Distributed Metropolis sampler
with optimal parallelism

Weiming Feng
Nanjing University

Joint work with: Thomas P. Hayes (University of New Mexico)
Yitong Yin (Nanjing University)

SODA 2021, Online

Sequential Metropolis chain (for graphical model)

_
I propose

.N

Metropolis chain for graph coloring

Input: a graph G = (V, E), a set of g-colors |q] = {1,2, ..., q}

Start from an arbitrary coloring X € [q]"

For each t from 1 to T do
Accept the proposed color

* pickanode v € V u.a.r.

O]
1 propose

.N

* propose a color ¢ € [g] u.a.r.
* if ¢ # X (u) for all neighbors u € N(v)
update X,, < ¢ (accept)

* otherwise, keep Xy unChanged (I‘Ej@Ct) Reject the proposed color

update one variable . .
cate one var EEE) | scquential algorithm
1n each iteration

Continuous-time Metropolis chain

PN A A A 4 .
N N N N

O : — —
> > A v A v J . 0.0

Poisson clock: each X; follows exponential distribution with mean 1.

The continuous-time Metropolis chain

Q
Start from an arbitrary proper coloring Y € [q]V
Each node has an i.i.d. Poisson clock

For t from 0 to T € R* continuously do

* whenever the clock at v € V rings, @
update Y, as in Metropolis chain

continuous-chain Y7 = discrete chain X N(T)

N(T) ~ Poisson(nT), where n = |V|

E— Yr = Xyr

Continuous-time Metropolis chain
[]

The continuous-time Metropolis sampler " improper
I
I

* —pasallel sequential process coloring

* updates resolved one-by-one according to Poisson clocks.
The algorithm 1n distributed system: m
* allow concurrent updates

e avoid race condition Concurrent updates may cause improper coloring

- = .

Problem: distributed Metropolis sampler

—
Jazthfully

\ /

same process

[Continuous

distributed simulation
Metropolis chain [

Distributed
Metropolis sampler

Message-passing model

Network: graph G = (V, E)

node: computer; i Qi I;Ii
edge: bidirectional channel. \ /
Local computation: free.
Synchronous rounds: all nodes

perform local computation;

exchange messages with neighbors.

Time complexity: the number of rounds. l;li ' l;li

our algorithm directly used asynchronous
event-driven procedure E—— message passing model

Problem & algorithm

Problem: simulate the continuous-time Metropolis chain (Y;)¢eg,, to time T
Input for node v : color set [q], initial color Y,(V) € [q] and time T

Output at node v : random color Y7 (v) € [q]

Phase-1 at node v € V (initialization) time complexity = one round
* Simulate Poisson clock to generate update times 0 < t{f < t3 < -+ < t;,fl(v) <T;

* Propose uniform random color ¢; € [q] for each update time t;

* Send Yy (v) and (t], ¢)1<i=m(v)With all neighbors u € N (v).

Phase-2 at node v € V (resolving updates)
Assumption: for all u € N(v), node v knows Yo (u) and (t;*, ¢;")1<i<mu)

For each i from 1 to m(v) do

resolve the update (t;, ¢/') according to some strategy

Warm-up: a straighttorward simulation

time 4

<- AcceE <- Acc@
‘@ O O O

V1 [%7) (%] Uy

[AH neighbors N (V) resolved} ' Node v resolves : [Node v broadcasts J

updates before time t updates at time ¢t new color to neighbors

Warm-up: a straighttorward simulation

time 4
T

— []

[]]

my color 1s blue my color 1s red
—@ O O O
V1 [%7) (%] Uy
All neighbors N (v) resolved ' Node v resolves : Node v broadcasts
updates before time t updates at time ¢t new color to neighbors

Warm-up: a straighttorward simulation

time 4

T

l<- Rej ea <- Acc@

'@ O O O

V1 [%7) (%] Uy

[AH neighbors N (V) resolved} ' Node v resolves — [Node v broadcasts J

updates before time t updates at time t new color to neighbors

Warm-up: a straighttorward simulation

time 4

T

—]

< my color is red my color 1s green
T 4

0

—@ O @ O

V1 [/ U3 Uy

All neighbors N (v) resolved ' Node v resolves ' Node v broadcasts
updates before time t updates at time t new color to neighbors

resolve update at time ¢
wait

- NOT allow adjacent nodes

, _ resolve updates in the same round
neighbors resolve updates at time < ¢

time 4 update an independent set in each round!

! @ Round 3 >

— T 1 Round 2 !>>
<- Round 1 D
'@ O O O
V4 [%2) [%:! Uy

Proposition (for any single-site dynamics)

The straightforward simulation has cost O (AT + logn) w.h.p.

A =max degree, slow in dense graphs

Our technique: resolve update 1n advance

time 4
T
Reject ! Accept ! —
S P®] ®®
]
™z] -
\~::.~ must be blue) ‘,;’—," ‘~~::€~1'E}i€1’ red or blue
\\\ S~ ~~* “—’ —}},; \\\ ~~~~~
\\\ ’/ \\\ -
~q -’ .
'@ @ ® e
vl vz v3 v4
current color: blue current color: blue

proposed color: blue proposed color: red

Our technique: resolve update 1n advance

Phase-2 at node v € V/:
* For each [from 1 to m,, do
» Listen to each channel and receive messages from neighbors.

> If v gets enough information
* resolve the update (t;, ¢;);
* pass “Accept” or “Reject” to all neighbors.

Resolve update in advance:

Resolve update at time t before neighbors resolve all updates at time < t.

