Distributed Metropolis sampler with optimal parallelism

Weiming Feng Nanjing University

Joint work with: Thomas P. Hayes (University of New Mexico)
Yitong Yin (Nanjing University)

SODA 2021, Online

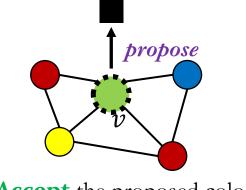
Sequential Metropolis chain (for graphical model)

Metropolis chain for graph coloring

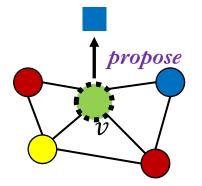
Input: a graph G = (V, E), a set of q-colors $[q] = \{1, 2, ..., q\}$ Start from an arbitrary coloring $X \in [q]^V$

For each t from 1 to T do

- pick a node $v \in V$ u.a.r.
- **propose** a color $c \in [q]$ u.a.r.
- if $c \neq X(u)$ for all neighbors $u \in N(v)$ update $X_v \leftarrow c$ (accept)
- otherwise, keep X_v unchanged (reject)



Accept the proposed color

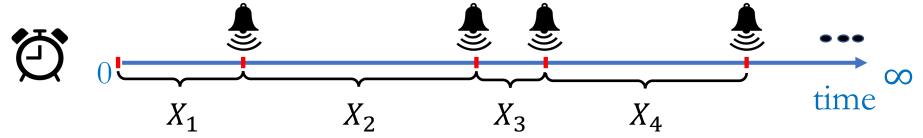


Reject the proposed color

update **one variable** in each iteration

sequential algorithm

Continuous-time Metropolis chain



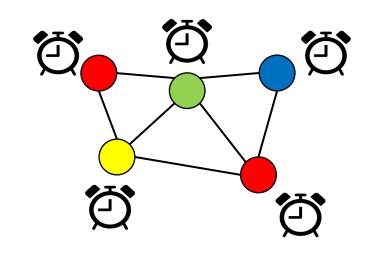
Poisson clock: each X_i follows *exponential distribution* with mean 1.

The continuous-time Metropolis chain

Start from an arbitrary proper coloring $Y \in [q]^V$ Each node has an **i.i.d. Poisson clock**

For t from 0 to $T \in \mathbb{R}^+$ continuously do

• whenever the clock at $v \in V$ rings, update Y_v as in Metropolis chain



continuous-chain
$$Y_T$$
 = discrete chain $X_{N(T)}$
 $N(T) \sim \text{Poisson}(nT)$, where $n = |V|$

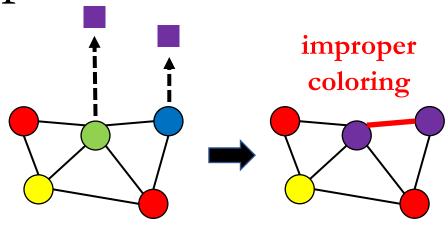
Continuous-time Metropolis chain

The continuous-time Metropolis sampler

- parallel sequential process
- updates resolved *one-by-one* according to Poisson clocks.

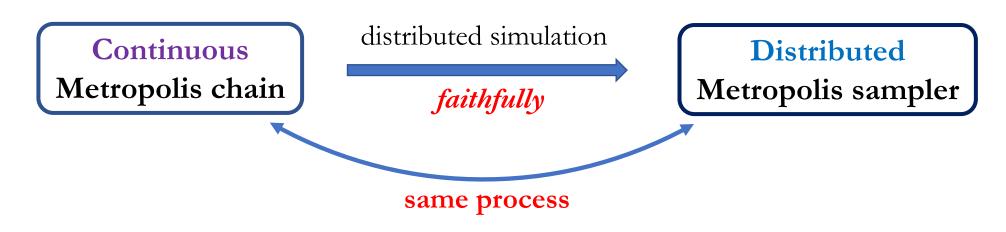
The algorithm in distributed system:

- allow <u>concurrent updates</u>
- avoid <u>race condition</u>



Concurrent updates may cause improper coloring

Problem: distributed Metropolis sampler



Message-passing model

Network: graph G = (V, E)

node: computer;

edge: bidirectional channel.

