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Difference between two distributions

Data: two distributions P and Q over state space ()

Question: how to measure the difference between P and @

* Total variation distance (TV distance): d (P, Q) = %ern IP(x) — Q(x)|

» KL-divergence (relative entropy): D (P||Q) = ¥,eq P(x) log%

° 2_ [ . — PZ(X) _
x“-divergence: DXz(PHQ) = (ern Q(x)) 1



Total variation (TV) distance

Total variation (TV) distance between P and Q over state space ()

1
dry(P,Q) =5 ) IP(0) = Q)] = max|P($) - Q(S)]

X€E()

Properties of TV distance
* metric (triangle inequality)
* bounded
* data processing inequality
* various characterisations

Applications of TV distance
property testing
Markov chain mixing time

approximate algorithms
learning algorithms



Compute TV distance
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

* Input: descriptions of two distributions P, Q over ()
* Output: the total variation distance between P and Q

Trivial algorithm: enumerate all x € Q and add % |P(x) — Q(x)| together

Challenge:
* distributions P and Q have succinct descriptions
* |€1] can be exponentially large w.r.t. the size of input

Examples: probabilistic graphical models, spin systems.



TV distance between two product distributions

Distributions P4, P,, ... B, and Q4, Q,, ..., Q,, over {0,1}
 P;: distribution over {0,1} such that P;(1) = p; and P;(0) = 1 — p;
e (;:distribution over {0,1} such that Q;(1) = q; and Q;(0) = 1 — g;
Product distributions P and Q over {0,1}"

P — P1XP2X ”'XPn and Q — Q]_Xsz ”'XQn

Random sample X = (X1, X5, ..., X)) ~ P

| |

X € {0,1}": n-dimensional random vector X; € {0,1}: independent sample from P;

v X € {0,1}", P(X) = Hpi(Xi)
=1



TV distance between two product distributions

Distributions P4, P,, ... B, and Q4, Q,, ..., Q,, over {0,1}
 P;: distribution over {0,1} such that P;(1) = p; and P;(0) = 1 — p;
e (;:distribution over {0,1} such that Q;(1) = q; and Q;(0) = 1 — g;

Product distributions P and Q over {0,1}"
P — P1XP2X ’”XPn and Q — Q1XQ2X ”'XQn

Compute TV distance between two Boolean product distributions
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

* Input: vectors (p4, P2, ---,Pn) and (41, 92, ---, q,) specifying P and Q
* Output: the total variation distance between P and Q

Input size: 2n numbers, each has poly(n) bits Sample space size: 2"




TV distance between two product distributions

Finite domain [s] = {0,1, ..., s — 1} with constant s

P, Q two product distributions over domain [s]"
P = P1XP2X ’”XPn and Q — Q1XQ2X '”XQn

* P;, Q; distributions over [s]

Compute TV distance between two product distributions
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

* Input: distributions {P;, Q;|1 < i < n} specifying P and Q
* Output: the total variation distance between P and Q




Theorem [Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]
Computing TV distance between two Boolean (s = 2) product distributions
is #P complete.

Approximate TV distance between two product distributions
* Input: distributions {P;, Q;|1 < i < n} specifying P and Q
anerrorbound 0 <e <1
e Output: a number d such that (1 — €)dy(P,0) <d < (1 + €)dy (P, Q)

FPRAS (Full Poly-time Randomised Approximation Scheme)

A randomised algorithm outputs a random d in time poly(n, 1/¢€)

Prl(1 = €)dry(P,Q) <d < (1 + e)dry (P, Q)| = 2/3




Previous results

Theorem [Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

There is an FPRAS for the TV distance between two Boolean product

distributions if% <P(1)<1and0<Qi(1) <P;(Dforalll1 <i<n

N J
Y

additional condition: a marginal lower bound

Open Problem: FPRAS for general product distributions



Our results

Theorem [F, Guo, Jerrum, Wang, SOSA 2023]

There is an FPRAS for the TV distance between two product distributions

* work for arbitrary finite domain
* no extra condition on distributions

. . In this talk, for simplicity,
* simple algorithm

| always use Boolean (s=2) distribution as

an example to explain our technique
Theorem [F, Guo, Jerrum, Wang, SOSA 2023] xamp *P n qu
Let s = 2 be a constant. There is an algorithm such that

* Input: two product distributions P, Q over [s]"

« Output: a random d that e-approximates dry (P, Q) with prob. > g

n2

* Running time: O ( ) assuming the cost of each arithmetic operationis 0(1)

62
* Bit length: each arithmetic operator works on two numbers with poly(n) bits
if each input parameter has poly(n) bits.




