Rapid mixing of Glauber dynamics via spectral independence for all degrees

Weiming Feng University of Edinburgh

Joint work with: Xiaoyu Chen (Nanjing University) Yitong Yin (Nanjing University) Xinyuan Zhang (Nanjing University)

FOCS 2021

Sampling, counting and phase transition

Boolean variables set *V*, weight function $w: \{-, +\}^V \to \mathbb{R}_{\geq 0}$ joint distribution $\mu: \forall X \in \{-, +\}^V, \ \mu(X) = \frac{w(X)}{Z}$ partition function $Z = \sum_{\{-, +\}^V} w(X)$

Sampling problem

Draw (approximate) random samples from distribution μ

Computational phase transition

computational complexity of sampling problem changes sharply around some parameters of μ

Hardcore gas model

- Graph G = (V, E): *n*-vertex and max degree Δ ;
- Fugacity parameter $\lambda \in \mathbb{R}_{\geq 0}$;
- Configuration $X \in \{-, +\}^V$
 - $X_v = +:$ vertex v is **occupied**
 - $X_v = -:$ vertex v is **unoccupied**
- $X \in \Omega$ if occupied vertices form an independent set
- Gibbs distribution μ :

 $\forall X \in \Omega, \qquad \mu(X) \propto w(X) = \lambda^{|X|_+}.$ $|X|_+ = number of occupied vertices (X_v = +)$

 $Z = 1 + 4\lambda + \lambda^2$

Computational phase transition

- $\lambda < \lambda_c$: poly-time algorithm for sampling[Weitzo6]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

• $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

Problem : *fixed parameter trackable* sampling algorithm for hardcore model *Let* $\delta > 0$ be an *arbitrary gap*. For any hardcore model with $\lambda \leq (1 - \delta)\lambda_c(\Delta)$, can we sample from Gibbs distribution in time $C(\delta) \cdot \text{poly}(n)$?

Glauber dynamics for hardcore model

Start from an arbitrary independent set X;
For each transition step do

- Pick a vertex *v* uniformly at random;
- If $X_u = -$ for all neighbors u then $X_v = \begin{cases} + & \text{w.p. } \lambda/(1+\lambda) \\ - & \text{w.p. } 1/(1+\lambda) \end{cases}$
- Else $X_v \leftarrow -$

Mixing time:
$$T_{\text{mix}} = \max_{X_0 \in \Omega} \min \left\{ t \mid d_{TV}(X_t, \mu) \le \frac{1}{4e} \right\}$$
,
 $d_{TV}(X_t, \mu)$: the *total variation distance* between X_t and μ .

Previous works $\lambda_c(\Delta) \approx \frac{e}{\Lambda}$				
	$\frac{2}{\Delta - 2} [LV]$	⁷ 99]	hard regime	
	$\frac{1}{\Delta - 1} \left[\text{Dob70} \right]$	special graph [EHŠVY16] general graph [ALO20,CLV20,CLV21]		
	Work	Condition	Mixing Time	
	Dobrushin 1970	$\lambda \leq \frac{1-\delta}{\Delta-1}$	$O\left(\frac{1}{\delta}n\log n\right)$	
	Luby, Vigoda 1999	$\lambda \leq \frac{2(1-\delta)}{\Delta - 2}$	$O\left(rac{1}{\delta}n\log n ight)$	
	Efthymiou <i>et al</i> 2016	$\lambda \leq (1 - \delta)\lambda_c(\Delta)$ $\Delta \geq \Delta_0(\delta), \text{ girth} \geq 7$	$O\left(\frac{1}{\delta}n\log n\right)$	
	Anari, Liu, Oveis Gharan 2020 improved by Chen, Liu, Vigoda 2020	$\lambda \leq (1 - \delta) \lambda_c(\Delta)$	$n^{O(1/\delta)}$	
	Chen, Liu, Vigoda 2021	$\lambda \leq (1 - \delta) \lambda_c(\Delta)$	$\Delta^{O(\Delta^2/\delta)} n \log n$	

Our results

Following results holds for all $\delta \in (0,1)$

Work	Condition	Mixing Time
Anari, Liu, Oveis Gharan <i>20</i> 20 Improved by Chen, Liu, Vigoda 2020	$\lambda \leq (1 - \delta) \lambda_c(\Delta)$	$n^{O(1/\delta)}$
Chen, Liu, Vigoda 2021	$\lambda \leq (1 - \delta) \lambda_c(\Delta)$	$\Delta^{O(\Delta^2/\delta)} n \log n$
Our Result	$\lambda \leq (1 - \delta) \lambda_c(\Delta)$	$\exp\left(O\left(rac{1}{\delta} ight) ight)\cdot n^2\log n$

Theorem (hardcore model) [this work]

For any $\delta \in (0,1)$, any hardcore model satisfying $\lambda \leq (1 - \delta)\lambda_c(\Delta)$

Glauber dynamics mixing time: $C(\delta) n^2 \log n$. (FPT w.r.t. δ)

Our results

Anti-ferro two-spin systems [this work]

For anti-ferro two-spin system that is up-to- Δ unique,

Glauber dynamics mixing time: $O(n^3)$.

