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Difference between two distributions
Data: two distributions 𝑃 and 𝑄 over state space Ω
Question: how to measure the difference between 𝑃 and 𝑄

𝑃 𝑄

• Total variation distance (TV distance): 𝑑!" 𝑃, 𝑄 = #
$
∑%∈' |𝑃 𝑥 − 𝑄(𝑥)|

• KL-divergence (relative entropy): 𝐷() 𝑃||𝑄 = ∑%∈'𝑃 𝑥 log * %
+(%)

• 𝜒$-divergence: 𝐷.! 𝑃||𝑄 = ∑%∈'
*! /
+ %

− 1



Total variation (TV) distance
Total variation (TV) distance between 𝑃 and 𝑄 over state space Ω

𝑑!" 𝑃, 𝑄 =
1
2
4
%∈'

|𝑃 𝑥 − 𝑄(𝑥)| = max
0⊆'

|𝑃 𝑆 − 𝑄(𝑆)|

Properties of TV distance
• metric (triangle inequality)
• bounded
• data processing inequality
• various characterisations

𝑃 𝑄

Applications of TV distance
• property testing
• Markov chain mixing time
• approximate algorithms
• learning algorithms



Compute TV distance
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

• Input: descriptions of two distributions 𝑃, 𝑄 over Ω
• Output: the total variation distance between 𝑃 and 𝑄

Trivial algorithm: enumerate all 𝑥 ∈ Ω and add #
$
|𝑃 𝑥 − 𝑄(𝑥)| together

Challenge:

• distributions 𝑃 and 𝑄 have succinct descriptions
• |Ω| can be exponentially largew.r.t. the size of input

Examples: probabilistic graphical models, spin systems.



TV distance between two product distributions

Distributions 𝑃#, 𝑃$, …𝑃2 and 𝑄#, 𝑄$, … , 𝑄2 over {0,1}
• 𝑃3: distribution over {0,1} such that 𝑃3 1 = 𝑝3 and 𝑃3 0 = 1 − 𝑝3
• 𝑄3: distribution over {0,1} such that 𝑄3 1 = 𝑞3 and 𝑄3 0 = 1 − 𝑞3

Product distributions 𝑃 and 𝑄 over 0,1 2

𝑃 = 𝑃#×𝑃$×⋯×𝑃2 and 𝑄 = 𝑄#×𝑄$×⋯×𝑄2

Random sample 𝑋 = 𝑋#, 𝑋$, … , 𝑋2 ∼ 𝑃

𝑋 ∈ 0,1 ": 𝑛-dimensional random vector 𝑋# ∈ {0,1}: independent sample from 𝑃#

∀ 𝑋 ∈ 0,1 2, 𝑃 𝑋 =+
34#

2

𝑃3(𝑋3)



TV distance between two product distributions

Distributions 𝑃#, 𝑃$, …𝑃2 and 𝑄#, 𝑄$, … , 𝑄2 over {0,1}
• 𝑃3: distribution over {0,1} such that 𝑃3 1 = 𝑝3 and 𝑃3 0 = 1 − 𝑝3
• 𝑄3: distribution over {0,1} such that 𝑄3 1 = 𝑞3 and 𝑄3 0 = 1 − 𝑞3

Product distributions 𝑃 and 𝑄 over 0,1 2

𝑃 = 𝑃#×𝑃$×⋯×𝑃2 and 𝑄 = 𝑄#×𝑄$×⋯×𝑄2

Compute TV distance between two Boolean product distributions
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

• Input: vectors (𝑝#, 𝑝$, … , 𝑝2) and (𝑞#, 𝑞$, … , 𝑞2) specifying 𝑃 and 𝑄
• Output: the total variation distance between 𝑃 and 𝑄

Input size: 2𝑛 numbers, each has poly(𝑛) bits Sample space size: 2!



