced in Section 2. In Section 3, we apply a generic
transformation from local sequential sampling to local distributed sampling, which proves
the first main result. In Section 4, we develop the techniques of local self-reductions, which
proves the second main result, giving the distributed JVV sampler, along with the boosting
lemma for approximate inference. In Section 5, we explore the intrinsic relation between
decay of correlations and distributed counting and sampling, proving the third main result.

2 Models and Definitions

Notation for Graphs: Let G = (V,E) be a simple, undirected graph. For any two
vertices u, v ∈ V , the distance between u and v in G, denoted by distG(u, v), is the length
of the shortest path between u and v in G; and for a subset S ⊆ V , we define distG(v, S) ,
minu∈S distG(u, v). For any vertex v ∈ V and r > 0, let Br(v) , {u ∈ V | distG(u, v) ≤ r}
denote the r-ball centered at v in G.

Notation for Joint Distributions: Let V be a set of size n = |V | and Σ an alphabet
of size q = |Σ| ≤ poly(n). Let Ω = ΣV be the sample space. Each σ ∈ ΣV is called a
configuration. For S ⊆ V , we use σS or σ(S) to denote the restriction of σ on subset S.
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Let µ be a distribution over ΣV , called a joint distribution, because each Y ∼ µ is
a random vector Y = (Yv)v∈V consisting of n jointly distributed random variables. For
R ⊆ V , let µR denote the marginal distribution over ΣR induced by µ on subset R, formally:

∀τ ∈ ΣR : µR(τ) = Pr
Y∼µ

[YR = τ ] =
∑

σ∈ΣV :σR=τ

µ(σ).

In particular, when R = {v} for some v ∈ V , we write µv = µ{v}. A configuration σ ∈ ΣV

is feasible with respect to µ if µ(σ) > 0. A configuration τ ∈ ΣΛ on a subset Λ ⊆ V is
feasible with respect to µ if µΛ(τ) > 0, i.e. if there is a feasible σ ∈ ΣV such that σΛ = τ .
By convention an empty configuration ∅ is always feasible. Given a feasible configuration
τ ∈ ΣΛ on a subset Λ ⊆ V , we use µτ to denote the distribution over ΣV induced by µ
conditioning on τ , formally:

∀σ ∈ ΣV : µτ (σ) = Pr
Y∼µ

[Y = σ | YΛ = τ ].

The conditional marginal distributions µτR and µτv are accordingly defined.
Suppose that µ and ν are two distributions over the same sample space Ω. The total

variation distance between µ and ν, denoted by dTV (µ, ν), is defined as:

dTV (µ, ν) ,
1

2
‖µ− ν‖1 = max

A⊆Ω
|µ(A)− ν(A)|.

Distributed Graph Problems: We reformulate the notion of distributed graph problems
in [8] by classes of joint distributions.

Definition 2.1 (distributed graph problems). A distributed graph problem is given by a
class of joint distributions M = {µ(G,x)}, indexed by labeled graphs (G,x), where G =
(V,E) is a simple, undirected graph and x = (xv)v∈V is a |V |-dimensional vector. Each
µ(G,x) is a joint distribution over ΣV , where Σ = Σ(G,x) is an alphabet of size q = |Σ|
bounded in polynomial of n = |V |.

The class of distributions M is translation-invariant, which means that if the labeled
graphs (G,x) and (G̃, x̃) are isomorphic under bijection φ on vertices, then µ(G,x) ∈M is
well-defined if and only if µ(G̃,x̃) is, and the distributions µ(G,x) and µ(G̃,x̃) are identical
under bijection φ.

Initially, each node v ∈ V knows xv. For classic distributed graph problems, the nodes
need to construct a feasible y that µ(G,x)(y) > 0, where each node v ∈ V outputs yv.

Remark 2.1. In [8], a distributed graph problem is defined by a relation T that contains
all satisfying tuples (G,x,y) instead of as a class of distributions M = {µ(G,x)} over y.
The two definitions are equivalent: Given a relation T , for any (G,x), µ(G,x) is just a
positive distribution over all feasible solutions y satisfying (G,x,y) ∈ T (e.g. the uniform
distribution over feasible solutions); and conversely, given M = {µ(G,x)}, the relation T
can be constructed as T = {(G,x,y) | µ(G,x)(y) > 0}.
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Distributed Sampling and Counting: A distributed sampling or counting problem is
also given by a class of joint distributions M = {µ(G,x)} as defined in Definition 2.1.

Definition 2.2 (instances for distributed sampling/counting). Let M = {µ(G,x)} be a
class of joint distributions as defined in Definition 2.1. An instance for distributed sam-
pling/counting is a tuple (G,x, τ), where (G,x) specifies a joint distribution µ = µ(G,x)

over ΣV , and τ ∈ ΣΛ is an arbitrary configuration on a subset Λ ⊆ V that is feasible with
respect to µ. We call the distribution µτ the target distribution.

Given an instance (G,x, τ) where τ is specified on the subset Λ ⊆ V , initially each
node v ∈ V knows xv, and also τv if v ∈ Λ. We assume that xv includes a unique ID for
v, a global polynomial upper bound of n = |V |, and a global upper bound on errors if
approximation is involved.

Remark 2.2. The reason to include an arbitrary partially specified configuration τ into
the problem instance, is to explicitly enforce the self-reducibility, a property that is essential
to problems such as sampling and counting [10]. In our context, it means that arbitrarily
fixing a feasible evaluation τ of a subset of variables, the conditional distribution µτ forms
a valid instance over the remaining free variables.1

For example, consider µ as the uniform distribution over all proper (∆ + 1)-colorings
of G. For any proper (∆ + 1)-coloring τ of vertices in a subset Λ ⊆ V , µτ is the uniform
distribution over all proper (∆ + 1)-colorings of G consistent with τ . This equivalently
specifies a uniform distribution over list-colorings of the subgraph G[V \ Λ] induced by
subset V \Λ, where each node v ∈ V holds a list of available colors Lv = [q]\{τu | uv ∈ E}.

We assume that the time complexity of a distributed algorithm is fixed. Upon termi-
nation the algorithm either successfully returns or fails. We assume that the algorithm
succeeds with high probability, and all failures are locally certifiable. Upon termination,
each node v ∈ V besides the regular output explicitly outputs a random bit Fv indicating
whether the algorithm fails locally at v, and it is guaranteed that

∑
v∈V E[Fv] = O( 1

n).
This is a well accepted notion of the Las Vegas algorithms for local computation [7].

The goal of distributed sampling is to draw a random sample according to the target
distribution µτ given by the instance (G,x, τ).

Exact sampling: Given any instance (G,x, τ), the nodes need to sample a random Y =
(Yv)v∈V upon successful termination, where each node v ∈ V outputs Yv or fails, such
that conditioning on that no one fails the distribution of Y is precisely µτ .

1Alternatively, one may enforce the self-reducibility implicitly by assuming it as a property of the class
of joint distributions M = {µ(G,x)}: For every µ(G,x) ∈M where G = (V,E), for any feasible configuration
τ ∈ ΣΛ on a subset Λ ⊆ V , there exists a µ(G′,x′) ∈ M such that G′ = (V,E′) is a subgraph of G with
identical vertex set and µτ(G,x) = µ(G′,x′), where the new instance (G′,x′) can be constructed locally from
(G,x), providing τv to each node v ∈ Λ. This alternative formulation of self-reducibility is equivalent to
the one we used above.
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Approximate sampling: Given any instance (G,x, τ), for any δ > 0, the nodes need to
output a random Y = (Yv)v∈V upon successful termination, such that conditioning
on success the distribution µ̂ of Y satisfies dTV (µ̂, µτ ) ≤ δ.