Anti-ferro two-spin systems

- Hardcore model
- Ising model
- •

Joint distribution defined by external fields and local interactions

Results for general joint distributions A **boosting result** of **spectral gap** for **completely spectrally independent** distributions

Result for hardcore model: a corollary of general result

Spectral gap and mixing time

Transition matrix of Glauber dynamics : $P: \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 0}$

Eigenvalues : *P* has $|\Omega|$ non-negative real eigenvalues

 $1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|\Omega|} \geq 0$

Spectral gap $\lambda_{gap}(\mu) = 1 - \lambda_2$

$$T_{\min} = O\left(\frac{1}{\lambda_{gap}}\log\frac{1}{\mu_{\min}}\right), \qquad \mu_{\min} = \min_{\sigma \in \Omega} \mu(\sigma)$$

Influence matrix and spectral independence

μ: a distribution over $Ω ⊆ {-1, +1}^V$ |*V*|×|*V*| **influence matrix** $Ψ ∈ ℝ^{V × V}$ such that

$$\Psi(u,v) = \left| \Pr_{\mu} [v = + | u = +] - \Pr_{\mu} [v = + | u = -] \right|$$

influence on *v* caused by a **disagreement** on *u*

Influence matrix and spectral independence

For any subset $S \subseteq V$, any feasible $\sigma \in \{-1, +1\}^{V \setminus S}$

 μ^{σ}_{S} distribution on S conditional on σ

influence matrix $\Psi_s^{\sigma} \in \mathbb{R}^{S \times S}$ for conditional distribution

$$\Psi_{S}^{\sigma}(u,v) = \left| \Pr_{\mu_{S}^{\sigma}}[v=+|u=+] - \Pr_{\mu_{S}^{\sigma}}[v=+|u=-u] \right| = -\frac{1}{\mu_{S}^{\sigma}}[v=+|u=+|u=+]$$

Influence from *u* **to** *v* for **conditional distribution**

Spectral independence (SI) [ALO20, CGŠV21, FGYZ21]

There is a constant C > 0 s.t. for all conditional distribution μ_S^{σ} , spectral radius of influence matrices $\rho(\Psi_S^{\sigma}) \leq C$.

Complete spectral independence

Magnetizing joint distribution with local fields

Joint distribution μ over $\{-,+\}^V$, local fields $\phi = (\phi_v)_{v \in V} \in \mathbb{R}^V_{\geq 0}$

$$(\boldsymbol{\phi} * \boldsymbol{\mu})(\sigma) \propto \boldsymbol{\mu}(\sigma) \prod_{v \in V: \sigma_v = +} \phi_v$$

Hardcore model: $\mu(S) \propto \lambda^{|S|}$

Complete spectral independence

Complete Spectral independence [This work]

There is a constant C > 0 s.t. for all local fields $\phi \in (0,1]^V$ (for all $v \in V$, $0 < \phi_v \le 1$), $(\phi * \mu)$ is spectrally independent with parameter C

Example: hardcore model (G, λ) is **completely spectrally independent** if

any hardcore models $(G, (\lambda_v)_{v \in V})$ with $\lambda_v \leq \lambda$ are *spectrally independent*

Boosting result of spectral gap [This work]

If μ is *C*-completely spectrally independent, for any $\theta \in (0,1)$ $\lambda_{gap}(\mu) \ge \left(\frac{\theta}{2}\right)^{2C+7} \lambda_{gap}^*(\theta * \mu), \quad \theta_v = \theta$ for all $v \in V$ $\lambda_{gap}^*(\theta * \mu)$: minimum spectral gap of Glauber dynamics

 $(\boldsymbol{\theta} * \boldsymbol{\mu})$: minimum spectral gap of Glauber dynamics for all conditional distributions induced by $\boldsymbol{\theta} * \boldsymbol{\mu}$.