TV distance between two product distributions

Finite domain s = {0,1, … , 𝑠 − 1} with constant 𝑠
𝑃, 𝑄 two product distributions over domain [𝑠]2

𝑃 = 𝑃#×𝑃$×⋯×𝑃2 and 𝑄 = 𝑄#×𝑄$×⋯×𝑄2
• 𝑃3 , 𝑄3 distributions over [𝑠]

Compute TV distance between two product distributions
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

• Input: distributions {𝑃3 , 𝑄3|1 ≤ 𝑖 ≤ 𝑛} specifying 𝑃 and 𝑄
• Output: the total variation distance between 𝑃 and 𝑄



Theorem [Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

Computing TV distance between two Boolean (𝑠 = 2) product distributions
is #P complete.

Approximate TV distance between two product distributions
• Input: distributions {𝑃3 , 𝑄3|1 ≤ 𝑖 ≤ 𝑛} specifying 𝑃 and 𝑄

an error bound 0 < 𝜖 < 1
• Output: a number W𝑑 such that 1 − 𝜖 𝑑!" 𝑃, 𝑄 ≤ W𝑑 ≤ 1 + 𝜖 𝑑!" 𝑃, 𝑄

FPRAS (Full Poly-time Randomised Approximation Scheme)

A randomised algorithm outputs a random 1𝑑 in time poly(𝑛, 1/𝜖)

Pr 1 − 𝜖 𝑑!" 𝑃, 𝑄 ≤ 1𝑑 ≤ 1 + 𝜖 𝑑!" 𝑃, 𝑄 ≥ 2/3



Previous results

Theorem [Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

There is an FPRAS for the TV distance between two Boolean product

distributions if #$ ≤ 𝑃3(1) ≤ 1 and 0 ≤ 𝑄5(1) ≤ 𝑃3(1) for all 1 ≤ 𝑖 ≤ 𝑛

additional condition: a marginal lower bound

Open Problem: FPRAS for general product distributions



Our results
Theorem [F, Guo, Jerrum, Wang, SOSA 2023]

There is an FPRAS for the TV distance between two product distributions
• work for arbitrary finite domain
• no extra condition on distributions
• simple algorithm

Theorem [F, Guo, Jerrum, Wang, SOSA 2023]

Let 𝑠 ≥ 2 be a constant. There is an algorithm such that

• Input: two product distributions 𝑃, 𝑄 over 𝑠 !

• Output: a random .𝑑 that 𝜖-approximates 𝑑"# 𝑃, 𝑄 with prob.≥ $
%

• Running time: 𝑂 !!

&!
assuming the cost of each arithmetic operation is 𝑂(1)

• Bit length: each arithmetic operator works on two numbers with poly(𝑛) bits
if each input parameter has poly(𝑛) bits.

In this talk, for simplicity,
I always use Boolean (s=2) distribution as

an example to explain our technique



A natural estimators for TV distance [BGMV20]
• Draw a random sample 𝑋 ∼ 𝑃
• Compute the estimator

𝑊 = 𝑊 𝑋 =
max{0, 𝑃 𝑋 − 𝑄(𝑋)}

𝑃(𝑋)

𝔼 𝑊 =J
%
𝑃 𝑥 𝑊(𝑥) =J

%:* / 7+(/)
(𝑃 𝑋 − 𝑄(𝑋))

=
1
2J%

𝑃 𝑋 − 𝑄 𝑋 = 𝑑!" 𝑃, 𝑄 .

