Field dynamics: a new tool to boost mixing results

Weiming Feng University of Edinburgh

Joint work with:

Xiaoyu Chen (Nanjing University)

Yitong Yin (Nanjing University)

Xinyuan Zhang (Nanjing University)

Summer school at UCSB, Santa Barbara, CA, US, 12th August 2022

Sampling, counting and phase transition

Boolean variables set V, weight function $w: \{-, +\}^V \to \mathbb{R}_{\geq 0}$ joint distribution μ :

$$\forall X = (X_v)_{v \in V} \in \{-, +\}^V, \qquad \mu(X) \propto w(X)$$

Sampling problem

Draw (approximate) random samples from distribution μ

Goal:

Prove *optimal* mixing results up to the computational phase transition threshold

Example: Hardcore model

- graph G = (V, E), parameters λ ;
- Gibbs distribution μ : \forall independent set $I \subseteq V$, $\mu(I) \propto \lambda^{|I|}$.
- Equivalent state space of μ : $\{-,+\}^V = \{\text{occupied}, \text{unoccupied}\}^V$

Computational phase transition

- $\lambda < \lambda_c(\Delta)$: poly-time algorithm for sampling [Weitzo6]
- $\lambda > \lambda_c(\Delta)$: no poly-time algorithm unless NP = RP [Sly10]

$$\lambda_c(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}}$$
$$\approx \frac{e}{\Delta}$$

Glauber dynamics for hardcore model

Start from an arbitrary independent set *X*;

For each transition step do

- Lazy w.p. $\frac{1}{2}$, otherwise do as follows:
- Pick a vertex *v* uniformly at random;
- If $X_u = -$ for all neighbors u then $X_v = \begin{cases} + & \text{w. p. } \lambda/(1+\lambda) \\ & \text{w. p. } 1/(1+\lambda) \end{cases}$
- Else $X_v \leftarrow -$

Mixing time: $T_{\text{mix}} = \max_{X_0 \in \Omega} \min \left\{ t \mid d_{TV}(X_t, \mu) \leq \frac{1}{4e} \right\}$,

 $d_{TV}(X_t, \mu)$: the *total variation distance* between X_t and μ .

Previous works

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \le \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$
Efthymiou et al, 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta)$, girth ≥ 7	$O\left(\frac{1}{\delta}n\log n\right)$

Previous works

Work	Condition	Mixing Time
Dobrushin 1970	$\lambda \le \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$
Luby, Vigoda, 1999	$\lambda \le \frac{2(1-\delta)}{\Delta - 2}$	$O\left(\frac{1}{\delta}n\log n\right)$
Efthymiou <i>et al</i> , 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta)$, girth ≥ 7	$O\left(\frac{1}{\delta}n\log n\right)$
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$\lambda \le (1 - \delta)\lambda_c(\Delta)$	$n^{O(1/\delta)}$
Chen, Liu, Vigoda, 2021	$\lambda \le (1 - \delta)\lambda_c(\Delta)$	$\Delta^{O(\Delta^2/\delta)} n \log n$

Open question:

Can we prove the fast (optimal) mixing for all degrees?

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_{\mathcal{C}}$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_C$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n\log n$ Balanced Glauber dynamics	Entropic Independence (EI)

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_{\mathcal{C}}$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	- Spectral Independence (SI)
Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n$ log n Balanced Glauber dynamics	Entropic Independence (EI) & Field Dynamics
Chen, F., Yin, Zhang, 2022	$e^{O(1/\delta)}n\log n$	

Mixing time of Glauber dynamics when $\lambda \leq (1 - \delta)\lambda_C$

Work	Mixing Time	Technique
Anari, Liu, Oveis Gharan, 2020 improved by Chen, Liu, Vigoda, 2020	$n^{O(1/\delta)}$	Spectral Independence (SI)
1 Chen, Liu, Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} n \log n$	
2 Chen, F., Yin, Zhang, 2021	$e^{O(1/\delta)}n^2\log n$	SI & Field Dynamics
Anari, Jain, Koehler, Pham, Vuong, 2021	$e^{O(1/\delta)}n\log n$ Balanced Glauber dynamics	Entropic Independence (EI) & Field Dynamics
2 Chen, F., Yin, Zhang, 2022	$e^{O(1/\delta)}n\log n$	
3 Chen, Eldan, 2022	$e^{O(1/\delta)}n\log n$	Localization Scheme

