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Total variation (TV) distance

Data: two distributions 𝑃 and 𝑄 over state space Ω
Question: how to measure the difference between 𝑃 and 𝑄

𝑃 𝑄

Total variation (TV) distance between 𝑃 and 𝑄 over state space Ω
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Total variation distance
Total variation (TV) distance between 𝑃 and 𝑄 over state space Ω
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|𝑃 𝑆 − 𝑄(𝑆)|

Properties of TV distance
• metric (triangle inequality)
• bounded
• data processing inequality
• various characterisations

𝑃 𝑄

Applications of TV distance
• property testing
• Markov chain mixing time
• approximate algorithms
• learning algorithms



Compute TV distance
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

• Input: descriptions of two distributions 𝑃, 𝑄 over Ω
• Output: the total variation distance between 𝑃 and 𝑄

Trivial algorithm: enumerate all 𝑥 ∈ Ω and add (
)
|𝑃 𝑥 − 𝑄(𝑥)| together

Challenge:

• distributions 𝑃 and 𝑄 have succinct descriptions
• |Ω| can be exponentially largew.r.t. the size of input



TV distance between two product distributions
𝑃(, 𝑃), …𝑃* and	𝑄(, 𝑄), … , 𝑄* over finite domain s = {0,1, … , 𝑠 − 1}
𝑃, 𝑄 two product distributions over domain [𝑠]*

𝑃 = 𝑃(×𝑃)×⋯×𝑃* and 𝑄 = 𝑄(×𝑄)×⋯×𝑄*

∀𝜎 ∈ 𝑠 * , 𝑃 𝜎 =M
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*

𝑃+ 𝜎+ and 𝑄 𝜎 =M
+,(

*

𝑄+ 𝜎+

Compute TV distance between two product distributions
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

• Input: distributions {𝑃+ , 𝑄+|1 ≤ 𝑖 ≤ 𝑛} specifying 𝑃 and 𝑄
• Output: the total variation distance between 𝑃 and 𝑄

i.e.

Input size: 2𝑛𝑠 = 𝑂(𝑛) numbers, each of poly(𝑛) bits Sample space size of 𝑃, 𝑄: 𝑠!



Theorem [Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

Computing TV distance between two Boolean (𝑠 = 2) product distributions
is #P complete.

Approximate TV distance between two product distributions
• Input: distributions {𝑃+ , 𝑄+|1 ≤ 𝑖 ≤ 𝑛} specifying 𝑃 and 𝑄

an error bound 0 < 𝜖 < 1
• Output: a random number S𝑑 such that

Pr 1 − 𝜖 𝑑!" 𝑃, 𝑄 ≤ S𝑑 ≤ 1 + 𝜖 𝑑!" 𝑃, 𝑄 ≥ 2/3

One challenge for approximation

𝑑!"(𝑃, 𝑄) can be
exponentially small

multiplicative
approximation errorv.s.



Theorem [Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan, Vinodchandran, 2022]

There is an FPRAS for the TV distance between two Boolean product

distributions if () ≤ 𝑃+(1) ≤ 1 and 0 ≤ 𝑄-(1) ≤ 𝑃+(1) for all 1 ≤ 𝑖 ≤ 𝑛

Open Problem: FPRAS for general product distributions

FPRAS (Full Poly-time Randomised Approximation Scheme)

An algorithm solves the approximation problem in time poly(𝑛, 1/𝜖)

additional condition: a marginal lower bound



Our results

Main Theorem [F, Guo, Jerrum, Wang, SOSA 2023]

There is an FPRAS for the TV distance between two product distributions

• running time 𝑂(𝑛)/𝜖))

• work for arbitrary finite domain

• no extra condition on distributions



TV distance and coupling

• Distributions: 𝑃 and 𝑄 over the domain Ω

• Coupling: a joint distribution 𝑋, 𝑌 ∈ Ω×Ω such that 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄

Coupling Lemma (Coupling inequality)

For any coupling (𝑋, 𝑌) of 𝑃 and 𝑄,
𝑑!" 𝑃, 𝑄 ≤ Pr[𝑋 ≠ 𝑌]

There exists an optimal coupling of 𝑃 and 𝑄 such that
𝑑!" 𝑃, 𝑄 = Pr[𝑋 ≠ 𝑌]



Greedy coupling between two product distributions

𝑃, 𝑄 two product distributions over Boolean domain Ω = [𝑠]*

𝑃 = 𝑃(×𝑃)×⋯×𝑃* and 𝑄 = 𝑄(×𝑄)×⋯×𝑄*

• Greedy coupling 𝑋, 𝑌 = ( 𝑋(, 𝑋), … , 𝑋* , (𝑌(, 𝑌), … , 𝑌*)) of 𝑃 and 𝑄

• Couple each 𝑋+, 𝑌+ independently using the optimal coupling of 𝑃+ and 𝑄+

Non optimal: ∃ product distributions, s.t. Pr
./0012

𝑋 ≠ 𝑌 > 𝑑!"(𝑃, 𝑄)

𝒏-Approximation: ∀ product distributions,
𝑑!" 𝑃, 𝑄 ≤ Pr

./0012
𝑋 ≠ 𝑌 ≤ 𝑛 ⋅ 𝑑!"(𝑃, 𝑄)

Coupling Lemma Proved by a Union Bound



Property of greedy coupling: greedy coupling and TV distance

𝑅 =
𝑑!" 𝑃, 𝑄
Pr

./0012
𝑋 ≠ 𝑌

≥
1
𝑛

Proposition: In greedy coupling, the probability of 𝑋 ≠ 𝑌 is easy to compute

Pr
./0012

𝑋 ≠ 𝑌 = 1 − Pr 𝑋 = 𝑌 = 1 −L
+,(

*

1 − 𝑑!" 𝑃+, 𝑄+

Our idea: try to estimate the ratio

𝑅 =
𝑑!" 𝑃, 𝑄
Pr

./0012
𝑋 ≠ 𝑌

𝑑!" 𝑃, 𝑄 can be exponentially small but the ratio 𝑅 is lower bounded by 1/𝑛



Our Estimator [F., Guo, Jerrum, Wang, SOSA 2023]

• 𝜋: distribution over 𝑠 ! s.t.
∀𝜎 ∈ 𝑠 ! , 𝜋 𝜎 = Pr

"#$$%&
𝑋 = 𝜎 𝑋 ≠ 𝑌

distribution of 𝑋 in the greedy coupling conditional on 𝑋 ≠ 𝑌

• 𝑓: a function s ! → ℝ'( s.t.

∀𝜎 ∈ [𝑠]! , 𝑓 𝜎 =
Pr
)*+

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

Pr
"#$$%&

𝑋 = 𝜎 ∧ 𝑋 ≠ 𝑌

• Estimator: 𝑓(𝜎)where 𝜎 ∼ 𝜋

𝔼,∼. 𝑓(𝜎) =
𝑑/0(𝑃, 𝑄)
Pr

"#$$%&
[𝑋 ≠ 𝑌] = 𝑅 ≥

1
𝑛Correct expectation

Low variance Var,∼. 𝑓 𝜎 ≤ 1

• a random sample of 𝜎 ∼ 𝜋 can be generated in time 𝑂(𝑛)
• given any 𝜎 ∈ 0,1 !, 𝑓(𝜎) can be computed in time 𝑂(𝑛)

Efficient computation



Summary: an FPRAS for the TV distance between two product distributions

Open problems:

• Deterministic approximate algorithm (FPTAS)?

• Beyond the product distributions?

Thanks
Q&A

Summary and open problems