Unbiased Estimator

𝑃 𝑄
*

$:& ' ()(')
(𝑃 𝑋 − 𝑄(𝑋)) *

$:) ' (&(')
(𝑄 𝑋 − 𝑃(𝑋))



A natural estimators for TV distance [BGMV20]
• Draw a random sample 𝑋 ∼ 𝑃
• Compute the estimator

𝑊 = 𝑊 𝑋 =
max{0, 𝑃 𝑋 − 𝑄(𝑋)}

𝑃(𝑋)

Unbiased Estimator: 𝔼 𝑊 = 𝑑!" 𝑃, 𝑄 Boundedness: ∀𝑥, 0 ≤ 𝑊 𝑥 ≤ 1

• Sample 𝑊#,𝑊$,𝑊8, …𝑊9 independently for𝑚 = poly(𝑛, 1/𝜖);
• Output the average N𝑊 = (𝑊# +𝑊$ +⋯+𝑊9)/𝑚

Good for additive error (Hoeffding’s bound): 𝑑!" 𝑃, 𝑄 − 𝜖 ≤ N𝑊 ≤ 𝑑!" 𝑃, 𝑄 + 𝜖

Relative error ? (1 − 𝜖)𝑑!" 𝑃, 𝑄 ≤ N𝑊 ≤ (1 + 𝜖)𝑑!" 𝑃, 𝑄

NO, because 𝑑!"(𝑃, 𝑄) can be exp(−poly(𝑛))



TV distance and coupling

• Distributions: 𝑃 and 𝑄 over the domain Ω

• Coupling: a joint distribution 𝑋, 𝑌 ∈ Ω×Ω such that 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄

𝑥 0 1

𝑃(𝑥) 1/2 1/2

𝑦 0 1

𝑄(𝑦) 1/3 2/3

Example: Independent Coupling

Sample 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄 independently

Pr 𝑋 ≠ 𝑌 =
1
2

Can we make this prob. smaller?



TV distance and coupling

• Distributions: 𝑃 and 𝑄 over the domain Ω

• Coupling: a joint distribution 𝑋, 𝑌 ∈ Ω×Ω such that 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄

𝑥 0 1

𝑃(𝑥) 1/2 1/2

𝑦 0 1

𝑄(𝑦) 1/3 2/3
0 11/3 1/2

𝑋 = 0 𝑋 = 1

𝑌 = 0 𝑌 = 1

Example: Optimal Coupling

• Sample 𝑟 ∈ (0,1) uniformly at random
• Let 𝑋 = 0 iff 𝑟 < 𝑃 0 = 1/2
• Let 𝑌 = 0 iff 𝑟 < 𝑄 0 = 1/3



TV distance and coupling

• Distributions: 𝑃 and 𝑄 over the domain Ω

• Coupling: a joint distribution 𝑋, 𝑌 ∈ Ω×Ω such that 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄

𝑥 0 1

𝑃(𝑥) 1/2 1/2

𝑦 0 1

𝑄(𝑦) 1/3 2/3

Example: Optimal Coupling

• Sample 𝑟 ∈ (0,1) uniformly at random
• Let 𝑋 = 0 iff 𝑟 < 𝑃 0 = 1/2
• Let 𝑌 = 0 iff 𝑟 < 𝑄 0 = 1/3

Pr 𝑋 ≠ 𝑌 =
1
6
= 𝑑!"(𝑃, 𝑄)



TV distance and coupling

• Distributions: 𝑃 and 𝑄 over the domain Ω

• Coupling: a joint distribution 𝑋, 𝑌 ∈ Ω×Ω such that 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄

Coupling Lemma (Coupling inequality)

For any coupling (𝑋, 𝑌) of 𝑃 and 𝑄,
𝑑!" 𝑃, 𝑄 ≤ Pr[𝑋 ≠ 𝑌]

There exists an optimal coupling of 𝑃 and 𝑄 such that
𝑑!" 𝑃, 𝑄 = Pr[𝑋 ≠ 𝑌]