Boosting result of spectral gap [This work]

Boosting result of spectral gap [This work]

If
$$\mu$$
 is *C*-completely spectrally independent, for any $\theta \in (0,1)$
$$\lambda_{gap}(\mu) \ge \left(\frac{\theta}{2}\right)^{2C+7} \lambda_{gap}^*(\theta * \mu), \qquad \theta_{\nu} = \theta \text{ for all } \nu \in V$$

Application on hardcore model

Proof of boosting result

New Markov chain: *field dynamics*

Field Dynamics

Input: a distribution μ over $\{-1, +1\}^V$, a parameter $\theta \in (0,1)$ Start from an arbitrary feasible configuration $X \in \{-, +\}^V$ **For** each *t* from 1 to *T* **do**

• Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_{\nu} = \begin{cases} 1 & \text{if } X_{\nu} = -\\ \theta & \text{if } X_{\nu} = + \end{cases}$$

• Resample $X_S \sim (\boldsymbol{\theta} * \mu)_S (\cdot | X_{V \setminus S})$ conditional distribution induced from $(\boldsymbol{\theta} * \mu)$

Field Dynamics

Input: a distribution μ over $\{-1, +1\}^V$, a parameter $\theta \in (0,1)$ Start from an arbitrary feasible configuration $X \in \{-, +\}^V$ **For** each *t* from 1 to *T* **do**

• Construct $S \subseteq V$ be selecting each $v \in V$ independently with probability

$$p_{v} = \begin{cases} 1 & \text{if } X_{v} = -\\ \theta & \text{if } X_{v} = + \end{cases}$$

• Resample $X_S \sim (\boldsymbol{\theta} * \mu)_S (\cdot | X_{V \setminus S})$ conditional distribution induced from $(\boldsymbol{\theta} * \mu)$

Proposition (Field Dynamics): for any $\theta \in (0,1)$

The Field Dynamics $P_{FD}(\theta)$ is irreducible, aperiodic and reversible with respect to μ .

 $P_{FD}(\theta)$ has the unique stationary distribution μ .

Comparison lemma

Proved by

For any distribution μ over $\{-,+\}^V$ $\lambda_{gap}(\mu) \ge \lambda_{gap}^{Field}(\mu,\theta) \cdot \lambda_{gap}^*(\theta * \mu), \quad \theta_v = \theta$ for all $v \in V$

Mixing lemma of field dynamics

If μ is *C*-completely spectrally independent, for any $\theta \in (0,1)$ $\lambda_{gap}^{Field}(\mu, \theta) \ge \left(\frac{\theta}{2}\right)^{2C+7}$

Comparison lemma + Mixing lemma Boosting result $\lambda_{gap}(\mu) \ge \left(\frac{\theta}{2}\right)^{2C+7} \lambda_{gap}^*(\theta * \mu)$

Mixing of block dynamics [Chen, Liu and Vigoda 2021]

update of θ -fraction block dynamics

- sample θ fraction of variables *R* u.a.r.
- resample the value of *R* conditional on others

k-transformation [This work]

for any distribution π that is C-spectrally independent $\lambda_{gap}^{block}(\pi) \ge \theta^{O(C)}$

generate $Y \sim \mu_k$

- sample $X \sim \mu$;
- if X(u) = -, then $Y(u_i) = -$ for all $i \in [k]$
- if X(u) = +, then
 - sample $i \in [k]$ u.a.r.

•
$$Y(u_i) = +$$
 and $Y(u_j) = -$ for all $j \neq i$

Mixing of block dynamics [Chen, Liu and Vigoda 2021]

update of θ -fraction block dynamics

- sample θ fraction of variables *R* u.a.r.
- resample the value of *R* conditional on others

k-transformation [This work]

for any distribution π that is C-

spectrally independent

 $\lambda_{\text{gap}}^{\text{block}}(\pi) \ge \theta^{O(C)}$

Lemma I field dynamics on μ is the *limit instance* of block dynamics on μ_k

 $\lambda_{\text{gap}}^{\text{field}}(\mu, \theta) \ge \limsup_{k \to \infty} \lambda_{\text{gap}}^{\text{block}}(\mu_k)$

Lemma II mixing of block dynamics:

Lemma I + Lemma II Mixing of field dynamics $\lambda_{gap}^{field}(\mu, \theta) \ge \theta^{O(C)}$

Summary

- Optimal $\Omega(1/n)$ spectral gap for anti-ferro two-spin systems in the **uniqueness regime**
 - Example of applications: $O(n^2 \log n)$ mixing time for hardcore model
- A **boosting result** of spectral gap for completely spectrally independent distributions.
- A new Markov chain **field dynamics**
 - draw samples from target distribution
 - analyze Glauber dynamics

Open problem

- Prove the *optimal O*(*n* log *n*) mixing time for two spin systems in the uniqueness regime
 - *O*(*n*log *n*) mixing time for Ising model [CLV21,AJKPV21,CFYZ21]
 - $\tilde{O}(n)$ -time sampling algorithm for hardcore model [AJKPV21]
- Extend our technique to *general distributions* beyond the Boolean domain i.e. *q*-coloring