We use the distributed inference to represent counting in distributed settings. Here, the
goal is to estimate the marginal distribution µτv for each node v ∈ V , where µτv is the target
distribution given by the instance (G,x, τ). Due to an information-theoretical argument,
exact inference with local information is impossible for joint distributions with nonzero
long-range correlations. Hence we focus on approximate inference.

Approximate inference: Given any instance (G,x, τ), for any δ > 0, each node v ∈ V
needs to output a marginal distribution µ̂v over Σ, which is a vector µ̂v ∈ [0, 1]Σ and
‖µ̂‖1 = 1, satisfying that dTV (µ̂v, µ

τ
v) ≤ δ.

A more accurate approximate inference with bounded multiplicative error is discussed in
Section 4.1.

Joint Distributions Defined by Local Constraints: We use the Gibbs distributions
defined by the weighted constraint satisfaction problems (CSPs), also known as the factor
graphs [14], to model joint distributions characterized by local constraints.

Definition 2.3 (Gibbs distributions). A Gibbs distribution µ is specified by a tuple
(G,Σ,F), where G = (V,E) is an undirected graph, Σ is an alphabet of size q = |Σ|
bounded in polynomial of n = |V |, and F is a collection of constraints (also called factors).
A constraint (f, S) ∈ F consists of a nonnegative-valued function f : ΣS → R≥0 defined on
the scope S ⊆ V . A constraint (f, S) is a soft constraint if the function f is positive-valued,
otherwise it is a hard constraint.

Each configuration σ ∈ ΣV is assigned a weight:

w(σ) =
∏

(f,S)∈F

f(σS). (1)

The Gibbs distribution µ over all configurations in ΣV is defined proportional to the weights

µ(σ) =
w(σ)

Z
,

where the normalizing factor Z =
∑

σ∈ΣV w(σ) is known as the partition function, which
can be seen as a function of the specification (G,Σ,F) of the distribution µ.

In particular, when all constraint functions f are Boolean-valued functions, the distri-
bution µ is the uniform distribution over all feasible configurations, and Z gives the total
number of feasible configurations.
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Definition 2.4 (locality of Gibbs distributions). A class of Gibbs distributions specified
by (G,Σ,F) are local if for any constraint (f, S) ∈ F , the diameter of the scope S in graph
G is bounded by a constant, that is, maxu,v∈S distG(u, v) = O(1).

The local Gibbs distributions are the counterparts of the LCL problems [15] in the world
of distributed sampling/counting. Just as that the LCL problems are the distributed graph
problems that are defined by local constraints, the local Gibbs distributions are the joint
distributions that are defined by local factors.

When an instance (G,x, τ) is provided to distributed algorithm, if the joint distribution
µ(G,x) is a local Gibbs distribution specified by (G,Σ,F), we assume that for each node
v ∈ V , xv includes the descriptions of all local constrains (f, S) ∈ F that v ∈ S.

An important property of Gibbs distribution is the spatial Markovian property, also
known as conditional independence, which is stated formally by the following proposition.

Proposition 2.1 (conditional independence). Let µ be a Gibbs distribution specified by
(G,Σ,F), where G = (V,E). Let H = (V, F ) denote the hypergraph with vertices V and
hyperedges F = {S | (f, S) ∈ F}. Suppose that A,B,C ⊂ V are disjoint nonempty subsets
and C is a vertex separator whose removal disconnects A and B in H. For a random vector
Y ∈ ΣV distributed according to µ, YA and YB are conditionally independent given that YC
is arbitrarily and feasibly fixed. Formally, for any σC ∈ ΣC that is feasible with respect to
µ, any σA ∈ ΣA and σB ∈ ΣB, it holds that

Pr
Y∼µ

[YA = σA ∧ YB = σB | YC = σC ] = Pr
Y∼µ

[YA = σA | YC = σC ] Pr
Y∼µ

[YB = σB | YC = σC ].

We also consider a restrictive class of Gibbs distributions, with the following property.

Definition 2.5 (locally admissible). Let µ be a Gibbs distribution specified by (G,Σ,F)
where G = (V,E). Let Λ ⊆ V be a subset. A configuration σ ∈ ΣΛ on a subset Λ ⊆ V is
locally feasible if σ itself does not violate any constraint onsite, formally:∏

(f,S)∈F
S⊆Λ

f(σS) > 0.

Recall that a σ ∈ ΣΛ is feasible if there is a τ ∈ ΣV such that µ(σ) > 0 and τΛ = σ.
Clearly σ is locally feasible if it is feasible. A Gibbs distribution µ is said to be locally
admissible if the converse is also true:

∀Λ ⊆ V, ∀σ ∈ ΣΛ : σ is feasible ⇐⇒ σ is locally feasible.

Remark 2.3. The locally admissible, local Gibbs distributions represent the LCL prob-
lems that can be solved by sequential local oblivious algorithms. For any class of locally
admissible, local Gibbs distributions M = {µ(G,x)}, the problem of constructing a y that
is feasible with respect to µ(G,x), can always be solved by a sequential local oblivious
algorithm on any vertex ordering, i.e. the problem is in SLOCAL(O(1)).
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The LOCAL Model: In the LOCAL model [15, 18], the network is a simple, undirected
graph G = (V,E). Initially, each node v ∈ V receives a local input and an arbitrary
long random bit string sampled independently at v. For a LOCAL algorithm with time
complexity t, each node v ∈ V gathers all information within radius t from v, including
the topology of the graph, the inputs and random bits of the nodes within that radius, and
performs an arbitrary local computation with the information to compute an output.

3 From Sequential to Parallel for Distributed Sampling

In this section, we establishes the computational equivalence (up to polylogarithmic factor)
between approximate inference and approximate sampling in the LOCAL model. The results
in this section holds for general classes of joint distributions M = {µ(G,x)}.

A key step is to first resolve the problems sequentially with bounded locality. The
sequential local mode (SLOCAL) is introduced in a recent breakthrough [8]. We adopt the
randomized version. Let G = (V,E) be a simple, undirected graph with n = |V |. Each node
v ∈ V maintains a local state Sv in its unbounded local memory. Initially, Sv contains v’s
local input and an arbitrarily long random bit string generated by v. An SLOCAL algorithm
A with locality r(n) scans the nodes in an arbitrary ordering π = (v1, v2, . . . , vn) provided
by an adversary. When processing node v, A reads the states Su for all u ∈ Brv(v) with
rv ≤ r(n), then performs unbounded computation to update the state Sv and compute the
output Yv at v.

The standard SLOCAL algorithm scans all the vertices in one pass. One important
generalization is to allow the algorithm scan all the vertices in k passes. This generalized
algorithm is called the k-pass SLOCAL algorithm.

An important property of the SLOCAL model is that any SLOCAL algorithm with local-
ity r can be transformed into a LOCAL algorithm with time complexity O(r) multiplying
the cost for network decomposition [16]. We restate this in the following lemma in a slightly
more refined way, in order to cover more general problems such as distributed sampling.

Lemma 3.1 (Ghaffari, Kuhn, Maus [8]). Let A be a k-pass SLOCAL algorithm. Given any
instance I on graph G = (V,E) with n = |V |, any ordering π of nodes in V , A scans all
nodes in the same ordering π by k passes with locality ri(n) in the i-th pass. A returns a
random vector Y = (Yv)v∈V , where each node v ∈ V outputs Yv, such that Y follows the
distribution µ̂I,π.

Then there is a LOCAL algorithm B which given any instance I on graph G = (V,E)
with n = |V |, outputs within time complexity O(kr(n) log2 n) a pair (Yv, Fv) at each node
v ∈ V , where r(n) = max1≤i≤k ri(n) and Fv is a Boolean random variable indicating
whether the algorithm fails locally at v, satisfying that

∑
v∈V E[Fv] <

1
n2 and conditioning

on that Fv = 0 for all nodes v ∈ V , the distribution of Y = (Yv)v∈V is precisely µ̂I,π for
some ordering π of nodes in V .