Greedy coupling between two product distributions

𝑃, 𝑄 two product distributions over Boolean domain Ω = 0,1 2

𝑃 = 𝑃#×𝑃$×⋯×𝑃2 and 𝑄 = 𝑄#×𝑄$×⋯×𝑄2

• Greedy coupling 𝑋, 𝑌 = ( 𝑋#, 𝑋$, … , 𝑋2 , (𝑌#, 𝑌$, … , 𝑌2)) of 𝑃 and 𝑄

• Sample each 𝑋3, 𝑌3 independently for the optimal coupling of 𝑃3 and 𝑄3

• Sample real numbers 𝑟' ∈ [0,1] uniformly and independently for all 1 ≤ 𝑖 ≤ 𝑛

• For each 1 ≤ 𝑖 ≤ 𝑛 , couple (𝑋' , 𝑌') optimally by

𝑋' = ?
0 if 𝑟' < 𝑃'(0)
1 if 𝑟' ≥ 𝑃' 0

𝑌' = ?0 if 𝑟' < 𝑄'(0)
1 if 𝑟' ≥ 𝑄'(0)

• Output random vectors 𝑋 = (𝑋(, 𝑋$, … , 𝑋!) and 𝑌 = (𝑌(, 𝑌$, … , 𝑌!)



Proposition: For product distributions, the greedy coupling is not optimal

𝑋D ∈ {0,1} 𝑋E ∈ {0,1}independent

𝑌D ∈ {0,1} 𝑌E ∈ {0,1}independent

can be correlated
in general

correlated
In greedy coupling

correlated
In greedy coupling

It may be possible to utilise the correlation in the middle to get a better coupling



Proposition: For product distributions, the greedy coupling is not optimal

• 𝑃 = 𝑃,×𝑃-×⋯×𝑃", where for each 1 ≤ 𝑖 ≤ 𝑛, 𝑃# 1 = 𝑃# 0 = ,
-

• 𝑄 = 𝑄,×𝑄-×⋯×𝑄", where for each 1 ≤ 𝑖 ≤ 𝑛, 𝑄# 1 = ,
-
+ 𝛿 and 𝑄# 0 = ,

-
− 𝛿

• Suppose 𝛿 = exp(−Ω 𝑛 ) is small

Total variation distance between 𝑃 and 𝑄

𝑑"# 𝑃, 𝑄 ≤ 𝐷)*(𝑃||𝑄) = H
'+(

!
𝐷)*(𝑃'||𝑄') = 𝑂(𝛿 𝑛)

Greedy coupling (𝑋, 𝑌) of 𝑃 and 𝑄
Pr 𝑋 ≠ 𝑌 = 1 − 1 − 𝛿 ! = Ω(𝛿𝑛)

Greedy coupling can be Ω( 𝑛)-times worse than the optimal coupling
Pr[𝑋 ≠ 𝑌] = Ω( 𝑛)𝑑"# 𝑃, 𝑄

(Pinsker’s ineq)



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

Pr
:;<<=>

𝑋 ≠ 𝑌 ≤ 𝑛 ⋅ 𝑑!" (𝑃, 𝑄)



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

Pr
:;<<=>

𝑋 ≠ 𝑌 ≤ 𝑛 ⋅ 𝑑!" (𝑃, 𝑄)

Pr
,-../0

𝑋 ≠ 𝑌 = Pr ∃𝑖, 𝑋' ≠ 𝑌' ≤H
'+(

!

Pr 𝑋' ≠ 𝑌' =H
'+(

!

𝑑"#(𝑃' , 𝑄')

coupling lemmaunion bound



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

𝑑!"(𝑃, 𝑄) ≤ Pr
:;<<=>

𝑋 ≠ 𝑌 ≤ 𝑛 ⋅ 𝑑!" (𝑃, 𝑄)

Pr
,-../0

𝑋 ≠ 𝑌 = Pr ∃𝑖, 𝑋' ≠ 𝑌' ≤H
'+(

!

Pr 𝑋' ≠ 𝑌' =H
'+(

!

