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Sequential Metropolis chain (for graphical model)
Metropolis chain for graph coloring
Input: a graph 𝐺 = (𝑉, 𝐸), a set of  𝑞-colors 𝑞 = 1,2, … , 𝑞
Start from an arbitrary coloring 𝑋 ∈ 𝑞 !

For each 𝑡 from 1 to 𝑇 do
• pick a node 𝑣 ∈ 𝑉 u.a.r.

• propose a color 𝑐 ∈ [𝑞] u.a.r.

• if 𝑐 ≠ 𝑋(𝑢) for all neighbors 𝑢 ∈ 𝑁 𝑣
update 𝑋" ← 𝑐 (accept)

• otherwise, keep 𝑋" unchanged (reject)

propose

Accept the proposed color

propose

Reject the proposed color

𝑣

𝑣

update one variable 
in each iteration sequential algorithm



Continuous-time Metropolis chain 

The continuous-time Metropolis chain

Start from an arbitrary proper coloring 𝑌 ∈ 𝑞 !

Each node has an i.i.d. Poisson clock
For 𝑡 from 0 to 𝑇 ∈ ℝ" continuously do
• whenever the clock at 𝒗 ∈ 𝑽 rings, 

update 𝑌# as in Metropolis chain 

Poisson clock: each 𝑋$ follows exponential distribution with mean 1.

0
𝑋! 𝑋"𝑋# 𝑋$

time∞

continuous-chain 𝑌! = discrete chain 𝑋%(')
𝑵 𝑻 ∼ 𝐏𝐨𝐢𝐬𝐬𝐨𝐧 𝒏𝑻 , where 𝒏 = |𝑽|

𝑌! ≈ 𝑋"!



Continuous-time Metropolis chain 
The continuous-time Metropolis sampler
• parallel sequential process
• updates resolved one-by-one according to Poisson clocks.

The algorithm in distributed system:
• allow concurrent updates
• avoid race condition  

improper 
coloring

Concurrent updates may cause improper coloring

Continuous
Metropolis chain

distributed simulation

faithfully

Distributed 
Metropolis sampler

Problem: distributed Metropolis sampler

same process



Message-passing model
Network: graph 𝐺 = (𝑉, 𝐸)

node: computer;
edge: bidirectional channel.

Local computation: free.

Synchronous rounds: all nodes
perform local computation;
exchange messages with neighbors.

Time complexity: the number of  rounds.

our algorithm
event-driven procedure

asynchronous 
message passing model

directly used



Problem & algorithm

Phase-1 at node 𝒗 ∈ 𝑽 (initialization) 
• Simulate Poisson clock to generate update times 0 < 𝑡!" < 𝑡#" < ⋯ < 𝑡$ "

" < 𝑇;
• Propose uniform random color 𝑐%" ∈ [𝑞] for each update time 𝑡%"

• Send 𝑌&(𝑣) and 𝑡%" , 𝑐%" !'%'$(")with all neighbors 𝑢 ∈ 𝑁(𝑣).

Phase-2 at node 𝒗 ∈ 𝑽 (resolving updates)
Assumption: for all 𝑢 ∈ 𝑁(𝑣), node v knows 𝑌&(𝑢) and 𝑡%*, 𝑐%* !'%'$(*)

For each 𝑖 from 1 to 𝑚(𝑣) do
resolve the update (𝑡$# , 𝑐$#) according to some strategy 

time complexity  = one round

Problem: simulate the continuous-time Metropolis chain 𝑌) )∈ℝ!" to time 𝑇

Input for node 𝑣 : color set [𝑞], initial color 𝑌,(𝑣) ∈ [𝑞] and time 𝑇

Output at node 𝑣 : random color 𝑌' 𝑣 ∈ [𝑞]



Warm-up: a straightforward simulation

time

𝑇

0
AcceptAccept

𝑣! 𝑣# 𝑣+𝑣,

All neighbors 𝑁(𝑣) resolved 
updates before time 𝑡

Node 𝑣 resolves 
updates at time 𝑡

Node 𝑣 broadcasts
new color to neighbors



Warm-up: a straightforward simulation

time

𝑇

0

my color is blue my color is red

𝑣! 𝑣# 𝑣+𝑣,

All neighbors 𝑁(𝑣) resolved 
updates before time 𝑡

Node 𝑣 resolves 
updates at time 𝑡

Node 𝑣 broadcasts
new color to neighbors



Warm-up: a straightforward simulation

time

𝑇

0

Reject Accept

𝑣! 𝑣# 𝑣+𝑣,

All neighbors 𝑁(𝑣) resolved 
updates before time 𝑡

Node 𝑣 resolves 
updates at time 𝑡

Node 𝑣 broadcasts
new color to neighbors



Warm-up: a straightforward simulation

time

𝑇

0

my color is red my color is green

𝑣! 𝑣# 𝑣+𝑣,

All neighbors 𝑁(𝑣) resolved 
updates before time 𝑡

Node 𝑣 resolves 
updates at time 𝑡

Node 𝑣 broadcasts
new color to neighbors



time

𝑇

0

𝑣! 𝑣# 𝑣+𝑣,

resolve update at time 𝑡
wait

neighbors resolve updates at time < 𝑡

Proposition (for any single-site dynamics)

The straightforward simulation has cost 𝑂(Δ𝑇 + log 𝑛) w.h.p.