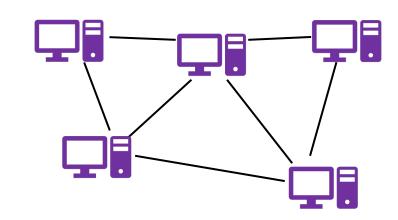
Local computation: free.

Synchronous rounds: all nodes

perform local computation;

exchange messages with neighbors.

Time complexity: the number of rounds.



our algorithm

event-driven procedure

directly used

asynchronous

message passing model

Problem & algorithm

Problem: simulate the continuous-time Metropolis chain $(Y_t)_{t \in \mathbb{R}_{\geq 0}}$ to time T

Input for node v: color set [q], initial color $Y_0(v) \in [q]$ and time T

Output at node v: random color $Y_T(v) \in [q]$

Phase-1 at node $v \in V$ (initialization)

time complexity = one round

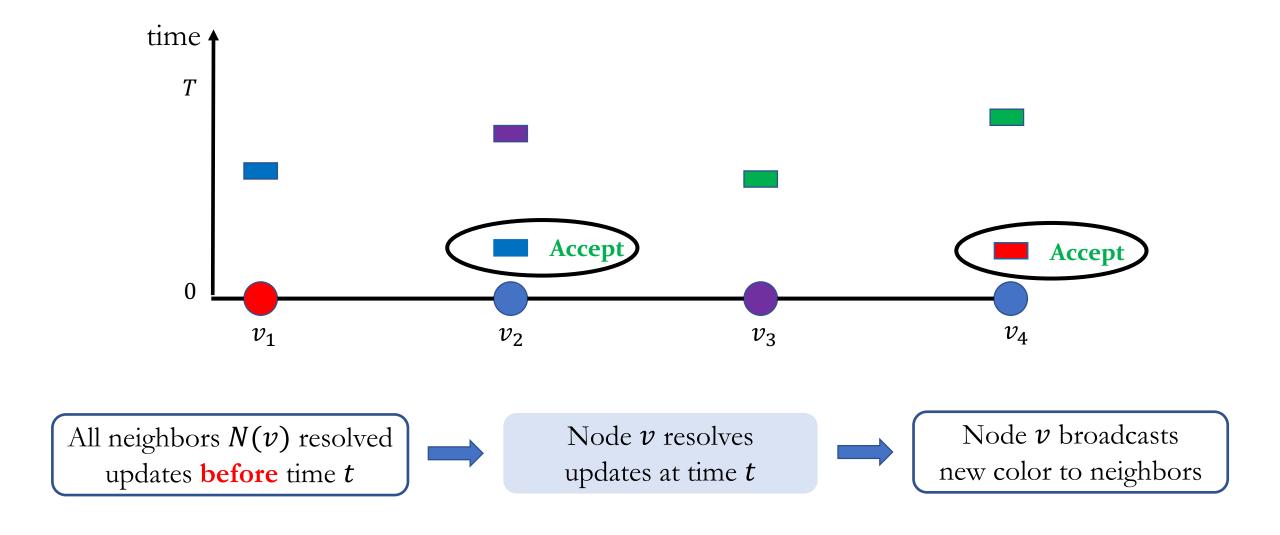
- Simulate Poisson clock to generate update times $0 < t_1^v < t_2^v < \dots < t_{m(v)}^v < T$;
- Propose uniform random color $c_i^v \in [q]$ for each update time t_i^v
- Send $Y_0(v)$ and $(t_i^v, c_i^v)_{1 \le i \le m(v)}$ with all neighbors $u \in N(v)$.