𝑑"#(𝑃' , 𝑄')

coupling lemmaunion bound

𝑑"# 𝑃, 𝑄 = Pr
123
[𝑋 ≠ 𝑌] ≥ Pr

123
𝑋' ≠ 𝑌' ≥ 𝑑"#(𝑃' , 𝑄')

coupling lemma



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

𝑑!"(𝑃, 𝑄) ≤ Pr
:;<<=>

𝑋 ≠ 𝑌 ≤ 𝑛 ⋅ 𝑑!" (𝑃, 𝑄)

Pr
,-../0

𝑋 ≠ 𝑌 = Pr ∃𝑖, 𝑋' ≠ 𝑌' ≤H
'+(

!

Pr 𝑋' ≠ 𝑌' =H
'+(

!

𝑑"#(𝑃' , 𝑄')

coupling lemmaunion bound

𝑑"# 𝑃, 𝑄 = Pr
123
[𝑋 ≠ 𝑌] ≥ Pr

123
𝑋' ≠ 𝑌' ≥ 𝑑"#(𝑃' , 𝑄')

coupling lemma coupling lemma



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

𝑑!"(𝑃, 𝑄) ≤ Pr
:;<<=>

𝑋 ≠ 𝑌 ≤ 𝑛 ⋅ 𝑑!" (𝑃, 𝑄)

Pr
,-../0

𝑋 ≠ 𝑌 = Pr ∃𝑖, 𝑋' ≠ 𝑌' ≤H
'+(

!

Pr 𝑋' ≠ 𝑌' =H
'+(

!

𝑑"#(𝑃' , 𝑄')

coupling lemmaunion bound

𝑑"# 𝑃, 𝑄 = Pr
123
[𝑋 ≠ 𝑌] ≥ Pr

123
𝑋' ≠ 𝑌' ≥ 𝑑"#(𝑃' , 𝑄')

coupling lemma coupling lemma

≤ 𝑛 ⋅ 𝑑"#(𝑃, 𝑄)



Proposition: greedy coupling and TV distance

1
𝑛
≤

𝑑!" 𝑃, 𝑄
Pr

:;<<=>
𝑋 ≠ 𝑌

≤ 1

Proposition: In greedy coupling, the probability of 𝑋 ≠ 𝑌 is easy to compute

Pr
:;<<=>

𝑋 ≠ 𝑌 = 1 − Pr 𝑋 = 𝑌 = 1 −+
34#

2

1 − 𝑑!" 𝑃3, 𝑄3

Our idea: try to estimate the ratio

𝑅 =
𝑑!" 𝑃, 𝑄
Pr

:;<<=>
𝑋 ≠ 𝑌

Compared with 𝑑!" 𝑃, 𝑄 , the ratio 𝑅 is lower bounded by 1/𝑛



Proposition: greedy coupling and TV distance

1
𝑛
≤

𝑑!" 𝑃, 𝑄
Pr

:;<<=>
𝑋 ≠ 𝑌

≤ 1

Proposition: In greedy coupling, the probability of 𝑋 ≠ 𝑌 is easy to compute

Pr
:;<<=>

𝑋 ≠ 𝑌 = 1 − Pr 𝑋 = 𝑌 = 1 −+
34#

2

1 − 𝑑!" 𝑃3, 𝑄3

Lemma [F., Guo, Jerrum, Wang, SOSA 2023]

There is an algorithm that outputs \𝑅 in time 𝑂(𝑛$/𝜖$) such that

Pr 1 − 𝜖 𝑅 ≤ \𝑅 ≤ 1 + 𝜖 𝑅 ≥
2
3
, where 𝑅 =

𝑑!" 𝑃, 𝑄
Pr

:;<<=>
𝑋 ≠ 𝑌



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]
• 𝜋: the distribution of 𝑋 in the greedy coupling conditional on 𝑋 ≠ 𝑌

∀𝜎 ∈ 0,1 !, 𝜋 𝜎 = Pr
,-../0

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]