Zongchen Chen

² Xiaoyu Chen

Hardcore model in uniqueness regime

If λ is **close** to $\lambda_c(\Delta)$, e.g., $\lambda = 0.999\lambda_c$ (**near-critical**) analyzing mixing time is **hard**

• If λ is *far-away* from $\lambda_c(\Delta)$, e.g., $\lambda \leq 0.1\lambda_c$ (sub-critical) analyzing mixing time is *easy*

Boosting Theorem

Boosting mixing results from sub-critical regime to near-critical regime

- Boost spectral gap of Glauber dynamics [CFYZ21]
- Boost modified log-Sobolev constant of Glauber dynamics [CFYZ22]

Proved by a new Markov chain: field dynamics

Revisit Chen-Liu-Vigoda's technique

Simpler task: poly-time sampling algorithm

Input: hardcore model with $\lambda \leq (1 - \delta)\lambda_c(\Delta)$ and Δ can be unbounded;

Output: random sample *X* s.t. $d_{TV}(X, \mu) = \frac{1}{\text{poly}(n)}$.

θ -fractional block dynamics

Parameter: $\theta \in (0,1)$

Initialization: arbitrary $X \in \{-, +\}^V$

Update: for each t = 1 to T

- pick $S \subseteq V$ with $|S| = \theta n$ u.a.r.;
- $X_S \sim \mu_S(\cdot | X_{V \setminus S});$

Mixing result [CLV21]

$$\lambda_{\rm gap} \ge \theta^{O(1/\delta)}$$

$$d_{TV}(\mu, X) \le \frac{1}{\text{poly}(n)} \text{ if } T = \left(\frac{1}{\theta}\right)^{O(1/\delta)} n \log n$$

Question: how to *efficiently* simulate the transition step $X_S \sim \mu_S(\cdot | X_{V \setminus S})$?

Update step $X_S \sim \mu_S(\cdot | X_{V \setminus S})$: sample from hardcore model $(G[S], \lambda)$ with boundary condition $X_{V \setminus S}$

Observation [Chen, Liu and Vigoda, 2021]

If $\theta = O\left(\frac{1}{\Delta}\right)$, then w.h.p., G[S] is a set of small connected components

$$\theta = 0(1/\Delta)$$
 fractional block dynamics
$$T = \Delta^{0(1/\delta)} n \log n \text{ steps}$$

Simulation of each step brute force on each component Expected cost = O(n)

Total expected running time of the algorithm: $\Delta^{O(1/\delta)} n^2 \log n$

Natural idea: set
$$\theta = \frac{1}{100}$$

Mixing time $T = 2^{O(1/\delta)} n \log n = O_{\delta}(n \log n)$

Issue: how to sample from hardcore model (G[S], λ) with boundary condition $X_{V \setminus S}$?

Observation [Chen, F. Yin and Zhang, 2021]

The maximum degree of G[S] can be small.

For any
$$v \in S$$
,

$$\mathbb{E}[\text{degree of } v \text{ in } G[S]] \approx \theta \deg_G(v)$$

$$= \frac{\deg_G(v)}{100}$$

Natural idea: set
$$\theta = \frac{1}{100}$$

Mixing time $T = 2^{O(1/\delta)} n \log n = O_{\delta}(n \log n)$

Issue: how to sample from hardcore model $(G[S], \lambda)$ with boundary condition $X_{V \setminus S}$?

$$\lambda \leq \lambda_c(\Delta_G) \approx \frac{e}{\Delta_G}$$

uniqueness condition in (λ, Δ_G)

If we can show

$$\Delta(G[S]) \ll \Delta_G$$

the $(G[S], \lambda)$ is **easy** to sample from

Case 1: the maximum degree Δ_G of original graph G satisfies $\Delta_G \geq 100 \log n$