The proof of Lemma 3.1 is based on the network decomposition.
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Definition 3.1 (network decomposition [1]). A (C,D)-network decomposition of a graph
G = (V,E) is a partition of V into vertex-disjoint clusters, with each cluster assigned a
color from {1, 2, . . . , C}. The diameter of each cluster in graph G is at most D. The graph
derived by contracting clusters is properly colored.

Proof of Lemma 3.1. Lemma 3.1 is proved in the same way as Theorem 1.11 in [8]. Specif-
ically, the LOCAL algorithm B first computes an (O(log n), O(log n))-network decomposi-
tion [13] on power graph Gr(n)+1, where every pair of u and v that distG(u, v) ≤ r(n) + 1
are connected by an edge in Gr(n)+1. Let qv denote the color of v’s cluster after the network
decomposition. We assign each node v ∈ V a label (qv, IDv), where IDv is v’s unique id. Let
π be the lexicographically increasing order of the node labels (qv, IDv). Then B simulates
A with k epochs, each having O(r(n) log2 n) rounds. In the i-th epoch, B simulates the
i-th pass of A according to the ordering π.

One slight modification is to note that all failures caused by network decomposition [13]
are locally certifiable and the output distribution µ̂I,π is preserved conditioning on success.

3.1 Approximate Inference =⇒ Approximate Sampling

Theorem 3.2. For any class of joint distributions M = {µ(G,x)}, if there is a LOCAL
algorithm for approximate inference (within arbitrary total variation error δ > 0) with
time complexity at most t(n, δ), then there is a LOCAL algorithm for approximate sampling
(within arbitrary total variation error δ > 0) with time complexity O

(
t
(
n, δn

)
log2 n

)
.

First, observe that for the inference problems, any randomized LOCAL algorithm with
certifiable local failures can be transformed into a deterministic LOCAL algorithm with no
failure by taking average over all random bits accessed by the randomized LOCAL algorithm
at each node v that produce the successful output at v. This actually holds more generally
for all problems with no symmetry, where the correctness of the output of a node v depends
only on the instance but not on other nodes’ outputs.

Proposition 3.3. For any class of joint distributions M = {µ(G,x)}, if there is a ran-
domized LOCAL algorithm for approximate inference with time complexity at most t(n, δ)
and failure probability

∑
v∈V E[Fv] < 1, then there is a deterministic LOCAL algorithm for

approximate inference with time complexity at most t(n, δ).

With this proposition, from now on we assume without loss of generality any LOCAL
algorithm for approximate inference is deterministic and has no failure.

Proof of Theorem 3.2. With Lemma 3.1, it is sufficient to give an SLOCAL algorithm for
approximate sampling, which is quite standard with the access to marginal probabilities.

Let (G,x, τ) be an instance, where G = (V,E) and τ ∈ ΣΛ is a feasible configuration
on a subset Λ ⊆ V . A joint distribution µ = µ(G,x) is specified by the labeled graph (G,x)
and the target distribution is µτ = µ(G,x).

10



Let v1, v2, . . . , vn be an arbitrary ordering of vertices in V . The algorithm will sample
a random σ ∈ ΣV such that σΛ = τ , by randomly generating σ(vi) vertex by vertex.
For i = 1, 2, . . . , n, let σi−1 denote the configuration over {v1, v2, . . . , vi−1} that has been
randomly generated so far, if vi ∈ Λ then σ(vi) = τ(vi); and if otherwise, σ(vi) is randomly
generated according to the marginal distribution µ̂

τ∧σi−1
vi at vi conditioning on σi−1 and τ ,

where the marginal distribution µ̂
τ∧σi−1
vi is computed by simulating the LOCAL algorithm

for approximate inference with total variation error δ
n on instance (G,x, τ ∧ σi−1) at node

vi with locality t = t(n, δn). It is guaranteed that

dTV

(
µ̂
τ∧σi−1
vi , µ

τ∧σi−1
vi

)
≤ δ

n
.

Finally, σ = σn ∈ ΣV is returned. Let µ̂ denote its distribution. By a coupling argument,
it can be verified that dTV (µ̂, µτ ) ≤ δ.

3.2 Approximate Sampling =⇒ Approximate Inference

Theorem 3.4. For any class of joint distributions M = {µ(G,x)}, if there is a LOCAL
algorithm for approximate sampling (within arbitrary total variation error δ > 0) with
time complexity at most t(n, δ), then there is a LOCAL algorithm for approximate inference
(within total variation error δ + ε0) with time complexity at most t(n, δ), where ε0 ≥∑

v∈V E[Fv] is the probability that the approximate sampling algorithm fails.

Proof. Let Aδ be the LOCAL algorithm for approximate sampling with total variation error
δ and time complexity at most t(n, δ). Given any instance (G,x, τ), upon termination the
algorithm Aδ outputs a random (yv, Fv) at each node v ∈ V , where Fv is a Boolean random
variable indicating the local failure at node v. It is guaranteed that

∑
v∈V E[Fv] ≤ ε0 and

conditioning on
∑

v∈V Fv = 0, the random vector y = (yv)v∈V follows a distribution µ̂ such
that dTV (µ̂, µτ ) ≤ δ where µτ is the target distribution. Therefore, for the distribution µ̃
of the random vector y (without any condition), it holds that

dTV (µ̃v, µ
τ
v) ≤ dTV (µ̃, µτ ) ≤ dTV (µ̂, µτ ) + Pr

[∑
v∈V Fv > 0

]
≤ δ + ε0.

The marginal distribution µ̃v can be reconstructed at node v with locality at most t = t(n, δ)
by enumerating the random bits used in Aδ to generate the random variable yv. This gives
a LOCAL algorithm for approximate inference within total variation error δ + ε0 and time
complexity t(n, δ).

4 Local Self-Reductions

It is well-known that on Turing machines, for self-reducible problems the accuracy of ap-
proximate counting can be boosted and approximate counting implies exact sampling (the
Jerrum-Valiant-Vazirani sampler) [10].

In this section, we give two boosting results for local distributed counting and sampling:

11



• a local boosting for approximate inference which transforms approximate inference
with bounded total variation error to the one with bounded multiplicative error;

• a distributed JVV sampler which uses approximate inference to achieve exact sam-
pling via the local rejection sampling.

Both results utilizes local self-reductions, the self-reductions with bounded locality. The
correctness of such reductions relies on the spatial Markovian (conditional independence)
property of local Gibbs distributions.

4.1 The Boosting Lemma

We consider approximate inference with a stronger accuracy guarantee. The multiplicative
error function err (·, ·) is defined as follows: for any two distributions µ and µ̂ over the
same sample space Σ,

err (µ, µ̂) , max
x∈Σ
| lnµ(x)− ln µ̂(x)|, (2)

with the convention that 0/0 = 1 and ln 0− ln 0 = ln(0/0) = 0.

Approximate inference (with multiplicative error ε): For any instance (G,x, τ), any
0 < ε < 1, each node v returns a marginal distribution µ̂v, such that err (µ̂v, µ

τ
v) ≤ ε.

For sufficiently small ε > 0, the condition err (µ̂v, µ
τ
v) ≤ ε implies

∀c ∈ Σ : 1− ε ≈ e−ε ≤ µ̂v(c)

µτv(c)
≤ eε ≈ 1 + ε,

which gives a more accurate approximation than the bounded total variation error.
The boosting lemma stated below says that for local Gibbs distributions, approximate

inference with total variation error can be boosted into that with multiplicative error.