Δ =max degree, slow in dense graphs

Round 1

Round 2

Round 3

update an independent set in each round!

NOT allow adjacent nodes
resolve updates in the same round



Our technique: resolve update in advance

time

𝑇

0

either red or blue

current color:    blue
proposed color: red

current color:    blue
proposed color: blue

𝑣! 𝑣# 𝑣+𝑣,

must be blue

Reject！ Accept！



Our technique: resolve update in advance

Phase-2 at node 𝒗 ∈ 𝑽:
• For each 𝑖 from 1 to 𝑚' do
Ø Listen to each channel and receive messages from neighbors.
Ø If 𝑣 gets enough information

• resolve the update (𝑡(' , 𝑐(');
• pass “Accept” or “Reject” to all neighbors.

Resolve update in advance:

Resolve update at time 𝑡 before neighbors resolve all updates at time < 𝑡. 



Resolve update in advance (coloring)

Resolution of  the update (𝒕, 𝒄) at node 𝒗 ∈ 𝑽

For each neighbor 𝑢 ∈ 𝑁(𝑣), maintain set
𝑆- = set of  possible colors for 𝑢 at time 𝑡

Upon 𝒄 ∉ 𝑺𝒖 for all 𝒖 ∈ 𝑵(𝒗)
Resolve update, pass “Accept” to all neighbors

Upon 𝑺𝒖 = {𝒄} for some 𝒖 ∈ 𝑵(𝒗)
Resolve update, pass “Reject” to all neighbors 

Upon receiving messages from neighbors 𝑢 ∈ 𝑁(𝑣)
Update the set 𝑆-;

𝑢.

𝑡

𝑢/

𝑢0

𝑆#! = {𝑹,𝑩} 𝑆#" = {𝑮} 𝑆## = {𝒀, 𝑮}

current
coloring



Main results

Theorem [This work]  if 𝑞 ≥ 𝐶Δ ( Δ = max degree ) for some constant 𝐶 > 0,

w.h.p. simulate continuous-time Metropolis chain to time 𝑇 within 𝑂(𝑇 + log 𝑛) rounds. 

Corollary [This work]  if 𝑞 ≥ 𝐶Δ for some constant 𝐶 > 0,

w.h.p. simulate discrete-time Metropolis chain for 𝑀 steps within 𝑂 1
2
+ log 𝑛 rounds.

𝑴 = 𝛀(𝒏 𝐥𝐨𝐠𝒏) 𝑶 𝑴
𝒏

cost (factor 𝛀(𝒏) speed-up) 

general lower bound for mixing
[Hayes and Sinclair 05] optimal speed-up



General Metropolis chain
Graphical model in 𝐺 = (𝑉, 𝐸) with Gibbs distribution 𝜇
• node: random variable in 𝑞 ;  edge: pairwise interaction;
• examples: uniform proper coloring, hardcore model, Ising model…

Metropolis update for graphical model with current configuration 𝑌 ∈ 𝑞 !

When the Poisson clock at node 𝑣 ∈ 𝑉 rings, let 𝑐 = 𝑌#;
• Propose a random value 𝑐3 ∼ 𝝅𝒗;

• With prob. 𝑃56 = 𝑓7,7$
# 𝑌% # ,  accept; 

• With prob. 𝑃9: = 1 − 𝑓7→7$
# 𝑌% # , reject.

Proposal distribution at 𝑣:  𝜋# over 𝑞 ; 
Metropolis filter at 𝑣 with current value 𝑐 and proposal 𝑐′:

𝑓7→7$
# : 𝑞 %(#) → 0,1 ;

Coloring

𝑓/→/!
" 𝑌1 " = -

*∈1(")

𝟏[𝑐′ ≠ 𝑌*]



Metropolis update for graphical model with current configuration 𝑌 ∈ 𝑞 !

When the Poisson clock at node 𝑣 ∈ 𝑉 rings, let 𝑐 = 𝑋#;
• Sample a random real number 𝛽 ∈ [0,1] uniformly at random;
• Propose a random value 𝑐3 ∼ 𝝂𝒗;

• Compute threshold 𝑓7→7$
# 𝑋% # ;

• If  𝛽 < 𝑓7→7$
# 𝑋% # , accept; 

• If  𝛽 ≥ 𝑓7→7$
# 𝑋% # , reject.