• By **concentration**, for any $v \in S$, expected degree $\leq \Delta_G/100$,

$$\Pr\left[\text{degree of } v \text{ in } G[S] \leq \frac{\Delta_G}{10}\right] \geq 1 - \frac{1}{n^{10}}$$

• Bound a **union bound**, w.h.p. $(\text{prob} \ge 1 - \frac{1}{n^7})$

In every transition step, the maximum degree of G[S] is at most $\frac{\Delta_G}{10}$

• The hardcore model (G[S], λ) satisfies **Dobrushin's condition** simulate the Glauber dynamics for $O(n \log n)$ steps.

$$\theta = 1/100$$
-fractional block dynamics $T = 2^{O(1/\delta)} n \log n$ steps

simulation cost of each step $O(n \log n)$

Total running time of the algorithm: $2^{O(1/\delta)}n^2 \log^2 n$

Case 2: $\Delta_G < 100 \log n$

- Graph $G_k: v \in V \longrightarrow \text{ size } k \text{ clique } C_v; \quad \{u, v\} \in E \longrightarrow \text{ connect } C_u \text{ and } C_v;$
- Parameter: $\lambda_k = \lambda/k$;

Properties of the *k***-transformation:**

- μ_k is $O(1/\delta)$ spectrally independence \longrightarrow block dynamics on μ_k is rapid mixing [CLV21]
- if $k = \Omega(\log n)$, the **max degree** of G_k is **large** $\longrightarrow \mu_k = (G_k, \lambda_k)$ is in **Case 1**
- if $X \sim \mu_k$, then $X' = f_k(X) \sim \mu$

Case 2: $\Delta_G < 100 \log n$

- Graph $G_k: v \in V \longrightarrow \text{size } k \text{ clique } C_v; \quad \{u, v\} \in E \longrightarrow \text{connect } C_u \text{ and } C_v;$
- Parameter: $\lambda_k = \lambda/k$;

Properties of the *k***-transformation:**

- μ_k is $O(1/\delta)$ spectrally independence \longrightarrow block dynamics on μ_k is rapid mixing [CLV21]
- if $k = \Omega(\log n)$, the **max degree** of G_k is **large** $\longrightarrow \mu_k = (G_k, \lambda_k)$ is in **Case 1**
- if $X \sim \mu_k$, then $X' = f_k(X) \sim \mu$
 - $X'_v = + \text{ if } \exists u \in C_v \text{ s.t. } X_u = +$
 - $X'_v = -if \ \forall u \in C_v, \ X_u = -$

Algorithm for sampling from the hardcore model

Input: graph G = (V, E) and parameter $\lambda \leq (1 - \delta)\lambda_c(\Delta)$

- \triangleright apply $k = \Omega(\log n)$ -transformation to get μ_k ;
- > simulate $\left(\theta = \frac{1}{100}\right)$ -fractional block dynamics $(X_t)_{t=0}^T$ on μ_k :
 - $T = 2^{O(1/\delta)}(nk)^2 \log(nk)$;
 - every transition is simulated by an $O(nk \log(nk))$ -step **Glauber dynamics**
- \triangleright output $f_k(X_T)$

$$\left(f_k(X_t)\right)_{t=0}^T$$

Apply the mapping f_k on every step of block dynamics

Field Dynamics

New Markov chain for sampling from $\mu = \text{Hardcore}(G, \lambda)$

Field Dynamics

Input: hardcore model $\mu = (G, \lambda)$, a parameter $\theta \in (0,1)$

Start from an arbitrary feasible configuration $X \in \{-, +\}^V$

For each t from 1 to T do

Down-Walk • Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_v = \begin{cases} 1 & \text{if } X_v = -\\ \theta & \text{if } X_v = + \end{cases}$$

Up-Walk • Resample $X_S \sim \pi_S(\cdot | X_{V \setminus S})$

 π : hardcore model $(G, \theta \lambda)$

Field Dynamics

Input: a **general distribution** μ over $\{-1, +1\}^V$, a parameter $\theta \in (0, 1)$

Start from an arbitrary feasible configuration $X \in \{-, +\}^V$

For each *t* from 1 to *T* **do**

• Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_v = \begin{cases} 1 & \text{if } X_v = -\\ \theta & \text{if } X_v = + \end{cases}$$