Lemma 4.1 (boosting lemma). For any class of local Gibbs distributions M = {µ(G,x)},
if there is a LOCAL algorithm for approximate inference (within arbitrary total variation
error δ > 0) with time complexity at most t(n, δ), then there is a LOCAL algorithm for
approximate inference (within arbitrary multiplicative error 0 < ε < 1) with time complexity
O(t(n, ε

5qn)), where q = |Σ| ≤ poly(n) is the size of the alphabet.

Proof. Let A+
δ denote the LOCAL algorithm for approximate inference with arbitrary total

variation error δ > 0 whose time complexity is t(n, δ). We construct a LOCAL algorithm
A×ε for approximate inference with arbitrary multiplicative error 0 < ε < 1.

Let (G,x, τ) be an instance, where G = (V,E). The joint distribution µ = µ(G,x) is a
Gibbs distribution given by (G,Σ,F), where q = |Σ|. Since the Gibbs distribution is local,
we assume that there is an ` = O(1) such that ∀(f, S) ∈ F : maxu,v∈S distG(u, v) ≤ `.

12



Algorithm A×ε : Let v ∈ V . We assume v /∈ Λ, otherwise the inference problem is trivial.
Let δ = ε

5qn and t = t(n, ε
5qn) be the time complexity of the LOCAL algorithm A+

δ . Node v
collects all information up to distance 2t+ ` and simulates the following algorithm locally.

Recall that Br(v) denotes the r-ball centered at v in G. We define

Γ = Bt+`(v) \ (Bt(v) ∪ Λ).

Let v1, v2, . . . , vm, where m = |Γ|, be vertices in Γ enumerated in the increasing order of
their unique IDs. A sequence of configurations τi ∈ ΣΛi on subsets Λi, 0 ≤ i ≤ m, is
constructed as follows:

• Initially, let Λ0 = Λ and τ0 = τ .

• For i = 1, 2, . . . ,m, let Λi = Λi−1∪{vi}, and the configurations τi ∈ ΣΛi is constructed
such that τi is consistent with τi−1 over Λi−1, and τi(vi) = ci for the ci ∈ Σ that
maximizes the marginal probability µ̂

τi−1
vi (ci) where µ̂

τi−1
vi is the marginal distribution

returned by A+
δ at node vi on the instance (G,x, τi−1).

Finally, the marginal distribution µτmv is returned. Due to the conditional independence
guaranteed by Proposition 2.1, µτmv is fully determined by the information in Bt+`(v).
Specifically, denoted B = Bt+`(v), and define C to be the set of all configurations σ ∈ ΣB

consistent with τm over B ∩ Λm, i.e.

C = {σ ∈ ΣB | ∀u ∈ B ∩ (Γ ∪ Λ) : σu = τm(u)}.

Then for every c ∈ Σ, the marginal probability µτmv (c) is computed as

µτmv (c) =

∑
σ∈C:σv=cwB(σ)∑
σ∈C wB(σ)

,

where wB(σ) =
∏

(f,S)∈F :S⊆B f(σS). This finishes the definition of Algorithm A×ε .

We then show that τm is feasible with respect to µ, so the marginal distribution µτmv is
well-defined. Furthermore, it holds that

∀c ∈ Σ : e−εµτv(c) ≤ µτmv (c) ≤ eεµτv(c), (3)

which proves the Theorem.
For the sequence of configurations τi ∈ ΣΛi on subsets Λi, 0 ≤ i ≤ m, constructed in

Algorithm A×ε , for every c ∈ Σ, let τ ci ∈ ΣΛi∪{v} denote the configuration on Λi ∪ {v} such
that τ ci is consistent with τi over Λi and τ ci (v) = c.

Claim. If τ c0 is feasible with respect to µ, then all τ ci are feasible with respect to µ.
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Proof. We prove this by induction on i. For i = 0, the claim holds trivially. For gen-
eral i, suppose that τ ci−1 is feasible. Then τi−1 must be feasible in the first place be-
cause τ ci−1 extends τi−1. The two configurations τ ci−1 and τi−1 differ only at vertex v
and distG(v, vi−1) > t, where t = t(n, ε

5qn), Algorithm A+
δ will output the same marginal

distribution µ̂
τi−1
vi−1 at node vi−1 on the instances (G,x, τ ci−1) and (G,x, τi−1), such that

dTV

(
µ̂
τi−1
vi−1 , µ

τci−1
vi

)
≤ ε

5qn and dTV

(
µ̂
τi−1
vi−1 , µ

τi−1
vi

)
≤ ε

5qn . By triangle inequality,

dTV

(
µ
τci−1
vi , µ

τi−1
vi

)
≤ 2ε

5nq
. (4)

Recall that τi is constructed from τi−1 in such a way that τi(vi) = ci for the ci ∈ Σ that
maximizes the marginal probability µ̂

τi−1
vi (ci), and q = |Σ|. Therefore, we have

µ
τi−1
vi (τi(vi)) ≥

1

q
− ε

5nq
. (5)

Note that µΛi∪{v}(τ
c
i ) = µΛi−1∪{v}(τ

c
i−1) ·µτ

c
i−1
vi (ci), where ci = τi(vi). By induction hypoth-

esis τ ci−1 is feasible, then it holds that µΛi−1∪{v}(τ
c
i−1) > 0. Combining with (4) and (5),

we have

µΛi∪{v}(τ
c
i ) ≥ µτ

c
i−1
vi (ci) ≥ µτi−1

vi (ci)−
2ε

5nq
≥ 1

q
− 3ε

5nq
> 0,

which implies that τ ci is feasible with respect to µ. The claim is proved.

Recall that τ0 = τ for a feasible τ ∈ ΣΛ. There must exist c ∈ Σ such that τ c0 is feasible,
which according to above claim implies that all τ ci are feasible, and hence in particular, τ cm
is feasible, which means τm is feasible in the first place since τ cm extends τm.

Consider each c ∈ Σ that µτv(c) > 0. For such c ∈ Σ, τ c0 must be feasible since τ0 = τ ,
which according to above claim implies that τ c0 is feasible. Denote that ci = τi(vi) for
0 ≤ i ≤ m. Apply the chain rule in two different orders of vertices, we have

µτΛ∪{v}(τ
c
m) =

(
m∏
i=1

µ
τi−1
vi (ci)

)
µτmv (c),

and µτΛ∪{v}(τ
c
m) = µτv(c)

(
m∏
i=1

µ
τci−1
vi (ci)

)
.

Solving the above equations gives us

µτmv (c) =

(
m∏
i=1

µ
τci−1
vi (ci)

µ
τi−1
vi (ci)

)
µτv(c).
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For each 1 ≤ i ≤ m, by (4) and (5), it holds that

e−ε/n ≤ 1− 2ε

5n− ε
≤ µ

τci−1
vi (ci)

µ
τi−1
vi (ci)

≤ 1 +
2ε

5n− ε
≤ eε/n.

Since m = |Λ| ≤ n, we have

e−ε ≤ µτmv (c)

µτv(c)
≤ eε.

For those c ∈ Σ that µτv(c) = 0, it holds that τ c0 is infeasible. It must hold that µτmv (c) = 0,
since if otherwise µτmv (c) > 0, then τ cm is feasible, contradicting that τ c0 is infeasible since
τ cm extends τ c0 .

4.2 Distributed JVV Sampler

The Jerrum-Valiant-Vazirani (JVV) sampler [10] is a general global reduction from exact
sampling to approximate counting for self-reducible problems via rejection sampling. Here
we give a local distributed JVV sampler by realizing a local rejection sampling.

Theorem 4.2. For a class of local Gibbs distributions M = {µ(G,x)}, if there is a LOCAL
algorithm for approximate inference (with total variation error ≤ 1/5qn4) with time com-
plexity at most t(n), where q = |Σ| ≤ poly(n) is the size of the alphabet, then there is a
LOCAL algorithm for exact sampling with time complexity O(t(n) log2 n).

