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The Problem

Instance: colour set [q] = {1,2, ..., q} and a hypergraph graph H = (V, E)
* number of verticesn = |V/|;

e each edge contains k vertices;

e each vertex belongs to at most A edges.

Colouring: X € [g]” s.t. no edge is monochromatic
Total number of colourings: Z

Uniform distribution over all colourings: u

Construction: find an arbitrary colouring

Sampling: draw approximate sample X s.t. [| X — ul|l;y < €
Randomised approximate counting: output Z s.t. Pr[(l —e)Z<Z<(1+ E)Z] > 2/3
Deterministic approximate counting: output Zst. (1 —€)Z <Z < (1+¢€)Z

Our Results and Related Works

Problem Work Condition Running Time
Construction Moser Tardos 2009 g = Ak poly(Ak)n
Sampling F. He, Yin 2021 ~
’ < A3/k 1.001
Randomised Counting Jain, Pham, Vuong 2021 q=A poly(Ak)0(n )
Moitra2016
Deterministic Counting = Guo, Liao, Lu, Zhang 2017 g = A7k nPoly(Ak)
Jain, Pham, Vuong 2021
L. : He, Yin, Wang 2022
’ ’ > A3/k poly(Ak)
Deterministic Counting F. Guo, Wang, Wang, Yin 2022 q=< A n
Hardness for Galanis, Guo, Wang 2022 < A%k -
Sampling and Counting ’ ’ 5 1~

Technical challenges for sampling and approximate counting

* MCMC cannot be used directly as solution space is disconnected [Frizez,Melsted 2009].

* Correlation decay method [Weitz06] can not be used directly as strong spatial mixing fails.

Projection Technique for Sampling

the set of g colours Projection from colours to buckets

5 EN N EXEN Il h:[q] = [s]
' ' ' : ber of buckets s ~ g%/3
- - - number of buckets s = g
= m— = » for each bucket b € [s]
Bucket #1 Bucket #2 Bucket # s

i@t =4 o [

the set of s buckets

Projected distribution 7t over the configurations of the buckets [s]"
h(X) — (h(Xv))UEV ~ ﬂ:;
 different colourings X, X' may be projected to the same state h(X) = h(X');

where X ~ u

‘ projection compresses space of colourings

* g is not a Gibbs distribution (distribution defined by local interactions).

Run the Systematic Scan on 7 to draw an approximate sample Y € [s]V

Start from a uniform random Y € [s]V

Foreacht from1toT = O(nlogn)
e Pick v € V with label t mod n
* Resample ¥, ~ 1y, (- |Ys\p)
ReturnY

Draw sample X ~ u conditionalon h(X) =Y

Properties of the above sampling algorithm

e Systematic scan on m is rapid mixing

the projection makes a substantial compression, so the projected space is well-connected.

 The algorithm can be implemented efficiently: fast sampling for conditional distributions of

the projection does not compress too much, so m is “similar” to a Gibbs distribution
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The Local Uniformity Property

If g = A3/% the projected distribution m satisfies forall v € V, all o € [s]V™

Vb € [s], n,(b|o) € (1 + 0 (%)) lh_;(b)l = (1 + 0 (%))%

Intuition: T is “similar” to a product distribution

information percolation
[Jain, Pham, Vuong, 2021]

[Iocal uniformity]
—

Sampling from the conditional distribution m,,(:| o), where v € V and o € [s]V ™7

[rapid mixing of systematic scanJ

 sample X ~ us.t. h(X,) = g, foru + v (X is a uniform list colouring)
* returnY, = h(X,)

Observation: for any e € E, if there exists u, v € e s.t. o, # o, then e can be removed

local uniformity property

each g, is an almost uniformly at random from |[s]
| ¥ 1\° 1
Pr[e is removed] ~ s (—) =0 (—2)
‘ S d
with high probability, size of component 1s O (logn)
sample list colouring via naive rejection sampling

Only sample list colouring in
the component containing v

Derandomisation Techinique for Counting

Step I: Jerrum-Valiant-Vazirani self-reduction

Z.
0000 GOOD Zy = q" and approx. each —=, where
o o (o) (o) L
o)
0000 6000 Z. = H{[elﬂ is not monochromatic]
GO Gl - GO —+ el

Remark: e; 1 € G;
Abstract problem: given G = (V,E), [q] and S € V with |S| = O(1), approx. distribution ug.

Step II: Sampling from ug via sampling from marginal distributions of

Input: S € V and the access to a random sample Y ~ m (query v € V and return Y,, € [s])
Output: a random sample Xs € [g]° from g

Use BFS to find components A s.t.

e SCA

* each component in A 1s monochromatic in Y
the BF'S only reveal local value Y,, around S

(OBRONON()

Use brute-force algorithm on the list colouring in
G [A] with colour lists h=1(Y,) to sample g

Step IlI: providing local access to huge random object via coupling towards the past

Systematic Scanon it
Fort = —ooto 0
* Pick the vertex v with label t mod n
* Sample arandomvaluer; ~ m;p
* Ifr, #1,thenletY, « r;
* Ifr, =1, then

Local Uniformity: Vo € [s]"77, ¢ € [s],
g (c) = pp ~ (1 -0(1/s))1/s

Ve € [s],mp(c) =prpand mpp(L) =1 —spip
(guess the value from local uniformity)

TV () — pug

 Compute nz"‘” by a local BFS Vc € [s], ngad’y"‘” (c) = 1= sp
° ~ pad’YV_v . . . . . N LB .
Yy <o ~my (sample from padding distribution if guess fails)

Coupling towards the past for sampling 7,
* Let (¥;)% be the systematic scanonw and Y, ~ 7
* Find the last time t < 0 s.t. v 1s picked
* Reveal the value of 1y ~ ;5
 Ifr, #1, thenreturnr;
e Ifry #1, then

e Compute nzt(

V-v) by a local BFS, access Y;(u) by using this algorithm recursively
pad»YV—v
4

return
find the last time before t s.t. u 1s updated, -
where Y; (u) is queried by the BFS - _ ifr, #1

t: last time updating v

* Returnps ~m

If ¢ = A3/%, with probability at least 1 — 1/poly(n)
the algorithm sample 1, p; for poly(Ak) logn times, and the running time is nPoly(Ak)

N\

Step IV: brute-force derandomisation by enumerating all possible values of 1 and p;
J