• 𝑓: a function {0,1}! → ℝ45 such that

∀𝜎 ∈ 0,1 !, 𝑓 𝜎 =
Pr
123

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
,-../0

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

• Estimator: 𝑓(𝜎)where 𝜎 ∼ 𝜋

Lemma: for any optimal coupling (𝑋, 𝑌) of 𝑃, 𝑄,
∀𝜎 ∈ 0,1 " , Pr

./0
[𝑋 = 𝑌 = 𝜎] = min{𝑃 𝜎 , 𝑄(𝜎)}



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]
• 𝜋: the distribution of 𝑋 in the greedy coupling conditional on 𝑋 ≠ 𝑌

∀𝜎 ∈ 0,1 !, 𝜋 𝜎 = Pr
,-../0

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]

• 𝑓: a function {0,1}# → ℝ45 such that

∀𝜎 ∈ 0,1 !, 𝑓 𝜎 =
Pr
123

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
,-../0

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌
=
𝑃 𝜎 −min{𝑃 𝜎 , 𝑄(𝜎)}
Pr

,-../0
𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

• Estimator: 𝑓(𝜎)where 𝜎 ∼ 𝜋

Lemma: for any optimal coupling (𝑋, 𝑌) of 𝑃, 𝑄,
∀𝜎 ∈ 0,1 " , Pr

./0
[𝑋 = 𝑌 = 𝜎] = min{𝑃 𝜎 , 𝑄(𝜎)}



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]
• 𝜋: the distribution of 𝑋 in the greedy coupling conditional on 𝑋 ≠ 𝑌

∀𝜎 ∈ 0,1 !, 𝜋 𝜎 = Pr
,-../0

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]

• 𝑓: a function {0,1}# → ℝ45 such that

∀𝜎 ∈ 0,1 !, 𝑓 𝜎 =
Pr
123

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
,-../0

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌
=

max{0, 𝑃 𝜎 − 𝑄(𝜎)}
Pr

,-../0
𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

• Estimator: 𝑓(𝜎)where 𝜎 ∼ 𝜋

Lemma: for any optimal coupling (𝑋, 𝑌) of 𝑃, 𝑄,
∀𝜎 ∈ 0,1 " , Pr

./0
[𝑋 = 𝑌 = 𝜎] = min{𝑃 𝜎 , 𝑄(𝜎)}

Remark about the lemma

• For any coupling (𝑋, 𝑌), for all 𝜎 ∈ 0,1 ", Pr 𝑋 = 𝑌 = 𝜎 ≤ min{𝑃 𝜎 , 𝑄(𝜎)}

• The optimal coupling maximise the Pr
./0
[𝑋 = 𝑌] by

maximise Pr./0[𝑋 = 𝑌 = 𝜎] for all 𝜎 ∈ 0,1 " at the same time



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]

𝑓 𝜎 =
Pr
./0

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
123345

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 =
max{0, 𝑃 𝜎 − 𝑄(𝜎)}
Pr

123345
𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 , where 𝜎 ∼ 𝜋

𝜋: the distribution of 𝑋 in greedy coupling conditional on 𝑋 ≠ 𝑌

• Correct expectation with lower bound

𝔼6∼8 𝑓(𝜎) =
Pr
./0
[𝑋 ≠ 𝑌]

Pr
123345

[𝑋 ≠ 𝑌]
=

𝑑9:(𝑃, 𝑄)
Pr

123345
[𝑋 ≠ 𝑌]

= 𝑅 ≥
1
𝑛

• Low variance Var6∼8 𝑓 𝜎 ≤ 1

• Efficient computation
• a random sample of 𝜎 ∼ 𝜋 can be generated in time 𝑂(𝑛)
• given any 𝜎 ∈ 0,1 ", 𝑓(𝜎) can be computed in time 𝑂(𝑛)

draw 𝑂( ";!) ind. samples 𝜎 ∼ 𝜋
compute the average of 𝑓(𝜎)

FPRAS for estimating 𝑅Chebyshev’s inequality



Proof: Correct expectation

𝔼!∼# 𝑓(𝜎) ='
!