• Resample $X_S \sim \pi_S(\cdot | X_{V \setminus S})$

$$\forall \sigma \in \{-,+\}^V, \qquad \pi(\sigma) \propto \mu(\sigma) \prod_{v \in V: \sigma_v = +} \theta$$

 π : distribution μ with external field θ

Field Dynamics

Input: a **general distribution** μ over $\{-1, +1\}^V$, a parameter $\theta \in (0, 1)$

Start from an arbitrary feasible configuration $X \in \{-, +\}^V$

For each *t* from 1 to *T* **do**

• Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_v = \begin{cases} 1 & \text{if } X_v = -\\ \theta & \text{if } X_v = + \end{cases}$$

• Resample $X_S \sim \pi_S(\cdot | X_{V \setminus S})$

Proposition (Field Dynamics): for any $\theta \in (0,1)$

Field dynamics has the unique stationary distribution μ .

(irreducible, aperiodic and reversible)

Spectral gap of Glauber dynamics

Mixing lemma

If
$$\lambda \leq (1 - \delta)\lambda_c(\Delta)$$
, for any $\theta \in (0,1)$

$$\operatorname{Gap}_{\text{field}}(\lambda, \theta) \geq \theta^{O(1/\delta)}$$

Comparison lemma

For any $\lambda \geq 0$, for any $\theta \in (0,1)$

$$Gap_{Glauber}(\lambda) \ge Gap_{field}(\lambda, \theta) \cdot Gap_{Glauber}(\theta\lambda)$$

Boosting theorem

If
$$\lambda \leq (1 - \delta)\lambda_c(\Delta)$$
, for any $\theta \in (0,1)$

$$\operatorname{Gap}_{\operatorname{Glauber}}(\lambda) \geq \theta^{O(1/\delta)} \cdot \operatorname{Gap}_{\operatorname{Glauber}}(\theta \lambda)$$

Spectral gap of Glauber dynamics

Mixing lemma

If
$$\lambda \leq (1 - \delta)\lambda_c(\Delta)$$
, for any $\theta \in (0,1)$

$$\operatorname{Gap_{field}}(\lambda, \theta) \geq \theta^{O(1/\delta)}$$

Comparison lemma

For any $\lambda \geq 0$, for any $\theta \in (0,1)$

$$Gap_{Glauber}(\lambda) \ge Gap_{field}(\lambda, \theta) \cdot Gap_{Glauber}(\theta\lambda)$$

Proved by a calculation

$$\theta = \frac{1}{10}$$

$$\theta = \frac{1}{10}$$

$$Gap_{Glauber}(\theta\lambda) = \Omega\left(\frac{1}{n}\right)$$

$$\theta\lambda \in Dobrushin's regime$$

$$Gap_{Glauber}(\lambda) = \Omega_{\delta}\left(\frac{1}{n}\right)$$

$$T_{mix} = O_{\delta}(n^2 \log n)$$

$$Gap_{Glauber}(\lambda) = \Omega_{\delta} \left(\frac{1}{n}\right)$$
$$T_{mix} = O_{\delta}(n^2 \log n)$$

Boosting spectral gap of Glauber dynamics

Boosting modified log-Sobolev constant of Glauber dynamics

EI: entropic ind.

$$MLS_{Glauber}(\lambda) = \Omega_{\delta}\left(\frac{1}{n}\right)$$
 and $T_{mix} = O_{\delta}(n \log n)$

Summary

- Hardcore model in the uniqueness regime
 - Optimal spectral gap and $O(n^2 \log n)$ mixing time
 - Optimal modified log-Sobolev constant and $O(n \log n)$ mixing time
- General distributions
 - Complete SI ------ boost spectral gap
 - Complete SI + marginal ratio bound —— boost MLS constant Thank you!
- A new Markov chain field dynamics

Open problem

- More applications of field dynamics
 - Algorithmic applications (e.g., random cluster model [Chen and Zhang 2022])
- Extend our technique to *general distributions* beyond the Boolean domain i.e., q-coloring