A natural estimators for TV distance [BGMV20]

* Draw arandom sample X ~ P
* Compute the estimator
maX{O,P(X) o Q(X)}

P(X)

W=W(WX) =

Unbiased Estimator E[W] = sz(x)W(x) = z (P(X) — QX))

x:P(X)=0Q(X)

1
=52, IPX) = Q)| = dry (P, Q).

P Q
). (PCO) — QX)) D QG0 — P(X))
x:P(X)=Q(X) x:Q(X)=P(X)




A natural estimators for TV distance [BGMV20]

* Draw arandom sample X ~ P
* Compute the estimator
max{0, P(X) — Q(X)}

P(X)

W=W(WX) =

Unbiased Estimator: E[W] = d (P, Q) Boundedness: Vx, 0 < W(x) <1

* Sample Wy, W5, W3, ... W,,, independently for m = poly(n, 1/¢);
 Output the average W = (W, + W, + --- + W) /m

Good for additive error (Hoeffding’s bound): dry(P,Q) —e <W < d,(P,Q) + €

l NO, because d7y, (P, Q) can be exp(—poly(n))
Relative error? (1 — €)dy(P,Q) < W < (1 + €)dy (P, Q)



TV distance and coupling

 Distributions: P and Q over the domain ()

* Coupling: ajoint distribution (X,Y) € OQxXQ suchthat X ~ PandY ~ Q

X 0] 1
P(x) 1/2 1/2
y 0 1
QW) 1/3 2/3

Example: Independent Coupling

Sample X ~ PandY ~ Q independently

1
Prx # Y] = -

Can we make this prob. smaller?



TV distance and coupling

 Distributions: P and Q over the domain ()

* Coupling: ajoint distribution (X,Y) € OQxXQ suchthat X ~ PandY ~ Q

X 0] 1
P(x) 1/2 1/2
y 0 1
QW) 1/3 2/3

Example: Optimal Coupling

 Sampler € (0,1) uniformly at random
e LetX=0iffr<P(0)=1/2
e LetY =0iffr<Q(0)=1/3

X=0 X =1
AL
Of I Y \1
_ A/3 1/2 Y,
D'

Y =0 Y =



TV distance and coupling

 Distributions: P and Q over the domain ()

* Coupling: ajoint distribution (X,Y) € OQxXQ suchthat X ~ PandY ~ Q

X 0] 1
P(x) 1/2 1/2
y 0 1
QW) 1/3 2/3

Example: Optimal Coupling

 Sampler € (0,1) uniformly at random
e LetX=0iffr<P(0)=1/2
e LetY =0iffr<Q(0)=1/3

1
PI'[X + Y] — g — dTV(P' Q)



TV distance and coupling

 Distributions: P and Q over the domain ()

* Coupling: a joint distribution (X,Y) € OxQ suchthat X ~ PandY ~ Q

Coupling Lemma (Coupling inequality)

For any coupling (X,Y) of P and Q,
dTV(P' Q) < PI'[X * Y]

There exists an optimal coupling of P and Q such that
dTV(P'Q) — PI'[X * Y]



Greedy coupling between two product distributions

P, Q two product distributions over Boolean domain Q = {0,1}"

P — P1XP2X"'XPn and Q —_ Q]_XQ2X"'XQn

* Greedy coupling (X,Y) = (X, X3, ..., X;), (Y1, Ys, ..., Y)) of Pand Q
Sample each (X;, Y;) independently for the optimal coupling of P; and Q;

Sample real numbers 1; € [0,1] uniformly and independently forall1 <i <n

Foreach1 <i < n, couple (X;,Y;) optimally by

| ifT'i = PL(O) | ifT'i > Ql(O)