𝜋 𝜎 𝑓(𝜎)

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌]

Pr
$%&&'(

[𝑋 ≠ 𝑌]
⋅
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

=
Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]
=

Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

(sum over all 𝜎 ∈ 0,1 , with 𝜋 𝜎 > 0)



Proof: Correct expectation

𝔼!∼# 𝑓(𝜎) ='
!

𝜋 𝜎 𝑓(𝜎)

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌]

Pr
$%&&'(

[𝑋 ≠ 𝑌]
⋅
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

=
Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]
=

Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

(sum over all 𝜎 ∈ 0,1 , with 𝜋 𝜎 > 0)

by definitions of 𝜋 and 𝑓



Proof: Correct expectation

𝔼!∼# 𝑓(𝜎) ='
!

𝜋 𝜎 𝑓(𝜎)

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌]

Pr
$%&&'(

[𝑋 ≠ 𝑌]
⋅
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

=
Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]
=

Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

(sum over all 𝜎 ∈ 0,1 , with 𝜋 𝜎 > 0)

by the definition of conditional distribution



Proof: Correct expectation

𝔼!∼# 𝑓(𝜎) ='
!

𝜋 𝜎 𝑓(𝜎)

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∣ 𝑋 ≠ 𝑌]
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

='
!

Pr
$%&&'(

[𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌]

Pr
$%&&'(

[𝑋 ≠ 𝑌]
⋅
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

=
1

Pr
$%&&'(

[𝑋 ≠ 𝑌]
'
!

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

=
Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]
=

Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]

(sum over all 𝜎 ∈ 0,1 , with 𝜋 𝜎 > 0)



Proof: Correct expectation

'
!:# ! ./

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 (sum over all 𝜎 ∈ 0,1 , with 𝜋 𝜎 > 0)

If the summation takes over all 𝝈 ∈ 𝟎, 𝟏 𝒏 , then

'
!∈ /,2 !

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 = Pr
)*+

𝑋 ≠ 𝑌

𝔼!∼# 𝑓(𝜎) =
Pr
)*+

𝑋 ≠ 𝑌

Pr
$%&&'(

[𝑋 ≠ 𝑌]
=

𝑑34(𝑃, 𝑄)
Pr

$%&&'(
[𝑋 ≠ 𝑌]

QED



Proof: Correct expectation
Lemma: The optimal coupling maximise the Pr

./0
[𝑋 = 𝑌] by

maximise Pr./0[𝑋 = 𝑌 = 𝜎] for all 𝜎 ∈ 0,1 " at the same time

Corollary: for any 𝜎 ∈ 0,1 ", it holds that

Pr
123345

𝑋 = 𝑌 = 𝜎 ≤ Pr
./0

𝑋 = 𝑌 = 𝜎

Pr
123345

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 ≥ Pr
./0

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

𝜋 𝜎 = 0 Pr
123345

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 = 0
By

corollary Pr
./0

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 = 0

'
!:# ! ./

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 = '
!∈ /,2 !

Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 = Pr
)*+

𝑋 ≠ 𝑌



Proof: Low variance

∀𝜎, 0 ≤ 𝑓 𝜎 ≤ 1 𝑓 𝜎 − 𝔼# 𝑓 ≤ 1 Var# 𝑓 = 𝔼# 𝑓 − 𝔼# 𝑓 5 ≤ 1

Corollary: for any 𝜎 ∈ 0,1 ,, it holds that

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌 ≥ Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

𝑓 𝜎 =
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
$%&&'(

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Property: for any 𝜎 with 𝜋 𝜎 > 0,

0 ≤ 𝑓 𝜎 ≤ 1



Proof: Efficient computation

Task I: sampling problem

Draw a random sample 𝜎 ∈ 0,1 , from the distribution 𝜋
• 𝜋: the distribution of 𝑋 in greedy coupling (𝑋, 𝑌) conditional on 𝑋 ≠ 𝑌