Resolve update in advance (coloring)

Resolution of the update (t,¢) at node v € V

For each neighbor u € N (v), maintain set N

u = set of possible colors for U at time t T KSR S -

Uponc & S, forallu € N(v)

Resolve update, pass “Accept” to all neighbors
Us
Upon S, = {c} for some u € N(v) current
Resolve update, pass “Reject” to all neighbors coloring
Upon receiving messages from neighbors u € N (v) S, = (R B) s, =(G) S, = (1,6

Update the set Sy;

Main results

Theorem [This work] if ¢ = CA (A = max degree) for some constant C > 0,

w.h.p. simulate continuous-time Metropolis chain to time T within O(T + logn) rounds.

Corollary [This work] if ¢ = CA for some constant C > 0,

w.h.p. simulate discrete-time Metropolis chain for M steps within O (% + log n) rounds.

M= Q(nlogn)) O (%) cost (factor (n) speed-up)

general lower bound for mixing

[Hayes and Sinclair 05] optimal speed-up

General Metropolis chain

Graphical model in G = (V, E) with Gibbs distribution y

* node: random variable in [q]; edge: pairwise interaction;

* examples: uniform proper coloring, hardcore model, Ising model...

Metropolis update for graphical model with current configuration Y € [q]”
When the Poisson clock at node v € V rings, let ¢ = Y,;

* Propose a random value ¢’ ~ TT,,;

* With prob. Py, = fC”’C,(YN(v)), accept;

* With prob. Prp = 1 — ¥ _(Ynw)), reject.

Proposal distribution at v: 1, over [q]; Coloring

Metropolis filter at v with current value ¢ and proposal c': v _ /
) O s 0 floo(w) = | | 1= nl
fc—)c" q)) uEN(v)

Metropolis update for graphical model with current configuration Y € [q]”
When the Poisson clock at node v € V rings, let ¢ = X;
* Sample a random real number f§ € [0,1] uniformly at random;

* Propose a random value ¢’ ~ V,;

* Compute threshold f Cv_)C/(XN(v));
If B < f,(Xnew)), accept;
If > f, o (Xnw)), reject.

p ~u [0,1]

0 1
\ J

A
Y Y

Pac=flo(Xnw) Pre=1—f1(Xnw)

Resolve update in advance (general)

Node v € V resolves the update (t, ¢) before the Ye (N (v)) is known

S g areretan

Set of possible configurations on N (V)

Su; ={R, B} Sy, ={G} Sy, =1/, G} C =Quenw) Su
[!
- i — 1 pmin piin. min prob. for accept and reject
poin unkrIown pmin - P =minf?, /(0),

o€C
Resolve update in advance 1f _
Pmln

ﬁ < P/{%inor ﬁ >1— P}reré'ln RE — rglelg(l _fcv—>cl (O-))

Main result

Theorem [this work]

It all Metropolis filters satisty a Lipschitz condition,

w.h.p. simulate continuous-Metropolis chain to time T with cost O(T + logn).

O-u

:y

=

Letany (u,v) € Eand a, b, c,c’ € [q]

5u,a,bfcv—>CI — n;%)(lfcv_w’ (o) — fcv—>c’ (T)|

where 0, = a,7, = b and 0y, = T}, forallw € N(v)\{u}.

1~

Tu—b

~
N

Lipschitz condition:
There is a constant C such that for any (u,v) € E and a, b, ¢, ¢’ € [q]

[Ec’~7rv [6u,a,b c—c’] C/A

Main theorem

Lipschitz condition

Uniqueness condition

q-coloring q > CA q>A
C (A-1D41 e
Hardcore — y) ~ —
e A<3 STa-—22 ~a
. C 2
Ising 1 —exp(—2|B]) < x 1 —exp(—2|B]) < 0

C > 0 is an arbitrary constant

The Metropolis chain can be szmulated efficiently even if it is slow mixing.

Correctness of simulation

/

Our simulation algorithm

(?t)tE[O,T]

\

Perfect Cone |
COupling ontinuous-time

_ Metropolis chain (Y)¢ero 11

Theorem of correctness

The simulation algorithm will terminate eventually,

(Yt)te[o,T] and (Y;)e[o] are the same process.

FEftficiency ot simulation

Resolution of the k-th update at node v € V

Self-triggered resolution Neighborhood-triggered resolution
node v — node v neighbor u € N(v) | pass message node v
resolves (v, k — 1) resolves (v, k) resolves (U, j)) | rcsolves (v, k)

'\ unique predecessor _/

for update (v, k)

Dependency chain

trigger . . :
(o, ko = 1) ey (V1, K1) mg_ger, (2, k2) mg_ger, (v3, k3) tng_ger, (Ve, ky)

time complexity < length of the longest dependence chain + O(1)

Proof idea: long dependence chain appears with low probability.

Fix a path P = vy, V4, ..., Vp of length £, where v;11 € N(v;) U {v;}.
Event &: there is a dependency chain of length € alone P,

i.e. there is a dependency chain (v;, ki)1<i<¢-

P R
Lipschitz condition pr[g] < (i) X (£>
. ‘ 4 A
with constant C R: numb neighborhood—trigTred resolutions

update times alone the chain are increasing . .
Updates alone the chain are triggered one by one

randomness of proposals & Metropolis filters

randomness of Poisson clocks

@ the power of resolving update in advance

union bound Main Theorem: For Metropolis chain with Lipschitz condition
over all paths

— with high probability, the costis O(T + logn).

Summary

A distributed algorithm that faithfully simulates continuous Metropolis chain to time T s.t.
* w.h.p., the cost of simulation is O (AT + logn);

* if a Lipschitz condition is satisfied, w.h.p., the cost of simulation is O(T + logn).

A new technique: resolve update in advance.

Open problems

Simulate the general single-site dynamics beyond the Metropolis chain

* Gibbs sampling (conditional update rule)

* Coloring: update Y,, as a uniform color in [q] \ {Y,, | u € N(v)}.

* New technique to resolve the conditional updates.

Thank you!