Output random vectors X = (X4, X5, ..., X)) andY = (Y, Y, ..., Y},)



Proposition: For product distributions, the greedy coupling is not optimal

.
X; € {0,1}
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4 )
X; € {0,1}
\- J
correlated
In greedy coupling
4 )
Y; € {0,1}
\- J

It may be possible to utilise the correlation in the middle to get a better coupling



Proposition: For product distributions, the greedy coupling is not optimal

e P =P/ XP,X-XP,,whereforeachl <i <n,P;(1) =P;(0) = %
e Q =0Q:XQ,%X:XQyu,Wwhereforeach1l <i <n,Q;(1) = % + 6 and Q;(0) = %— o
* Suppose § = exp(—Q(n)) is small

Total variation distance between P and Q

(Pinsker’s ineq)

dry(P, Q) < /Dg. (P]|Q) = \/zjleKL(Pi”Qi) = 0(6vn)

Greedy coupling (X,Y) of Pand Q
PriIX#Y]=1-(1-6)" = Q(bn)

Greedy coupling can be Q(y/n)-times worse than the optimal coupling
Pr[X # Y] = Q(Wn)dry (P, Q)



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

Pr [ X#Y]|<n-d (P,Q)
greedy



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

Pr [ X#Y]|<n-d (P,Q)
greedy

Pr [X Y] = Pr[3i, X, # Y] s r[X; % Y] EdTV(Pl,Q)
greedy T
=

union bound  coupling lemma



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

dTv(P,Q)S Pr [X:/:Y]SndTV(P,Q)
greedy

Pr [X Y] = Pr[3i, X, # Y] s r[X; % Y] ZdTV(Pl,Q)
greedy T
=

union bound  coupling lemma

dry(P,Q) = PriX #Y]> Pr(X; # Y]

T opt

coupling lemma



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

dTv(P,Q)S Pr [X:/:Y]SndTV(P,Q)
greedy

Pr [X Y] = Pr[3i, X, # Y] s r[X; % Y] ZdTV(Pl,Q)
greedy T
=

union bound  coupling lemma

dry(P,Q) = Ppr[X #Y] = PrlX; # Y| = drv (P, Q1)

| .

coupling lemma coupling lemma



Proposition: For product distributions, the greedy coupling is not optimal,
but the greedy coupling cannot be too bad

dTv(P,Q)S Pr [X:/:Y]SndTv(P,Q)
greedy

Prd X #Y] =Pr|3i,X; # Y] S rlX; # Y] szV(Pl,Q) <n-dry(P,Q)
greedy T =

union bound  coupling lemma

dry(P,Q) = Ppr[X #Y] = PrlX; # Y| = drv (P, Q1)

| .

coupling lemma coupling lemma



Proposition: greedy coupling and TV distance

dry(P,Q)

<
Pr [X+Y]~
greedy

1
— =<
n

Proposition: In greedy coupling, the probability of X # Y is easy to compute

grle:)gdy[X #Y]=1-PrlX=Y]=1- 1:1[(1 — d7y (P, Ql))

Our idea: try to estimate the ratio

dry(P,Q)

Pr [X # Y]
greedy

R =

Compared with dry (P, Q), the ratio R is lower bounded by 1/n



Proposition: greedy coupling and TV distance

dry(P,Q)

<
Pr [X+Y]~
greedy

1
— =<
n

Proposition: In greedy coupling, the probability of X # Y is easy to compute

grgerdy[x #Y]=1-PrlX=Y]=1- 1:1[(1 — d7y (P, Ql))

Lemma [F., Guo, Jerrum, Wang, SOSA 2023]

There is an algorithm that outputs R in time 0(n?/e?) such that

dry(P,Q)

Pr [X # Y]
greedy

~ 2
Pr[(l —e) R<R<(1+ E)R] > 3 where R =



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]