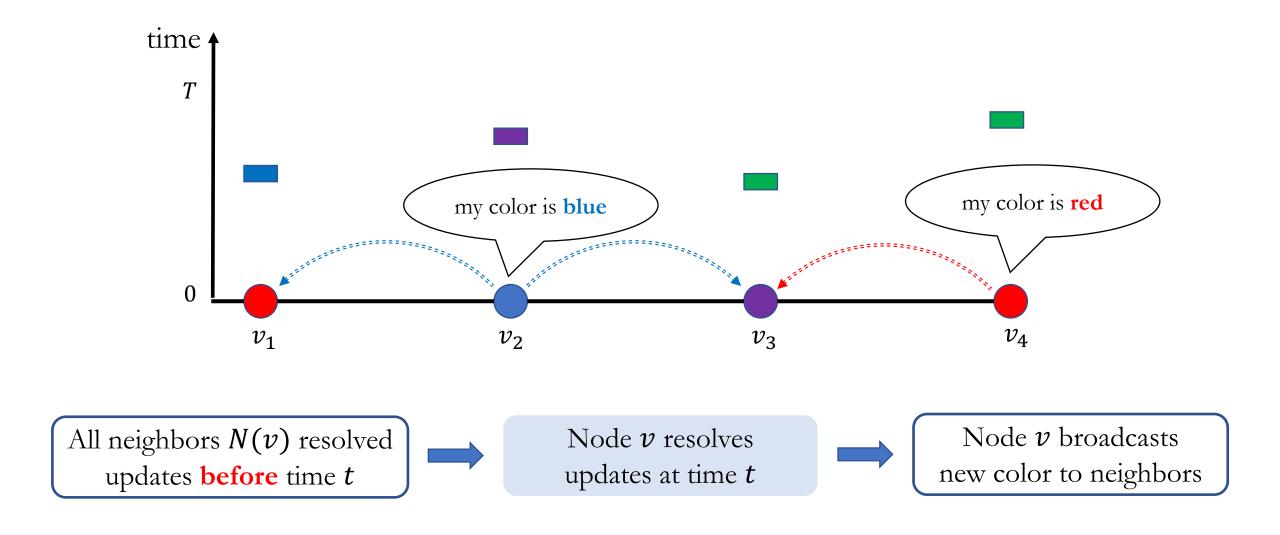
Phase-2 at node $v \in V$ (resolving updates)

Assumption: for all $u \in N(v)$, node v knows $Y_0(u)$ and $(t_i^u, c_i^u)_{1 \le i \le m(u)}$

