RAPID MIXING OF GLAUBER DYNAMICS VIA SPECTRAL INDEPENDENCE FOR ALL DEGREES Xiaoyu Chen¹, Weiming Feng², Yitong Yin¹, Xinyuan Zhang¹

¹State Key Laboratory for Novel Software Technology, Nanjing University ²School of Informatics, University of Edinburgh

Our results

THE UNIVERSITY of EDINBURGH

Hardcore model

Parameters: graph G = (V, E) and fugacity $\lambda > 0$. **State space**: $\Omega \subseteq \{-,+\}^V$ s.t. vertices with + form an independent set. **Gibbs distribution**: μ over all independent sets Ω in G:

$$\forall \text{ independent set } \sigma \in \Omega, \quad \mu(\sigma) = \frac{\lambda^{|\sigma|_+}}{Z}, \text{ where } Z = \sum_{\sigma \in \Omega} \lambda^{|\sigma|_+}$$

Mixing time for hardcore model when $\lambda \leq (1 - \delta)\lambda_c$

Anari, Liu and Oveis Gharan, 2020	$n^{O(1/\delta)}$
Chen, Liu and Vigoda, 2021	$\Delta^{O(\Delta^2/\delta)} \cdot n \log n$
This work, 2021	$e^{O(1/\delta)} \cdot n^2 \log n$
Our follow-up work, 2022	$e^{O(1/\delta)} \cdot n \log n$

Phase transition

Uniqueness threshold
$$\lambda_c(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}.$$

Phase transition in physics

• if $\lambda < \lambda_c$, p_{root}^{σ} is independent with σ when $\ell \to \infty$;

 $e^{O(1/\delta)} \cdot n \log n$ Chen and Eldan, 2022 Results for general distributions μ over $\{-,+\}^V$ • Influence matrix: $\Psi(u, v) = |\Pr_{\mu}[v = + | u = +] - \Pr_{\mu}[v = + | u = -]|.$ • Spectral independence (SI): for any conditional distribution induced by μ ,

the spectral radius $\rho(\Psi) \leq C$.

• Magnetising joint distribution with local fields $\phi = (\phi_v)_{v \in V} \in \mathbb{R}^{V}_{>0}$:

 $(\phi * \mu)(\sigma) \propto \mu(\sigma)$ ϕ_v . $v \in V: \sigma_v = +$

- Complete SI: $\forall \phi \in (0, 1]^V$, $(\phi * \mu)$ is spectrally independent.
- Spectral gap: $1 \lambda_2$, where λ_2 is the second largest eigenvalue of the transition matrix P of the Glauber dynamics on μ :

$$T_{\text{mix}} = O\left(\frac{1}{\lambda_{\text{gap}}}\log\frac{1}{\mu_{\min}}\right), \text{ where } \mu_{\min} = \min_{\sigma \in \Omega} \mu(\sigma)$$

Boosting result for spectral gap of Glauber dynamics

For any C-completely SI distribution μ , any $\theta \in (0, 1)$

• if $\lambda > \lambda_c$, p_{root}^{σ} is correlated with σ for any ℓ .

2 Phase transition in computational complexity

• if $\lambda < (1 - \delta)\lambda_c(\Delta)$, sampling algorithm with running time $n^{O((\log \Delta)/\delta)}$ [Weitz06]; • if $\lambda > \lambda_c(\Delta)$, sampling problem is intractable unless NP = RP [Sly10].

Open problem 3

Sampling algorithm with running time $C(\delta) \cdot poly(n)$ for all hardcore models satisfying $\lambda \leq (1 - \delta)\lambda_c(\Delta)$ and Δ can be unbounded.

Glauber dynamics

The Glauber dynamics

Start from an arbitrary independent set $X \in \Omega$;

For each update step:

- 1. pick $v \in V$ uniformly at random;
- 2. if all neighbours u of v satisfy $X_u = -$

$$X_v \leftarrow \begin{cases} + & \text{with probability } \lambda/(1+\lambda), \\ - & \text{with probability } 1/(1+\lambda); \end{cases}$$

3. if some neighbour u of v satisfies $X_u = +$, then $X_v \leftarrow -$.

$$\lambda_{gap}(\mu) \ge \left(rac{ heta}{2}
ight)^{2C+7} \lambda_{gap}^*(heta*\mu), \quad \text{where } \theta_v = heta \text{ for all } v \in V$$

- $\lambda_{gap}(\mu)$: the spectral gap of the Glauber dynamics on μ
- $\lambda^*_{gap}(\theta * \mu)$: the minimum spectral gap of the Glauber dynamics on conditional distributions induced by $(\theta * \mu)$.

Field dynamics

The Field dynamics Boolean distribution μ over $\{-,+\}^V$ and parameter $\theta \in (0,1)$.

Start from an arbitrary feasible state $X \in \Omega$; For each update step:

mixing time : $T_{\text{mix}} = \max_{X_0} \min\{t \mid d_{\text{tv}}(X_t, \mu) \le 0.001\}.$ total variation distance : $d_{tv}(X_t, \mu) = \frac{1}{2} \sum |\Pr[X_t = \sigma] - \mu(\sigma)|$. 1. construct S by selecting each $v \in V$ independently with probability

$$p_v = \begin{cases} 1 & \text{if } X_v = -, \\ \theta & \text{if } X_v = +; \end{cases}$$

2. resample $X_S \sim (\theta * \mu)_S(\cdot \mid X_{V \setminus S})$.

• Comparison lemma: $\lambda_{gap}(\mu) \ge \lambda_{gap}^{\mathsf{Field}}(\theta, \mu)\lambda_{gap}^*(\theta * \mu)$. • Mixing lemma: If μ is C-Completely SI, then $\lambda_{qap}^{\text{Field}}(\theta, \mu) \geq \left(\frac{\theta}{2}\right)^{2C+7}$.