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Sampling, counting and phase transition

Boolean	variables set 𝑉, weight function 𝑤: −,+ ! → ℝ"#
joint distribution 𝜇:

∀𝑋 = 𝑋$ $∈! ∈ −,+ !, 𝜇 𝑋 ∝ 𝑤 𝑋

Goal:
Prove optimalmixing results up to the 

computational phase transition threshold
poly-time algorithm exists

hard regime

Sampling problem
Draw (approximate) random samples from distribution 𝜇



Example: Hardcore model

• graph 𝐺 = (𝑉, 𝐸), parameters 𝜆;

• Gibbs distribution 𝜇:
∀independent set 𝐼 ⊆ 𝑉, 𝜇 𝐼 ∝ 𝜆|"|.

• Equivalent state space of 𝜇:
−,+ # = occupied, unoccupied #

Computational phase transition

• 𝜆 < 𝜆!(Δ): poly-time algorithm for sampling[Weitz06]

• 𝜆 > 𝜆!(Δ) : no poly-time algorithm unless 𝑵𝑷 = 𝑹𝑷 [Sly10]

𝜆! Δ =
Δ − 1 "#$

Δ − 2 "

≈
𝑒
Δ



Glauber dynamics for hardcore model
Start from an arbitrary independent set 𝑋;
For each transition step do

• Lazy w.p. !
"
, otherwise do as follows:

• Pick a vertex 𝑣 uniformly at random;
• If 𝑋# = − for all neighbors 𝑢 then

𝑋$ = &
+ w. p. 𝜆/(1 + 𝜆)
− w. p. 1/(1 + 𝜆)

• Else 𝑋$ ← −

Mixing time: 𝑇%&' = max
(!∈*

min 𝑡 𝑑+, 𝑋-, 𝜇 ≤ !
./

,

𝑑+, 𝑋-, 𝜇 : the total variation distance between 𝑋- and 𝜇.
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Anari, Liu, Oveis Gharan, 2020
improved by Chen, Liu, Vigoda, 2020 𝜆 ≤ 1 − 𝛿 𝜆!(Δ) 𝑛# $/&

Chen, Liu, Vigoda, 2021 𝜆 ≤ 1 − 𝛿 𝜆!(Δ) Δ#((!/&)𝑛 log 𝑛

Open question:
Can we prove the fast (optimal) mixing for all degrees ?
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hard regime

uniqueness regime
(near-critical)

Dobrushin regime (sub-critical)

boosting
Hardcore model in uniqueness regime

If 𝜆 is close to 𝜆!(Δ), e.g., 𝜆 = 0.999𝜆! (near-critical)
analyzing mixing time is hard

• If 𝜆 is far-away from 𝜆!(Δ), e.g., 𝜆 ≤ 0.1𝜆! (sub-critical)
analyzing mixing time is easy

Boosting Theorem

Boostingmixing results from sub-critical regime to near-critical regime
• Boost spectral gap of Glauber dynamics [CFYZ21]
• Boostmodified log-Sobolev constant of Glauber dynamics [CFYZ22]

Proved by a new Markov chain: field dynamics



Revisit Chen-Liu-Vigoda’s technique
Simpler task: poly-time sampling algorithm

Input: hardcore model with 𝜆 ≤ 1 − 𝛿 𝜆%(Δ) and Δ can be unbounded;
Output: random sample 𝑋 s.t. 𝑑&# 𝑋, 𝜇 = '

()*+(-)
.

𝜽-fractional block dynamics
Parameter: 𝜃 ∈ (0,1)
Initialization: arbitrary 𝑋 ∈ −,+ #

Update: for each 𝑡 = 1 to 𝑇
• pick 𝑆 ⊆ 𝑉 with 𝑆 = 𝜃𝑛 u.a.r.;
• 𝑋/ ∼ 𝜇/ ⋅ 𝑋#\/ ;

Mixing result [CLV21]

𝜆12( ≥ 𝜃3('/5)

𝑑&# 𝜇, 𝑋 ≤ '
()*+ -

if 𝑇 = '
6

3('/5)
𝑛 log 𝑛

Question: how to efficiently simulate the transition step 𝑋/ ∼ 𝜇/ ⋅ 𝑋#\/ ?