1 the distribution of X in the greedy coupling conditionalon X # Y

vo € {0,1}", n(c)= Pr [X=0l|X#Y]
greedy

* f:afunction{0,1}" - R, such that

PriX=0AN X #Y]
opt

Pr [X=0AX=#Y]
greedy

vo € {0,1}", f(o) =

e Estimator: f(o) whereog ~ &

Lemma: for any optimal coupling (X,Y) of P, Q,
Vo € {0,1}", Prt[X =Y = o] = min{P(0),Q (o)}
op



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]

1 the distribution of X in the greedy coupling conditionalon X # Y

vo € {0,1}", n(c)= Pr [X=0l|X#Y]
greedy

 f:afunction {0,1}" - R., such that

voeorr  feyo ot M P - mintP(0).0(9)
o T Pr [X=0AX#Y] Pr [X=ocAX=#Y]
greedy greedy

e Estimator: f(o) whereog ~ &

Lemma: for any optimal coupling (X,Y) of P, Q,
Vo € {0,1}", Prt[X =Y = o] = min{P(0),Q (o)}
op



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]

1 the distribution of X in the greedy coupling conditionalon X # Y

vo € {0,1}", n(c)= Pr [X=0l|X#Y]
greedy

 f:afunction {0,1}" - R., such that
X =aAXZEY] T max(0,P(0) - 0(0))

vo € {0,1}", = -
o €{0,1} f(o) Pr [X=0A X #7Y] Pr [X=0AX#Y]
greedy greedy

e Estimator: f(o) whereog ~ &

Lemma: for any optimal coupling (X,Y) of P, Q,
Vo € {0,1}", g’prt[X =Y = o] = min{P(0),Q(0)}
Remark about the lemma
« Forany coupling (X,Y), forallg € {0,1}", Pr[X =Y = a] < min{P(0),Q(0)}

* The optimal coupling maximise the Prt[X = Y] by
op

maximise Prop[X =Y = o] for all o € {0,1}" at the same time



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]

) - PriX=oA XYL max{0,P(a) — Q(0)) )
o) = X —onx=1]  Pr [X—ohArXxzy] |hereo~r
greedy greedy

m: the distribution of X in greedy coupling conditionalon X # Y

* Correct expectation with lower bound
Pri X #Y
ot 21 dn Q)

IEN = =
ool F O = T 2 V] Pr (X % Y]
greedy greedy

1
n

e Low variance Var,_.[f(0)] <1

» Efficient computation
* arandom sample of ¢ ~ m can be generated in time O(n)
« givenany o € {0,1}", f (o) can be computed in time 0 (n)

n..
draw 0(6—2) ind. sampleso ~ & Chebyshev’s inequality

compute the average of f (o) E——)

FPRAS for estimating R




Proof: Correct expectation

E,-.lf(0)] = Z n(o)f(o) (sumoverall o € {0,1}" with m(a) > 0)

o



Proof: Correct expectation

E,-.lf(0)] = Z n(o)f(o) (sumoverall o € {0,1}" with m(a) > 0)

o

PriX=0AN X #Y]

= Pr [X=0|X=%Y]—
greerdy[ o | ] Pr [ X=0ANX+Y]
o greedy

by definitions of m and f



Proof: Correct expectation

E,-.lf(0)] = Z n(o)f(o) (sumoverall o € {0,1}" with m(a) > 0)

o

PriX=0AN X #Y]

= Pr [X=0|X=%Y]—
greerdy[ o | ] Pr [ X=0ANX#Y]
o greedy
Pr [X=0AX=#Y] PriX=0cAX=#Y]
_ greedy ~_opt
Z Pr [X #Y] Pr [X=0AX=#Y]
o greedy greedy

by the definition of conditional distribution



Proof: Correct expectation

E,-.lf(0)] = 2 n(o)f(o) (sumoverall o € {0,1}" with m(a) > 0)

o

PriX=0AN X #Y]

= Pr [X=0|X=%Y]—
greerdy[ o | ] Pr [ X=0ANX#Y]
o greedy
Y] Pr[X=0A X #Y]
_ Z greedy = opt
Pr [X #Y] P Y
o greedy greedy