By the boosting lemma (Lemma 4.1), the algorithm for approximate inference with
total variation error in the assumption of Theorem 4.2 can be boosted to an approximate
inference algorithm with multiplicative error 1/n3 and time complexity O(t(n)). Theo-
rem 4.2 is then a consequence of the following proposition.

Proposition 4.3. For a class of local Gibbs distributions M = {µ(G,x)}, if there is a
LOCAL algorithm for approximate inference (with multiplicative error ≤ 1/n3) with time
complexity at most t(n), then there is a LOCAL algorithm for exact sampling with time
complexity O(t(n) log2 n).

Let A be the LOCAL algorithm for approximate inference with multiplicative error
1/n3 and time complexity at most t = t(n). We construct an SLOCAL algorithm called
local-JVV for exact sampling with time complexity O(t). For convenience, the local-JVV
algorithm is presented as a multi-pass SLOCAL algorithm with the ability of writing nearby
nodes’ internal memories. The following results was observed in [8].

Lemma 4.4 (Observation 2.2 in [8]). Any SLOCAL algorithm A with locality R in which
each node v can write into the local memory Su of other nodes u within its radius r ≤ R
can be transformed into an SLOCAL algorithm B with locality r+R in which v writes only
in its own memory Sv.
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Let (G,x, τ) be an instance, where G = (V,E). The joint distribution µ = µ(G,x) is a
Gibbs distribution given by (G,Σ,F), where q = |Σ|. Since the Gibbs distribution is local,
we assume that there is an ` = O(1) such that ∀(f, S) ∈ F : maxu,v∈S distG(u, v) ≤ `.
The τ ∈ ΣΛ is an arbitrary feasible configuration on an arbitrary subset Λ ⊆ V . The
distribution µτ is the target distribution that we want to sample from.

4.2.1 The local-JVV algorithm

The local-JVV algorithm is an SLOCAL algorithm for the local rejection sampling : Upon
termination, the algorithm returns a (Y, F ′) = ((Yv)v∈V , (F

′
v)v∈V ), where each node v ∈ V

outputs Yv and F ′v, such that Y ∈ ΣV is a random configuration, and each F ′v ∈ {0, 1}
indicates that the algorithm fails (rejects) locally at node v.

The SLOCAL algorithm consists of three passes. In each pass, the algorithm scans the
nodes in the same ordering π = v1, v2, . . . , vn provided to the algorithm by an adversary.
The locality of each pass is R = 6t+ 2` = O(t).

In the first pass, a configuration σ0 ∈ ΣV that is feasible with respect to the target
distribution µτ , called the ground state, is constructed by the following procedure:

• Initially, σ0 ∈ ΣΛ and σ0 = τ . Then σ0 is updated at each step.

• In the i-th step, simulate the algorithm A at node vi within radius t = t(n) on the
instance (G,x, σ0), which returns a marginal distribution µ̂σ0

vi . Pick an arbitrary ci ∈
Σ with µ̂σ0

vi (ci) > 0, and extend the current σ0 further onto vi by setting σ0(vi)← ci.

In the second pass, a random configurations Y ∈ ΣV is generated independently by the
following procedure:

• Initially, Y ∈ ΣΛ and Y = τ . Then Y is randomly updated at each step.

• In the i-th step, simulate the algorithm A at node vi on the instance (G,x, Y ),
which returns a marginal distribution µ̂Yvi . Sample a random Yi ∈ Σ independently
according to µ̂Yvi , and extend the current Y further onto vi by setting Y (vi)← Yi.

Let µ̂τ be the distribution of Y ∈ ΣV generated as above. It closely approximates the µτ .

Claim 4.5. For any σ ∈ ΣV , it holds that e−1/n2 ≤ µ̂τ (σ)
µτ (σ) ≤ e1/n2

.

In the third pass, each node vi carefully computes a probability qvi , and uses qvi to
independently sample a random F ′vi ∈ {0, 1} indicating the local failure at vi.

• Initially, let σ0 ∈ ΣV be the ground state constructed in the first pass.

• A sequence of configurations σ1, σ2, . . . , σn ∈ ΣV is constructed, where σn = Y is
the configuration randomly generated in the second pass, such that the following
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invariants hold for all 0 ≤ i ≤ n:

σi is feasible with respect to µτ ; (6)

∀1 ≤ j ≤ i : σi(vj) = Y (vj); (7)

σi and σi−1 differ only over the t-ball Bt(vi). (8)

The invariants hold trivially for σ0. In the i-th step, assume the above invariants
for σi−1. Construct a σi ∈ ΣV satisfying these invariants by enumerating all config-
urations σ′ ∈ ΣB over the t-ball B = Bt(vi) and trying replacing the assignment of
σi−1(B) with σ′. The following claim guarantees the existence of such σi ∈ ΣV .

Claim 4.6. Assume that σi−1 ∈ ΣV is feasible with respect to µτ and σi−1(vj) =
Y (vj) for all 1 ≤ j ≤ i− 1. There exists a σi ∈ ΣV satisfying (6), (7) and (8).

Assuming this claim, the algorithm can always find a good σi and verify the invari-
ants within bounded radius from vi. Specifically, assuming the invariants for σi−1,
the invariants (7) and (8) can be verified at vi within radius t, and (6) can be verified
within radius t + ` due to the conditional independence property stated in Proposi-
tion 2.1. Once a good σi is found, node vi updates the internal states of all nodes in
Bt(vi) to update the current configuration to σi.

Node vi computes the value of

qvi = qvi(Y ) ,
µ̂τ (σi−1)w(σi)

µ̂τ (σi)w(σi−1)
e−3/n2

, (9)

where µ̂τ stands for the distribution of the random configuration Y generated in the
second pass, and w(·) is the weight for the Gibbs distribution defined in (1).

Claim 4.7. The qvi defined in (9) can be computed at vi within radius 3t+ ` = O(t)
and it always holds that e−5/n2 ≤ qvi ≤ 1.

At last, vi samples a random F ′vi ∈ {0, 1} such that F ′vi = 0 with probability qvi .

Finally, each node vi returns a pair (Yvi , F
′
vi) where Y = (Yvi)1≤i≤n is the random config-

uration sampled in the second pass and the algorithm fails locally at vi if F ′vi = 1.

Remark 4.1 (two-pass local-JVV algorithm). The third pass of local-JVV algorithm is
not adapted to the second pass, because the invariant in (7) requires σi(vj) = Y (vj) only
for 1 ≤ j ≤ i. Hence, we can merge the second and the third pass into one pass. This gives
a two-pass local-JVV algorithm, and the locality of each pass is R = 6t+ 2` = O(t).
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4.2.2 Proofs of the three claims

Proof of Claim 4.5. Let Y i denote the partially specified random configuration Y con-
structed in the i-th step in the second pass of the the local-JVV algorithm. For any
σ ∈ ΣV , let σi denote the Y i when Y = σ, where σ0 = τ and σn = Y = σ. Clearly, for the
distribution µ̂τ of Y ,

µ̂τ (σ) =
n∏
i=1

µ̂σ
i−1

vi (σvi). (10)

On the other hand, apply the chain rule to the Gibbs distribution µτ . We have

µτ (σ) =

n∏
i=1

µσ
i−1

vi (σvi).

Since each marginal probability µ̂σ
i−1

vi (σvi) is computed by an approximate inference algo-
rithm A with multiplicative error 1/n3, it holds that

e−1/n3 ≤
µ̂σ

i−1

vi (σvi)

µσi−1

vi (σvi)
≤ e1/n3

.

The claim follows.