Update step 𝑋% ∼ 𝜇% ⋅ 𝑋&\% : sample from hardcore model (𝐺 𝑆 , 𝜆) with boundary condition 𝑋&\%

Observation [Chen, Liu and Vigoda, 2021]
If  𝜃 = 𝑂 '

7
, then w.h.p., 𝐺[𝑆] is a set of small connected components

Simulation of each step
brute force on each component

Expected cost = 𝑂(𝑛)

Mixing time
𝜃 = 𝑂 1/Δ -fractional block dynamics

𝑇 = Δ3('/5) 𝑛 log 𝑛 steps  

Total expected running time of the algorithm: Δ3('/5)𝑛8log 𝑛



Natural idea: set 𝜃 = '
'99 Mixing time 𝑇 = 23('/5)𝑛 log 𝑛 = 𝑂5(𝑛 log 𝑛)

𝜃 = 𝑂(1/Δ) 𝜃 = 𝑂(1)

Issue : how to sample from hardcore model (𝐺 𝑆 , 𝜆) with boundary condition 𝑋#\/ ?

Observation [Chen, F. Yin and Zhang, 2021]

The maximum degree of 𝐺[𝑆] can be small.

For any 𝑣 ∈ 𝑆,
𝔼 degree of 𝑣 in 𝐺 𝑆 ≈ 𝜃 deg((𝑣)

=
deg((𝑣)
100



Natural idea: set 𝜃 = '
'99 Mixing time 𝑇 = 23('/5)𝑛 log 𝑛 = 𝑂5(𝑛 log 𝑛)

𝜃 = 𝑂(1/Δ) 𝜃 = 𝑂(1)

Issue : how to sample from hardcore model (𝐺 𝑆 , 𝜆) with boundary condition 𝑋#\/ ?

𝜆 ≤ 𝜆< Δ= ≈
𝑒
Δ=

uniqueness condition in (𝜆, Δ()

If we can show

Δ 𝐺 𝑆 ≪ Δ=
the (𝐺 𝑆 , 𝜆) is easy to sample from



Case 1: the maximum degree Δ( of original graph 𝐺 satisfies Δ( ≥ 100 log 𝑛

• By concentration, for any 𝑣 ∈ 𝑆, expected degree ≤ Δ(/100,

Pr degree of 𝑣 in 𝐺 𝑆 ≤
Δ(
10 ≥ 1 −

1
𝑛$)

• Bound a union bound, w.h.p. (prob ≥ 1 − $
*+
)

In every transition step, the maximum degree of 𝐺[𝑆] is at most ",
$)

• The hardcore model (𝐺 𝑆 , 𝜆) satisfiesDobrushin’s condition
simulate the Glauber dynamics for 𝑂(𝑛 log 𝑛) steps.

𝜃 = 1/100-fractional block dynamics
𝑇 = 23('/5) 𝑛 log 𝑛 steps  

simulation cost of each step
𝑂(𝑛 log 𝑛)

Total running time of the algorithm: 23('/5)𝑛8 log8 𝑛



Case 2: Δ( < 100 log 𝑛

𝑘-transformation

𝜇 = (𝐺, 𝜆) 𝜇- = 𝐺- , 𝜆-

• Graph 𝐺+: 𝑣 ∈ 𝑉 size 𝑘 clique 𝐶,; 𝑢, 𝑣 ∈ 𝐸 connect 𝐶- and 𝐶,;
• Parameter: 𝜆+ = 𝜆/𝑘;

Properties of the 𝒌-transformation:
• 𝜇+ is 𝑂(1/𝛿) spectrally independence block dynamics on 𝜇+ is rapid mixing [CLV21]