For each i from 1 to m(v) do

resolve the update (t_i^v, c_i^v) according to some strategy





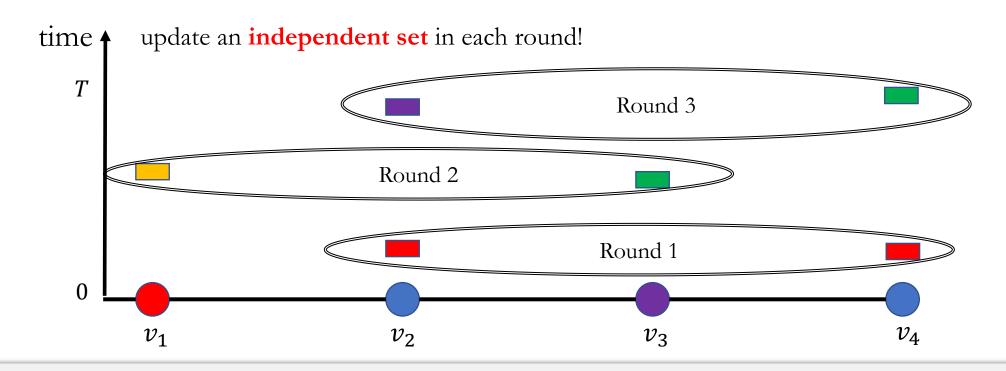




resolve update at time t

NOT allow adjacent nodes resolve updates in the same round

neighbors resolve updates at time < t

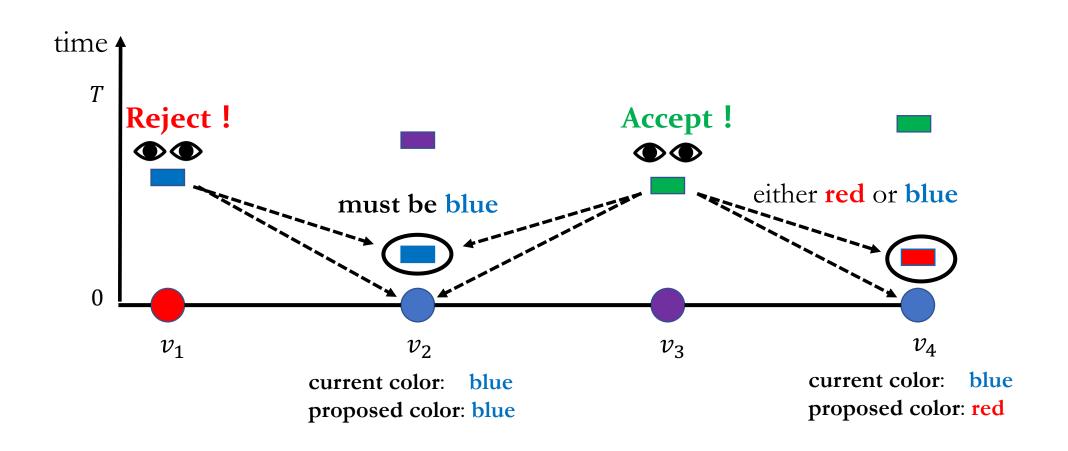


Proposition (for any single-site dynamics)

The straightforward simulation has cost $O(\Delta T + \log n)$ w.h.p.

 Δ =max degree, slow in dense graphs

Our technique: resolve update in advance



Our technique: resolve update in advance

Phase-2 at node $v \in V$:

- For each i from 1 to m_v do
 - Listen to each channel and receive messages from neighbors.
 - \triangleright If v gets enough information
 - resolve the update (t_i^v, c_i^v) ;
 - pass "Accept" or "Reject" to all neighbors.

Resolve update in advance:

Resolve update at time t before neighbors resolve all updates at time < t.

Resolve update in advance (coloring)

Resolution of the update (t, c) at node $v \in V$

For each neighbor $u \in N(v)$, maintain set $S_u = \text{set of } possible colors for } u$ at time t

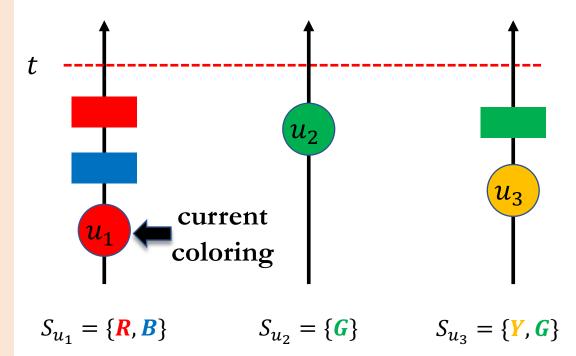
Upon $c \notin S_u$ for all $u \in N(v)$

Resolve update, pass "Accept" to all neighbors

Upon $S_u = \{c\}$ for some $u \in N(v)$

Resolve update, pass "Reject" to all neighbors

Upon receiving messages from neighbors $u \in N(v)$ Update the set S_u ;



Main results

Theorem [This work] if $q \ge C\Delta$ ($\Delta = \max$ degree) for some constant C > 0, w.h.p. simulate continuous-time Metropolis chain to time T within $O(T + \log n)$ rounds.

Corollary [This work] if $q \ge C\Delta$ for some constant C > 0, w.h.p. simulate discrete-time Metropolis chain for M steps within $O\left(\frac{M}{n} + \log n\right)$ rounds.

$$M = \Omega(n \log n)$$
 $O\left(\frac{M}{n}\right) \cos t \text{ (factor } \Omega(n) \text{ speed-up)}$
general lower bound for mixing
[Hayes and Sinclair 05] optimal speed-up

General Metropolis chain

Graphical model in G = (V, E) with Gibbs distribution μ

- node: random variable in [q]; edge: pairwise interaction;
- examples: uniform proper coloring, hardcore model, Ising model...

Metropolis update for graphical model with current configuration $Y \in [q]^V$

When the Poisson clock at node $v \in V$ rings, let $c = Y_v$;

- **Propose** a random value $c' \sim \pi_v$;
- With prob. $P_{AC} = f_{c,c'}^{v}(Y_{N(v)})$, accept;
- With prob. $P_{RE} = 1 f_{c \to c'}^{v}(Y_{N(v)})$, reject.