Proof of Claim 4.6. Assume that σi−1 ∈ ΣV is feasible with respect to µτ and σi−1(vj) =
Y (vj) for all 1 ≤ j ≤ i − 1. We show that there exists a σi ∈ ΣV satisfying (6), (7), and
(8). Define set of nodes

Γ = {vj ∈ V | vj /∈ Bt(v) or j ≤ i− 1} ∪ Λ.

Let τ1 = σi−1(Γ) and τ2 = Y (Γ) be two configurations on subset Γ. By assumption and
Claim 4.5, σi−1 and Y are feasible, so τ1 and τ2 are also feasible and σi−1(Λ) = Y (Λ) = τ .

The marginal distributions returned by A at node vi on the two instances (G,x, τ1) and
(G,x, τ2) are identical, because τ1 and τ2 agree with each other over Bt(vi). We denote this
marginal distribution as µ̂τ1vi = µ̂τ2vi , which is an approximation of the marginal distributions
µτ1vi , µ

τ2
vi with multiplicative error 1/n3. It holds that

e1/n3 · µτ1vi (Y (vi)) ≥ µ̂τ1vi (Y (vi)) ≥ e−1/n3 · µτ2vi (Y (vi)) > 0.

where the last inequality is due to that Y is feasible.
This shows that µτ1vi (Y (vi)) > 0, which means there exists a feasible configuration

σ ∈ ΣV such that σ(Γ) = τ1 = σi−1(Γ) and σ(vi) = Y (vi). Such σ is the σi we want. It
can be easily verified that it satisfies the invariants (6), (7) and (8).
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Proof of Claim 4.7. Recall that qvi is defined as

qvi =
µ̂τ (σi−1)w(σi)

µ̂τ (σi)w(σi−1)
e−3/n2

.

Due to Claim 4.6, every σi is feasible with respect to µτ , so w(σi) > 0 and moreover by
Claim 4.5, we have µ̂τ (σi) > 0. The ratio qvi is well-defined.

Consider the configurations σ0, σ1, . . . , σn ∈ ΣV constructed in the third pass of the
local-JVV algorithm. For each σi, we define a sequence of configurations σ0

i , σ
1
i , . . . , σ

n
i ,

where σ0
i = τ and σni = σi. Let σji denote the Y j when Y = σi, where Y j denotes the

partially specified random configuration Y constructed in the j-th step in the second pass
of the the local-JVV algorithm. Due to (10), we have

µ̂τ (σi−1)

µ̂τ (σi)
=

n∏
j=1

µ̂
σj−1
i−1
vj (σi−1(vj))

µ̂
σj−1
i
vj (σi(vj))

.

Note that the two configurations σi and σi−1 differ only on the t-ball Bt(vi). Therefore, for
all σi and σi−1 agree with each other over Bt(vk) for any vk /∈ B2t(vi). The two instances
(G,x, σk−1

i−1 ) and (G,x, σk−1
i ) are indistinguishable to the t-local approximate inference

algorithm A, thus

µ̂
σk−1
i−1
vk (σi−1(vk)) = µ̂

σk−1
i
vk (σi(vk)),

which means

µ̂τ (σi−1)

µ̂τ (σi)
=

∏
vj∈B2t(vi)

µ̂
σj−1
i−1
vj (σi−1(vj))

µ̂
σj−1
i
vj (σi(vj))

, (11)

where each marginal probability µ̂·vj (·) can be computed by the local algorithm A at node
vj within radius t. In addition, to compute the ratio in (11), we still need to know the
relative ordering of all nodes in B3t+`(vi) with respect to the ordering π = (v1, v2, . . . , vn).
Recall R = 6t+ 2`. In the first path, we can compute a value rank(vi) ∈ N for each vertex
vi ∈ V . Initially, assume rank(vi) = 0 from all vi ∈ V . When processing the node vi in the
first pass, we update

rank(vi)← 1 + max{rank(vj) | vj ∈ BR(vi)}, (12)

and write the updated value rank(vi) into the memory Svi . The value rank(vi) can be com-
puted within locality R = 6t+2`. It is easy to verify that all the values rank(u) are distinct
for u ∈ B3t+`(vi), and for any vj , vk ∈ B3t+`(vi), j < k if and only if rank(vj) < rank(vk).
Thus, in the third pass, we can find the relative ordering of all nodes in B3t+`(vi) by com-
paring their values rank(·). We remark that when transforming an SLOCAL algorithm into
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a LOCAL algorithm, a network decomposition is computed at the first step. Hence, the
LOCAL algorithm knows the relative ordering even without the values rank(·).

On the other hand, since the two configurations σi and σi−1 differ only on nodes in
Bt(vi), by the definition of the weight w(·) in (1), we have

w(σi)

w(σi−1)
=

∏
(S,f)∈F

S⊆Bt+`(vi)

f(σi(S))

f(σi−1(S))
. (13)

Equations (11) and (13) imply that the quantity qvi can be computed at node vi by
gathering all information up to distance 3t+ `.

For the Gibbs distribution µ, it always holds that µτ (σi−1)w(σi)
µτ (σi)w(σi−1) = 1 since the measure

µ is defined proportional to the weights w(·). Due to Claim 4.5, we have

e−2/n2 ≤ µ̂τ (σi−1)w(σi)

µ̂τ (σi)w(σi−1)
≤ e2/n2

,

which implies e−5/n2 ≤ qvi(σ) ≤ e−1/n2 ≤ 1.

4.2.3 Proof of Proposition 4.3

The correctness of the local-JVV algorithm is guaranteed by the following lemma.
Lemma 4.8. On any ordering of nodes, the local-JVV algorithm fails with probability at
most

∑n
i=1 E[F ′vi ] = 1 − O(1/n) and conditioning on that F ′vi = 0 for all vi, the Y ∈ ΣV

randomly sampled by the algorithm follows precisely the target distribution µτ .

Proof. Let G denote the event that the local-JVV algorithm succeeds, i.e. F ′vi = 0 for all
vi. Recall that for any σ ∈ ΣV ,

Pr[F ′vi = 1 | Y = σ] = qvi(σ),

where qvi(σ) = qvi(Y )
∣∣
Y=σ

is as defined in (9). Due to Claim 4.7, for any σ ∈ ΣV ,

Pr[G | Y = σ] =
n∏
i=1

qvi(σ) ≥ e−5/n = 1−O
(

1

n

)
.

This proves that the algorithm succeeds with probability Pr[G] = 1−O
(

1
n

)
.

Next, we show that Pr[Y = σ | G] = µτ (σ) for any σ ∈ ΣV , which proves the lemma.
For any σ ∈ ΣV that µτ (σ) = 0, by Claim 4.5, we have µ̂τ (σ) = Pr[Y = σ] = 0,

therefore Pr[Y = σ | G] = 0.
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For any σ ∈ ΣV that µτ (σ) > 0, by Claim 4.5, we have µ̂τ (σ) = Pr[Y = σ] > 0. The
probability that the algorithm succeeds and outputs Y = σ is given by

Pr[Y = σ ∧ G] = µ̂τ (σ) Pr[G | Y = σ]

= µ̂τ (σ)
n∏
i=1

qvi(σ)

= µ̂τ (σ)
n∏
i=1

(
µ̂τ (σi−1)w(σi)

µ̂τ (σi)w(σi−1)
e−3/n2

)∣∣∣∣
σn=Y=σ

=

(
µ̂τ (σ0)

w(σ0)
· e−3/n

)
w(σ).

Note that the factor
(
µ̂τ (σ0)
w(σ0) · e

−3/n
)

is independent of σ. Therefore,

Pr[Y = σ | G] =
Pr[Y = σ ∧ G]∑

σ′:µτ (σ′)>0 Pr[Y = σ′ ∧ G]

=
w(σ)∑

σ′:µτ (σ′)>0w(σ′)

= µτ (σ).

