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Hardcore model

Parameters: graph G = (V,E) and fugacity λ > 0.
State space: Ω ⊆ {−,+}V s.t. vertices with + form an independent set.
Gibbs distribution: µ over all independent sets Ω in G:

∀ independent set σ ∈ Ω, µ(σ) =
λ|σ|+

Z
, where Z =

∑
σ∈Ω

λ|σ|+.

Phase transition

Uniqueness threshold λc(∆) =
(∆− 1)(∆−1)

(∆− 2)∆
≈ e

∆
.

1 Phase transition in physics

• if λ < λc, pσroot is independent with σ when ℓ→∞;

• if λ > λc, pσroot is correlated with σ for any ℓ.

2 Phase transition in computational complexity
• if λ < (1− δ)λc(∆), sampling algorithm with running time nO((log ∆)/δ) [Weitz06];

• if λ > λc(∆), sampling problem is intractable unless NP = RP [Sly10].

3 Open problem
Sampling algorithm with running time C(δ)·poly(n) for all hardcore models satisfying
λ ≤ (1− δ)λc(∆) and ∆ can be unbounded.

Glauber dynamics

The Glauber dynamics
Start from an arbitrary independent set X ∈ Ω;
For each update step:

1. pick v ∈ V uniformly at random;

2. if all neighbours u of v satisfy Xu = −

Xv ←

{
+ with probability λ/(1 + λ),

− with probability 1/(1 + λ);

3. if some neighbour u of v satisfies Xu = +, then Xv ← −.

mixing time : Tmix = max
X0

min{t | dtv(Xt, µ) ≤ 0.001}.

total variation distance : dtv(Xt, µ) =
1

2

∑
σ∈Ω

|Pr[Xt = σ]− µ(σ)| .

rapid mixing : Tmix = poly(n).

Our results

Mixing time for hardcore model when λ ≤ (1− δ)λc

Anari, Liu and Oveis Gharan, 2020 nO(1/δ)

Chen, Liu and Vigoda, 2021 ∆O(∆2/δ) · n log n

This work, 2021 eO(1/δ) · n2 log n

Our follow-up work, 2022 eO(1/δ) · n log n

Chen and Eldan, 2022 eO(1/δ) · n log n

Results for general distributions µ over {−,+}V

• Influence matrix : Ψ(u, v) = |Prµ[v = + | u = +]− Prµ[v = + | u = −]|.
• Spectral independence (SI): for any conditional distribution induced by µ,

the spectral radius ρ(Ψ) ≤ C.

• Magnetising joint distribution with local fields ϕ = (ϕv)v∈V ∈ RV
>0:

(ϕ ∗ µ)(σ) ∝ µ(σ)
∏

v∈V :σv=+

ϕv.

• Complete SI: ∀ϕ ∈ (0, 1]V , (ϕ ∗ µ) is spectrally independent.

• Spectral gap: 1 − λ2, where λ2 is the second largest eigenvalue of the transition
matrix P of the Glauber dynamics on µ:

Tmix = O

(
1

λgap
log

1

µmin

)
, where µmin = min

σ∈Ω
µ(σ).

Boosting result for spectral gap of Glauber dynamics

For any C-completely SI distribution µ, any θ ∈ (0, 1)

λgap(µ) ≥
(
θ

2

)2C+7

λ∗gap(θ ∗ µ), where θv = θ for all v ∈ V.

•λgap(µ): the spectral gap of the Glauber dynamics on µ

•λ∗gap(θ ∗ µ): the minimum spectral gap of the Glauber dynamics on conditional
distributions induced by (θ ∗ µ).

Field dynamics

The Field dynamics
Boolean distribution µ over {−,+}V and parameter θ ∈ (0, 1).

Start from an arbitrary feasible state X ∈ Ω;
For each update step:

1. construct S by selecting each v ∈ V independently with probability

pv =

{
1 if Xv = −,
θ if Xv = +;

2. resample XS ∼ (θ ∗ µ)S(· | XV \S).

• Comparison lemma: λgap(µ) ≥ λField
gap (θ, µ)λ∗gap(θ ∗ µ).

• Mixing lemma: If µ is C-Completely SI, then λField
gap (θ, µ) ≥

(
θ
2

)2C+7
.