Proposal distribution at v: π_v over [q];

Metropolis filter at v with current value c and proposal c':

$$f_{c \to c'}^{v} : [q]^{N(v)} \to [0,1];$$

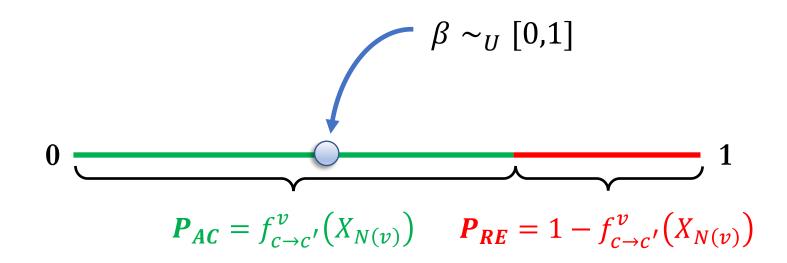
Coloring

$$f_{c \to c'}^{v} (Y_{N(v)}) = \prod_{u \in N(v)} \mathbf{1}[c' \neq Y_u]$$

Metropolis update for graphical model with current configuration $Y \in [q]^V$

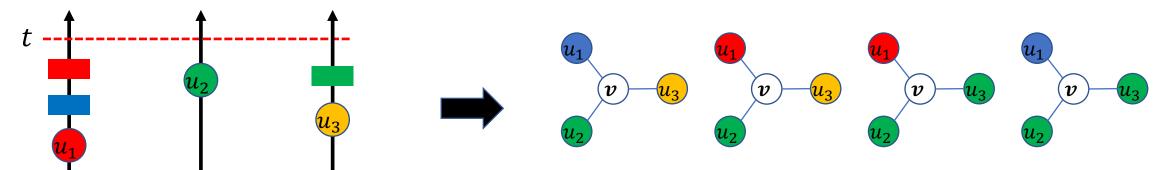
When the Poisson clock at node $v \in V$ rings, let $c = X_v$;

- Sample a random real number $\beta \in [0,1]$ uniformly at random;
- **Propose** a random value $c' \sim v_v$;
- Compute threshold $f_{c \to c'}^{v}(X_{N(v)})$;
- If $\beta < f_{c \to c'}^{v}(X_{N(v)})$, accept;
- If $\beta \geq f_{c \to c'}^{v}(X_{N(v)})$, reject.

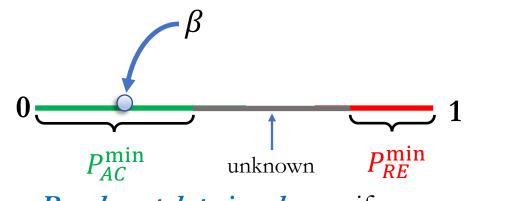


Resolve update in advance (general)

Node $v \in V$ resolves the update (t,c) before the $Y_t(N(v))$ is known



$$S_{u_1} = \{ {\it I\!R}, {\it I\!B} \} \ S_{u_2} = \{ {\it I\!G} \} \ S_{u_3} = \{ {\it I\!Y}, {\it I\!G} \}$$



Resolve update in advance if $\beta < P_{AC}^{\min}$ or $\beta \ge 1 - P_{RE}^{\min}$

$$\mathcal{C} = \bigotimes_{u \in N(v)} S_u$$

 P_{AC}^{\min} , P_{RE}^{\min} : min prob. for accept and reject

$$P_{AC}^{\min} = \min_{\sigma \in \mathcal{C}} f_{c \to c'}^{v}(\sigma),$$

$$P_{RE}^{\min} = \min_{\sigma \in \mathcal{C}} (1 - f_{c \to c'}^{v}(\sigma))$$

Main result

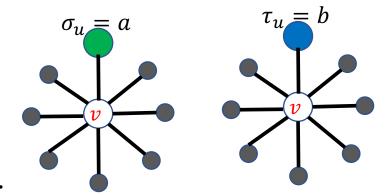
Theorem [this work]

If all Metropolis filters satisfy a Lipschitz condition, w.h.p. simulate continuous-Metropolis chain to time T with cost $O(T + \log n)$.

Let any $(u, v) \in E$ and $a, b, c, c' \in [q]$

$$\delta_{u,a,b} f_{c \to c'}^{v} = \max_{\sigma,\tau} \left| f_{c \to c'}^{v}(\sigma) - f_{c \to c'}^{v}(\tau) \right|$$

where $\sigma_u = a$, $\tau_u = b$ and $\sigma_w = \tau_w$ for all $w \in N(v) \setminus \{u\}$.