Finally, we are going to prove Proposition 4.3. It can be easily verified that the local-
JVV algorithm has locality O(t) where t = t(n) is the time complexity of the LOCAL
algorithm A.

We apply Lemma 4.4 and Lemma 3.1 to transform the local-JVV algorithm defined in
the SLOCAL model to a LOCAL algorithm. Due to Lemma 3.1, upon successful termina-
tion, the LOCAL algorithm preserves the distribution of the output (Y, F ′) of the SLOCAL
algorithm on some ordering of nodes, where Y = (Yv)v∈V is the randomly sampled config-
uration and F ′ = (F ′v)v∈V is the vector of random indicators for local failures generated
in the final pass of the local-JVV algorithm. The transformation to the LOCAL model
will introduce another random failure F ′′v ∈ {0, 1} to each node v which is independent of
(Y, F ′), where F ′′v = 1 indicates the failure at node v caused by the network decomposition
and

∑
v∈V E[F ′′v ] = O(1/n2). We combine the two failures and define Fv = F ′v ∨ F ′′v to

indicate the failure of the LOCAL algorithm at node v. Clearly,∑
v∈V

E[Fv] ≤
∑
v∈V

E[F ′v] +
∑
v∈V

E[F ′′v ] = O

(
1

n

)
.

Furthermore, since (F ′′v )v∈V is independent of (Y, F ′), it still holds that conditioning on
that Fv = 0 for all nodes v ∈ V , the distribution of Y is precisely the target distribution.
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Remark 4.2 (one-pass local-JVV algorithm in stronger SLOCAL model). One can consider
a stronger SLOCAL model such that given an arbitrary ordering π = (v1, v2, . . . , vn), the
stronger SLOCAL algorithm with locality r(n) knows the relative ordering (with respect to
π) of all nodes in Br(n)(vi) when processing the node vi. Consider the two-pass local-JVV
algorithm (Remark 4.1) in this stronger SLOCAL model. In the first pass, the algorithm
only needs to compute a feasible configuration σ0 ∈ [q]V , but does not need to compute
the value rank(·) in (12). It can be verified that the following two facts hold in the stronger
SLOCAL model:

• the two-pass local-JVV algorithm is still correct even if the two passes are scanned
in two arbitrary orderings (not necessarily the same ordering);

• the two-pass local-JVV algorithm does not need to use the extra power of the stronger
SLOCAL model in the first pass.

Also note that Lemma 4.4 holds for the stronger SLOCAL model. Thus, by the reduction in
the proof of [8, Lemma 2.3], we can merge the two passes and obtain a one-pass local-JVV
algorithm with locality 4R = 24t+ 8` = O(t) in the stronger SLOCAL model.

In [8, Theorem 1.11], when transforming an SLOCAL algorithm into a LOCAL algorithm,
a network decomposition is computed in the first step. Each node is assigned a unique label
after the network decomposition. Then, the SLOCAL algorithm is simulated according to
the ordering of the labels. Hence, the relative ordering of all nodes can be computed by
comparing their labels. This implies Lemma 3.1 still holds for the stronger SLOCAL model.
We can directly transform this one-pass local-JVV algorithm in stronger SLOCAL model
into a LOCAL algorithm with locality O(t log2 n) by the same transformation.

5 Approximate Inference and Strong Spatial Mixing

In this section, we explore the intrinsic relation between distributed sampling/counting
problems and decays of correlation in joint distributions. The main result in this section
holds for locally admissible, local Gibbs distributions.

An important decay of correlation property for joint distributions is the strong spatial
mixing. We adopt the definition of strong spatial mixing in [23] into our context.

Definition 5.1 (strong spatial mixing). Let δn : N→ R≥0 be a sequence of non-increasing
functions. A class of joint distributions M = {µ(G,x)} is said to exhibit strong spatial

mixing with rate δn(·) if for every distribution µ(G,x) ∈M over ΣV , where G = (V,E) and

n = |V |, for every v ∈ V , Λ ⊆ V , and any two feasible configurations σ, τ ∈ ΣΛ,

dTV (µσv , µ
τ
v) ≤ δn(distG(v,D)), (14)

where D ⊆ Λ is the subset on which σ and τ differ.
In particular, the strong spatial mixing is said to be with exponential decay at rate α,

for some 0 < α < 1, if the mixing rate δ·(·) is in the form δn(t) = poly(n) · αt.

22



The strong spatial mixing is intrinsically related to the approximate inference in the
LOCAL model. In fact, the strong spatial mixing can be thought as a weaker form of
approximate inference in the LOCAL model, where every node knows the graph G and
distribution µ but not the partially specified feasible configuration τ . Therefore, it is quite
natural that the approximate inference always implies strong spatial mixing. Meanwhile,
the converse also holds for locally admissible, local Gibbs distributions.

Theorem 5.1. For any class of joint distributions M = {µ(G,x)}, if there is a LOCAL
algorithm for approximate inference (within arbitrary total variation error δ > 0) with
time complexity at most t(n, δ), then M exhibits strong spatial mixing with rate

δn(t) = 2 min{δ | t(n, δ) ≤ t− 1}.

Conversely, for any class of locally admissible, local Gibbs distributions M = {µ(G,x)},
if M exhibits strong spatial mixing with rate δn(t), then there is a LOCAL algorithm for
approximate inference (within arbitrary total variation error δ > 0) with time complexity

t(n, δ) = min{t | δn(t) ≤ δ}+O(1).

Proof. Let µ = µ(G,x) ∈ M be a joint distribution over ΣV , where G = (V,E). Let

σ, τ ∈ ΣΛ be two feasible configurations on subset Λ ⊆ V that differ over D ⊆ Λ. Fix any
vertex v 6∈ D. Suppose that distG(v,D) = t.

Let A denote the LOCAL algorithm for approximate inference with time complexity
t(n, δ). By Proposition 3.3, we can assume without loss of generality thatA is deterministic.

For any δ > 0, if t(n, δ) ≤ t − 1, then algorithm A (given the total variation error δ)
will return the same marginal distribution µ̂v at node v on the two instances (G,x, σ) and
(G,x, τ), because the two instances are indistinguishable for the algorithm at node v, and
it is guaranteed that dTV (µ̂v, µ

σ
v ) ≤ δ and dTV (µ̂v, µ

τ
v) ≤ δ. Since this holds for any δ > 0

such that t(n, δ) ≤ t− 1, we have

dTV (µ̂v, µ
σ
v ) ≤ min{δ | t(n, δ) ≤ t− 1},

dTV (µ̂v, µ
τ
v) ≤ min{δ | t(n, δ) ≤ t− 1},

which implies dTV (µσv , µ
τ
v) ≤ 2 min{δ | t(n, δ) ≤ t − 1} by triangle inequality. Therefore,

M exhibits strong spatial mixing with rate δn(t) = 2 min{δ | t(n, δ) ≤ t− 1}.

Conversely, M is a class of locally admissible, local Gibbs distributions and M exhibits
strong spatial mixing with rate δn(t). We construct a LOCAL algorithm A for approximate
inference with arbitrary total variation error δ > 0.

Let (G,x, τ) be an instance, where G = (V,E). The joint distribution µ = µ(G,x) ∈M
is a Gibbs distribution specified by (G,Σ,F), where q = |Σ|. Since the Gibbs distribution is
local, we assume that there is an ` = O(1) such that ∀(f, S) ∈ F : maxu,v∈S distG(u, v) ≤ `.
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The τ ∈ ΣΛ is an arbitrary feasible configuration on an arbitrary subset Λ ⊆ V and µτ is
the target distribution.