Task II: computational problem

Given 𝜎, compute 𝑓 𝜎 =
6%
"#$

78!∧ 7:;

6%
%&''()

78!∧ 7:;
= <=>{/,@ ! AB(!)}

6%
%&''()

78!∧ 7:;



Proof: Efficient computation

Task I: sampling problem

Draw a random sample 𝜎 ∈ 0,1 , from the distribution 𝜋
• 𝜋: the distribution of 𝑋 in greedy coupling (𝑋, 𝑌) conditional on 𝑋 ≠ 𝑌

Task II: computational problem

Given 𝜎, compute 𝑓 𝜎 =
6%
"#$

78!∧ 7:;

6%
%&''()

78!∧ 7:;
= <=>{/,@ ! AB(!)}

6%
%&''()

78!∧ 7:;



• The greedy coupling is a product distribution
all pairs 𝑋F , 𝑌F are mutually independent

• The condition 𝑋 ≠ 𝑌 is not complicated 
𝑋 ≠ 𝑌 ⇔ ¬ 𝑋 = 𝑌 ⇔ ¬(∧F82, 𝑋F = 𝑌F )

Task I: sampling problem

Draw a random sample 𝜎 ∈ 0,1 , from the distribution 𝜋
• 𝜋: the distribution of 𝑋 in greedy coupling (𝑋, 𝑌) conditional on 𝑋 ≠ 𝑌

Challenge: 𝜋 over 0,1 , is not a product distribution



Proof: Efficient computation
Draw random sample 𝜎 ∈ 0,1 , for the distribution 𝜋

• For each 𝑖 for 1 to 𝑛 do
sample 𝜎F for 𝜋 conditional on 𝜎2, 𝜎5, … , 𝜎FA2

• Return 𝜎 = (𝜎2, 𝜎5, … , 𝜎,)

Fix	𝜎2, 𝜎5, … , 𝜎FA2 ∈ {0,1},	sample	𝜎F ∈ {0,1} according	to

Pr 𝜎F = 0 = Pr
7∼#

𝑋F = 0 𝑋2 = 𝜎2 ∧ 𝑋5 = 𝜎5 ∧ ⋯∧ 𝑋FA2 = 𝜎FA2

Pr 𝜎F = 1 = Pr
7∼#

𝑋F = 1 𝑋2 = 𝜎2 ∧ 𝑋5 = 𝜎5 ∧ ⋯∧ 𝑋FA2 = 𝜎FA2



Proof: Efficient computation

Fix	𝜎2, 𝜎5, … , 𝜎FA2 ∈ {0,1},	sample	𝜎F ∈ {0,1} according	to

Pr 𝜎F = 0 = Pr
$%&&'(

𝑋F = 0 𝑋2 = 𝜎2 ∧ 𝑋5 = 𝜎5 ∧ ⋯∧ 𝑋FA2 = 𝜎FA2 ∧ 𝑋 ≠ 𝑌

Pr 𝜎F = 1 = Pr
$%&&'(

𝑋F = 1 𝑋2 = 𝜎2 ∧ 𝑋5 = 𝜎5 ∧ ⋯∧ 𝑋FA2 = 𝜎FA2 ∧ 𝑋 ≠ 𝑌

The conditional marginal distribution can be computed efficiently

Draw random sample 𝜎 ∈ 0,1 , for the distribution 𝜋

• For each 𝑖 for 1 to 𝑛 do
sample 𝜎F for 𝜋 conditional on 𝜎2, 𝜎5, … , 𝜎FA2

• Return 𝜎 = (𝜎2, 𝜎5, … , 𝜎,)



Summary: an FPRAS for the TV distance between two product distributions

Open problems:

• Deterministic approximate algorithm (FPTAS)?

• Beyond the product distributions?

Thanks
Q&A

Summary and open problems