Lipschitz condition:

There is a constant C such that for any $(u, v) \in E$ and $a, b, c, c' \in [q]$ $\mathbb{E}_{c' \sim \pi_v} \left[\delta_{u,a,b} f_{c \to c'}^v \right] \leq C/\Delta$

Main theorem

Models	Lipschitz condition	Uniqueness condition
q-coloring	$q > C\Delta$	$q > \Delta$
Hardcore	$\lambda < \frac{C}{\Delta}$	$\lambda < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$
Ising	$1 - \exp(-2 \beta) < \frac{C}{\Delta}$	$1 - \exp(-2 \beta) < \frac{2}{\Delta}$

C > 0 is an arbitrary constant

The Metropolis chain can be *simulated efficiently* even if it is *slow mixing*.

Correctness of simulation

Our simulation algorithm $(\hat{Y}_t)_{t \in [0,T]}$

Perfect Coupling

Continuous-time Metropolis chain $(Y_t)_{t \in [0,T]}$

Theorem of correctness

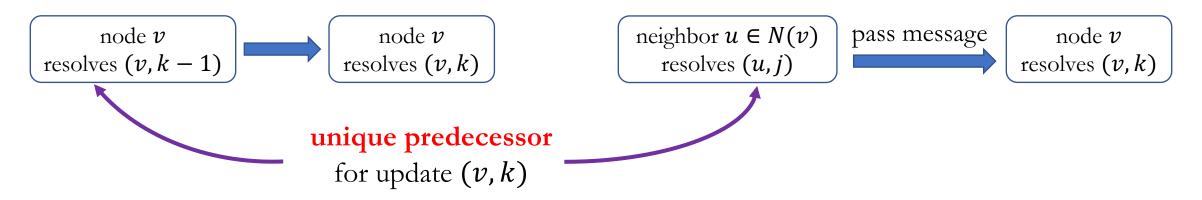
The simulation algorithm will **terminate eventually**, $(\hat{Y}_t)_{t \in [0,T]}$ and $(Y_t)_{t \in [0,T]}$ are the **same process**.

Efficiency of simulation

Resolution of the k-th update at node $v \in V$

Self-triggered resolution

Neighborhood-triggered resolution



Dependency chain

$$(v_0, k_0 = 1)$$
 $\xrightarrow{\text{trigger}}$ (v_1, k_1) $\xrightarrow{\text{trigger}}$ (v_2, k_2) $\xrightarrow{\text{trigger}}$ (v_3, k_3) $\xrightarrow{\text{trigger}}$ (v_ℓ, k_ℓ)

time complexity \leq length of the longest dependence chain + 0(1)

Proof idea: long dependence chain appears with low probability.

Fix a path $P = v_0, v_1, ..., v_\ell$ of length ℓ , where $v_{i+1} \in N(v_i) \cup \{v_i\}$.

Event \mathcal{E} : there is a dependency chain of length ℓ alone P,

i.e. there is a dependency chain $(v_i, k_i)_{1 \le i \le \ell}$.

Lipschitz condition with constant *C*

$$\Pr[\mathcal{E}] \le \left(\frac{eT}{\ell}\right)^{\ell} \times \left(\frac{2C}{\Delta}\right)^{R}$$

R: number of neighborhood-triggered resolutions

update times alone the chain are increasing randomness of Poisson clocks

Updates alone the chain are triggered one by one randomness of proposals & Metropolis filters

the power of resolving update in advance

union bound over all paths

Main Theorem: For Metropolis chain with **Lipschitz condition** with high probability, the cost is $O(T + \log n)$.

Summary

A distributed algorithm that faithfully simulates continuous Metropolis chain to time T s.t.

- w.h.p., the cost of simulation is $O(\Delta T + \log n)$;
- if a Lipschitz condition is satisfied, w.h.p., the cost of simulation is $O(T + \log n)$.

A new technique: resolve update in advance.

Open problems

Simulate the general single-site dynamics beyond the Metropolis chain

- Gibbs sampling (conditional update rule)
 - Coloring: update Y_v as a uniform color in $[q] \setminus \{Y_u \mid u \in N(v)\}$.
- New technique to resolve the conditional updates.

Thank you!