The algorithm A is described as follows. For each node v ∈ V , node v gathers all
information up to distance t+ 2`, where

t = min{t′ | δn(t′) ≤ δ},

and simulates the following procedure locally:

• Node v extends τ to a feasible configuration τ ′ on subset Λ ∪ Γ, where

Γ = Bt+`(v) \ (Bt(v) ∪ Λ),

by enumerating all configurations in ΣΓ. Such feasible τ ′ must exist since τ is feasible.

Since τ itself is feasible and the distribution µ is locally admissible, then τ ′ is feasible
if and only if ∏

(f,S)∈F
S⊆A

f(τ ′S) > 0, (15)

where A = Bt+2`(v) ∩ (Γ ∪ Λ). Hence, this condition can be checked by v locally.

• Node v returns the marginal distribution µτ
′
v . Due to the conditional independence

guaranteed by Proposition 2.1, µτ
′
v is fully determined by the information in Bt+`(v).

Specifically, denoted B = Bt+`(v), and define the set of configurations

C = {σ ∈ ΣB | ∀u ∈ B ∩ (Γ ∪ Λ) : σu = τ ′u}.

Then for every c ∈ Σ, the marginal probability µτ
′
v (c) can be computed as

µτ
′
v (c) =

∑
σ∈C:σv=cwB(σ)∑
σ∈C wB(σ)

,

where wB(σ) =
∏

(f,S)∈F :S⊆B f(σS).

Let S be the set of all feasible configurations σ on subset Λ∪Γ such that σ is consistent
with τ over Λ. Fix any σ ∈ S. Let D denote the subset on which σ and τ ′ disagree. Note
that distG(v,D) ≥ t. Due to the strong spatial mixing,

dTV

(
µτ
′
v , µ

σ
v

)
≤ δn(t) ≤ δ.

We couple the two distributions µτ
′
v and µτv as follows: First sample a σ ∈ S with probability

µτΛ∪Γ(σ), then use the optimal coupling between µτ
′
v and µσv to sample a pair (x, y) ∈ Σ×Σ.
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It is easy to verify that the marginal distribution of y resulting from this two-step sampling
is just µτv . By the coupling Lemma

dTV

(
µτ
′
v , µ

τ
v

)
≤ Pr[x 6= y]

=
∑
σ∈S

µτΛ∪Γ(σ) · Pr[x 6= y | σ]

=
∑
σ∈S

µτΛ∪Γ(σ) · dTV

(
µτ
′
v , µ

σ
v

)
≤ δ.

Hence, A is a LOCAL algorithm for approximate inference with time complexity at most
t(n, δ) = t+ 2` = min{t | δn(t) ≤ δ}+O(1).

The strong spatial mixing defined in Definition 5.1 measures the decay of correlation
in terms of total variation distance. If we replace the total variation distance dTV (·, ·)
in (14) with the multiplicative error function err (·, ·) defined in (2), we have an even
stronger form of strong spatial mixing, namely the one with decay in multiplicative error.
Several well-known strong spatial mixing results for important classes of Gibbs distributions
(e.g. independent sets, matchings, and graph colorings) were actually established in this
stronger form [23, 2, 5, 6]. Here we see this is not a coincidence. Combing Theorem 5.1
with the boosting lemma (Lemma 4.1), we have the following corollary.

Corollary 5.2. A class of locally admissible, local Gibbs distributions M exhibits strong
spatial mixing with exponential decay at rate α in total variation distance, if and only if it
exhibits strong spatial mixing with exponential decay at rate α in multiplicative error.

Interestingly, the corollary gives a result in probability theory proved by local compu-
tation.

Combining Theorem 5.1 with the distributed JVV sampler (Theorem 4.2), we have the
followings.

Corollary 5.3. For any class of locally admissible, local Gibbs distributions M = {µ(G,x)},
if M exhibits strong spatial mixing with exponential decay at rate α for some α < 1, then
there is a LOCAL algorithm for exact sampling with time complexity O( 1

1−α log3 n).

Combining with the state-of-the-arts for strong spatial mixing in [2, 23, 6, 12, 20], the
corollary gives us the following LOCAL algorithm for exact sampling:

• an O(
√

∆ log3 n)-round algorithm for sampling matchings in graphs with maximum
degree ∆ due to the strong spatial mixing of matchings with exponential decay at
rate 1− Ω(1/

√
∆) [2];
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• an O(log3 n)-round algorithm for sampling independent sets in graphs with max-
degree ∆ ≤ 5, or more generally, for sampling according to the hardcore model
(weighted independent sets) with fugacity λ up to the uniqueness threshold (where
λ < λc(∆) , (∆− 1)(∆−1)/(∆− 2)∆), due to the strong spatial mixing of the model
up to the uniqueness threshold [23];

• an O(log3 n)-round algorithm for sampling q-colorings of triangle-free graphs when
q ≥ α∆ for α > α∗ where α∗ ≈ 1.763 . . . satisfies α∗ = exp( 1

α∗ ), due to the strong
spatial mixing proved in [6];

• an O(log3 n)-round algorithm for sampling according to the anti-ferromagnetic 2-spin
model in the interior of the uniqueness regime, due to the strong spatial mixing of
the model in the uniqueness regime [12];

• an O(log3 n)-round algorithm for sampling weighted hypergraph matchings up to the

uniqueness threshold (when the weight λ < λc(r,∆) , (∆−1)(∆−1)

(r−1)(∆−2)∆ , where r is the

rank of the hypergraph), due to the strong spatial mixing of the model up to the
uniqueness threshold [20].

The definitions of these models are given in the referred papers. All these joint distribu-
tions are either locally admissible, local Gibbs distributions, or in the case of edge models
(e.g. graph/hypergraph matchings) can be represented as such joint distributions through
dualities of graphs/hypergraphs, which preserve the distances.

For lower bounds, the long-range correlation established in a previous work ([3], The-
orem 5.3) implies an Ω(diam) lower bound for approximate sampling according to the
hardcore model with fugacity λ in the non-uniqueness regime (where λ > λc(∆)). Along
with the O(log3 n) upper bound for exact sampling according to the hardcore model in the
uniqueness regime obtained above, we discover for the first time a computational phase
transition for local distributed sampling and counting, at the same critical threshold for the
computational phase transition discovered for sampling and counting on polynomial-time
Turing machines [23, 19].

6 Conclusion

We study the complexities of sampling and counting in the LOCAL model, where the
counting is represented by a local variant, namely the inference problem. We found that for
self-reducible problems, the well known generic relations between sampling and counting on
classic polynomial-time Turing machines hold similarly for local computation. Meanwhile,
the tractability of these problems by local computation is captured by a decay of correlation
property known as the strong spatial mixing.

Perhaps a lesson we could learn from this research is that it is helpful to model local
computation problems as joint distributions, and hence studying the complexities of these
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problems is reduced to studying the discrepancies between such problem-specified joint
distributions and the distributions that can be generated by local algorithms. This new
approach for local computation seems to have much potential.

Several open problems are worth investiageting. First, can we make the LOCAL al-
gorithms in this paper use bounded-size messages and bounded local computation? Such
efficient distributed algorithms would necessarily improve the state of the arts of sampling
and approximate counting on polynomial-time Turing machines. Second, how should we
classify complexities of sampling and counting in local computation, and does there exist
a complexity hierarchy? Third, the distributed JVV sampler given in this paper termi-
nates in a fixed number of rounds with bounded locally certifiable failure. Can we make
this algorithm Las Vegas, in a sense that the time complexity of the algorithm may be
random but once it terminates the algorithm always outputs precisely according to the
correct distribution, and still being local? This requires a strategy for non-biased local
resampling, which is far from being well understood. So far, it was only discovered for the
Lovász-local-lemma-based sampler for restrictive problems under strict conditions [9].
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