1
Pr [X # Y] brix=o ]

greedy o




Proof: Correct expectation

Z Prt[X =oANX#Y] (sumoverall ¢ € {0,1}" with m(g) > 0)
o:m(o0)>0 0

If the summation takes over all o € {0, 1}", then

Prt[X=0/\X¢Y]= Pr[X # Y]
(0)

o€{0,1}" opt
PriX #Y
mmmm) E,..[f(0)]= Oprt[ - __4w(P0Q)
o~n Pr [X #7Y] Pr [X #7Y]
greedy greedy

QED



Proof: Correct expectation

Lemma: The optimal coupling maximise the Prt[X = Y] by
op

maximise Pry [X =Y = o] for all o € {0,1}" at the same time

Corollary: forany o € {0,1}", it holds that
Pr [X=Y=0]<Pr[X=Y=o0]

greedy opt
- Pr [X=0AX#Y]=>Pr[X=0AX#Y]
greedy opt

By

[n((,) _ 0} — [grggdy[x =oAX#Y]= 0} corollary [fprt[x =oAX#Y]= O}

Z PriX =g A X £Y] = Z PriX=ocA X #Y] = Pr[X £ Y]
opt opt opt
o:1t(0)>0 0€{0,1}"



Proof: Low variance

(?prt[X =N X#Y] Property: for any o with m(a) > 0,
f(o) = —
grle)el‘dy[X—G/\XiY] 0<f(o) <1

Corollary: forany o € {0,1}", it holds that

Pr [ X=0AX#Y]|Z2PrlX=0AX#Y]
greedy opt

VO—»OSf(O')Sl ‘ |f(0-)_[En[f]|Sl ‘ Varn[f]z[En[lf_En[f]lz]Sl




Proof: Efficient computation

Task I: sampling problem

Draw a random sample ¢ € {0,1}" from the distribution «

* 1 the distribution of X in greedy coupling (X, Y) conditionalon X # Y

Task ll: computational problem

Pr[X=0A X#Y]
. t max{0,P(0)—Q (o)}
Given g, compute f(g) = -2 =
, compute f (o) Pr [X=oAX2Y] Pr. [X=oAX#Y]
greedy greedy




Proof: Efficient computation

Task I: sampling problem (@/)

Draw a random sample ¢ € {0,1}" from the distribution «

* m:the distribution of X in greedy coupling (X,Y) conditionalon X # Y



Task I: sampling problem (@/)

Draw a random sample ¢ € {0,1}" from the distribution «

* m: the distribution of X in greedy coupling (X,Y) conditionalon X # Y

Challenge:  over {0,1}" is not a product distribution

* The greedy coupling is a product distribution
all pairs (X;,Y;) are mutually independent

* The condition X # Y is not complicated
X#Y & 2(X=Y) © -(AL, (X; =)



Proof: Efficient computation

Draw random sample o € {0,1}" for the distribution 7

e Foreachiforltondo
sample g; for m conditional on g4, 05, ..., 0;_1

* Returno = (04,0, ...,0;,)

Fix 041,05, ...,0;_1 € {0,1}, sample o; € {0,1} according to

Pr[O'i — 0] — XI’)VI;T[XL =0 I X1 = 01 /\XZ = 09 N ”’/\Xl'_l — O-l'—l]

Pr[O'i — 1] — XI’)VI;T[XL =1 |X1 = 01 /\XZ = 09 N ”’/\Xl'_l — O-l'—l]




Proof: Efficient computation

Draw random sample o € {0,1}" for the distribution 7

e Foreachiforltondo
sample g; for m conditional on g4, 05, ..., 0;_1

* Returno = (04,0, ...,0;,)

Fix 041,05, ...,0;_1 € {0,1}, sample o; € {0,1} according to

PF[O-l' — O] — grlejerdy[Xl =0 I X1 = 01 /\XZ = 09 N\ ”’/\Xl'_l = 0ij-1 NX # Y]

PF[O-l' — 1] = Pr [Xl =1 |X1 = 01 /\XZ = 09 /\/\Xl—l = 0ij-1 NX # Y]
greedy

The conditional marginal distribution can be computed efficiently




Summary and open problems

Summary: an FPRAS for the TV distance between two product distributions

Open problems: Thanks
* Deterministic approximate algorithm (FPTAS)? Q&A

* Beyond the product distributions?