• if 𝑘 = Ω(log 𝑛), themax degree of 𝐺+ is large 𝜇+ = (𝐺+, 𝜆+) is in Case 1
• if 𝑋 ∼ 𝜇+, then 𝑋. = 𝑓+ 𝑋 ∼ 𝜇



Case 2: Δ( < 100 log 𝑛

𝑘-transformation

𝜇 = (𝐺, 𝜆) 𝜇- = 𝐺- , 𝜆-

• Graph 𝐺+: 𝑣 ∈ 𝑉 size 𝑘 clique 𝐶,; 𝑢, 𝑣 ∈ 𝐸 connect 𝐶- and 𝐶,;
• Parameter: 𝜆+ = 𝜆/𝑘;

Properties of the 𝒌-transformation:
• 𝜇+ is 𝑂(1/𝛿) spectrally independence block dynamics on 𝜇+ is rapid mixing [CLV21]

• if 𝑘 = Ω(log 𝑛), themax degree of 𝐺+ is large 𝜇+ = (𝐺+, 𝜆+) is in Case 1
• if 𝑋 ∼ 𝜇+, then 𝑋. = 𝑓+ 𝑋 ∼ 𝜇

• 𝑋,. = + if ∃𝑢 ∈ 𝐶, s.t. 𝑋- = +
• 𝑋,. = − if ∀𝑢 ∈ 𝐶,, 𝑋- = − 𝑓B



Algorithm for sampling from the hardcore model

Input: graph 𝐺 = (𝑉, 𝐸) and parameter 𝜆 ≤ 1 − 𝛿 𝜆%(Δ)

Ø apply 𝑘 = Ω(log 𝑛)-transformation to get 𝜇:;

Ø simulate 𝜃 = '
'99

-fractional block dynamics 𝑋; ;<9
& on 𝜇::

• 𝑇 = 23('/5)(𝑛𝑘)8log(𝑛𝑘);
• every transition is simulated by an 𝑂(𝑛𝑘 log(𝑛𝑘))-step Glauber dynamics

Ø output 𝑓:(𝑋&)

𝑓[ 𝑋\ \]^
_

Apply the mapping 𝑓- on
every step of block dynamics

𝑘 → ∞ Field Dynamics

New Markov chain for
sampling from 𝜇 = Hardcore(𝐺, 𝜆)



Field Dynamics

Input: hardcore model 𝜇 = (𝐺, 𝜆), a parameter 𝜃 ∈ (0,1)

Start from an arbitrary feasible configuration 𝑋 ∈ −,+ &

For each 𝑡 from 1 to 𝑇 do
• Construct 𝑆 ⊆ 𝑉 be selecting each 𝑣 ∈ 𝑉 independently with probability

𝑝, = Q1 if 𝑋, = −
𝜃 if 𝑋, = +

• Resample 𝑋% ∼ 𝜋% ⋅ 𝑋&\%

𝑆 Resample the
configuration on 𝑆

Pr ∈ 𝑆 = 1
Pr ∈ 𝑆 = 𝜃

𝜋: hardcore model (𝐺, 𝜃𝜆)

Down-Walk

Up-Walk



Field Dynamics

Input: a general distribution 𝜇 over −1,+1 &, a parameter 𝜃 ∈ (0,1)

Start from an arbitrary feasible configuration 𝑋 ∈ −,+ &

For each 𝑡 from 1 to 𝑇 do
• Construct 𝑆 ⊆ 𝑉 be selecting each 𝑣 ∈ 𝑉 independently with probability

𝑝, = Q1 if 𝑋, = −
𝜃 if 𝑋, = +

• Resample 𝑋% ∼ 𝜋% ⋅ 𝑋&\%

∀𝜎 ∈ −,+ ! , 𝜋 𝜎 ∝ 𝜇(𝜎) ,
"∈!:%=&'

𝜃

𝜋: distribution 𝜇 with external field 𝜃



Field Dynamics

Input: a general distribution 𝜇 over −1,+1 &, a parameter 𝜃 ∈ (0,1)

Start from an arbitrary feasible configuration 𝑋 ∈ −,+ &

For each 𝑡 from 1 to 𝑇 do
• Construct 𝑆 ⊆ 𝑉 be selecting each 𝑣 ∈ 𝑉 independently with probability

𝑝, = Q1 if 𝑋, = −
𝜃 if 𝑋, = +

• Resample 𝑋% ∼ 𝜋% ⋅ 𝑋&\%

Proposition (Field Dynamics): for any 𝜃 ∈ (0,1)

Field dynamics has the unique stationary distribution 𝜇.

(irreducible, aperiodic and reversible)



Spectral gap of Glauber dynamics

Comparison lemma
For any 𝜆 ≥ 0, for any 𝜃 ∈ (0,1)

GapHIJKLMN 𝜆 ≥ GapOPMIQ 𝜆, 𝜃 ⋅ GapHIJKLMN 𝜃𝜆

Mixing lemma
If 𝜆 ≤ 1 − 𝛿 𝜆<(Δ), for any 𝜃 ∈ (0,1)

GapOPMIQ 𝜆, 𝜃 ≥ 𝜃R(S/U)

Boosting theorem
If 𝜆 ≤ 1 − 𝛿 𝜆<(Δ), for any 𝜃 ∈ (0,1)

GapHIJKLMN 𝜆 ≥ 𝜃R S/U ⋅ GapHIJKLMN 𝜃𝜆

Near-Critical Regime Easy RegimeBoosting with cost 𝑂(1)



Spectral gap of Glauber dynamics

Comparison lemma
For any 𝜆 ≥ 0, for any 𝜃 ∈ (0,1)

GapHIJKLMN 𝜆 ≥ GapOPMIQ 𝜆, 𝜃 ⋅ GapHIJKLMN 𝜃𝜆

Mixing lemma
If 𝜆 ≤ 1 − 𝛿 𝜆<(Δ), for any 𝜃 ∈ (0,1)

GapOPMIQ 𝜆, 𝜃 ≥ 𝜃R(S/U)

𝜃 =
1
10

Gap/012345 𝜃𝜆 = Ω
1
𝑛

𝜃𝜆 ∈Dobrushin’s regime
Gap/012345 𝜆 = Ω6

1
𝑛

𝑇>?@ = 𝑂5(𝑛8 log 𝑛)

Proved
by

a calcul
ation



Boosting spectral gap of Glauber dynamics

𝜆 ≤ 1 − 𝛿 𝜆!
uniqueness

for all large 𝑘
𝜇+ is SI

spectral gap of
field dynamics

Boost spectral gap of
Glauber dynamics

Boosting modified log-Sobolev constant of Glauber dynamics

𝜆 ≤ 1 − 𝛿 𝜆!
uniqueness

for all large 𝑘
𝜇+ is EI

down walk of 
FD contracts

KL-divergence

Boost MLS of
Glauber dynamics

MLSA*2BCDE 𝜆 = Ω5
'
-
and 𝑇>?@ = 𝑂5(𝑛 log 𝑛)

SI: spectral ind.

EI: entropic ind.

down walk of FD contracts
𝜒*-divergence



Open problem
• More applications of field dynamics

• Algorithmic applications (e.g., random cluster model [Chen and Zhang 2022])

• Extend our technique to general distributions beyond the Boolean domain i.e., 𝑞-coloring

Summary
• Hardcore model in the uniqueness regime

• Optimal spectral gap and 𝑂(𝑛7 log 𝑛) mixing time
• Optimal modified log-Sobolev constant and 𝑂(𝑛 log 𝑛) mixing time

• General distributions

• Complete SI boost spectral gap

• Complete SI + marginal ratio bound boost MLS constant

• A new Markov chain field dynamics

Thank you!