0 1

𝑷𝑨𝑪 = 𝑓7→7$
# 𝑋% # 𝑷𝑹𝑬 = 1 − 𝑓7→7$

# 𝑋% #

𝛽 ∼3 [0,1]



Resolve update in advance (general)

𝑢%

𝑡
𝑢&

𝑢'

𝑆#! = {𝑹,𝑩} 𝑆#" = {𝑮} 𝑆## = {𝒀, 𝑮}

𝒗

𝑢"

𝑢#

𝑢$ 𝒗

𝑢"

𝑢#

𝑢$ 𝒗

𝑢"

𝑢#

𝑢$𝒗

𝑢"

𝑢#

𝑢$

Set of  possible configurations on 𝑁(𝑣)
𝒞 =⊗-∈%(#) 𝑆-

Node 𝑣 ∈ 𝑉 resolves the update (𝑡, 𝑐) before the 𝑌5(𝑁(𝑣)) is known

𝑃56ABC,𝑃9:ABC: min prob. for accept and reject

𝑃56ABC = min
D∈𝒞

𝑓7→7$
# (𝜎) ,

𝑃9:ABC = min
D∈𝒞

(1 −𝑓7→7$
# (𝜎))

0 1

𝑃56ABC 𝑃9:ABC

𝛽

Resolve update in advance if
𝛽 < 𝑃56ABC𝑜𝑟 𝛽 ≥ 1 − 𝑃9:ABC

unknown



Main result

Let any 𝑢, 𝑣 ∈ 𝐸 and 𝑎, 𝑏, 𝑐, 𝑐′ ∈ [𝑞]

𝛿6,7,8𝑓9→9;' = max
<,=

𝑓9→9!
' 𝜎 − 𝑓9→9!

' (𝜏)

where 𝜎6 = 𝑎, 𝜏6 = 𝑏 and 𝜎> = 𝜏> for all 𝑤 ∈ 𝑁(𝑣)\{𝑢}. 

𝑣

𝜎# = 𝑎

𝑣

𝜏# = 𝑏

Lipschitz condition:
There is a constant C such that for any 𝑢, 𝑣 ∈ 𝐸 and 𝑎, 𝑏, 𝑐, 𝑐′ ∈ [𝑞]

𝔼9!∼D" 𝛿6,7,8𝑓9→9!
' ≤ 𝐶/Δ

Theorem [this work]

If  all Metropolis filters satisfy a Lipschitz condition,
w.h.p. simulate continuous-Metropolis chain to time 𝑇 with cost 𝑂 𝑇 + log 𝑛 .



Main theorem

Models Lipschitz condition Uniqueness condition

𝑞-coloring 𝑞 > 𝐶Δ 𝑞 > Δ

Hardcore 𝜆 <
𝐶
Δ

𝜆 <
Δ − 1 EF!

Δ − 2 E ≈
𝑒
Δ

Ising 1 − exp −2 𝛽 <
𝐶
Δ

1 − exp −2 𝛽 <
2
Δ

𝐶 > 0 is an arbitrary constant

The Metropolis chain can be simulated efficiently even if  it is slow mixing.



Correctness of  simulation

Our simulation algorithm
$𝑌# #∈[&,!]

Continuous-time 
Metropolis chain 𝑌# #∈[&,!]

Perfect
Coupling

Theorem of  correctness
The simulation algorithm will terminate eventually,

b𝑌5 5∈[I,J] and 𝑌5 5∈[I,J] are the same process.



Efficiency of  simulation
Resolution of  the 𝒌-th update at node 𝒗 ∈ 𝑽

Self-triggered resolution Neighborhood-triggered resolution

node 𝑣
resolves (𝑣, 𝑘 − 1)

node 𝑣
resolves (𝑣, 𝑘)

neighbor 𝑢 ∈ 𝑁(𝑣)
resolves (𝑢, 𝑗)

node 𝑣
resolves (𝑣, 𝑘)

pass message

(𝑣I, 𝑘I = 1) (𝑣!, 𝑘!) (𝑣ℓ, 𝑘ℓ)(𝑣", 𝑘")(𝑣#, 𝑘#)
trigger triggertrigger trigger

Dependency chain 

time complexity ≤ length of  the longest dependence chain + 𝑂(1)

unique predecessor
for update (𝑣, 𝑘)

Proof  idea:  long dependence chain appears with low probability.   



update times alone the chain are increasing 
randomness of  Poisson clocks Updates alone the chain are triggered one by one 

randomness of  proposals & Metropolis filters

the power of resolving update in advance

Fix a path 𝑃 = 𝑣I, 𝑣!, … , 𝑣ℓ of  length ℓ, where 𝑣(U! ∈ 𝑁 𝑣( ∪ {𝑣(}.
Event ℰ: there is a dependency chain of  length ℓ alone 𝑃,

i.e. there is a dependency chain 𝑣(, 𝑘( !V(Vℓ.

Pr ℰ ≤
𝑒𝑇
ℓ

ℓ
×

2𝐶
Δ

W

𝑅: number of  neighborhood-triggered resolutions

Lipschitz condition

with constant 𝑪

Main Theorem: For Metropolis chain with Lipschitz condition
with high probability,  the cost is 𝑂(𝑇 + log 𝑛).

union bound 
over all paths



Summary

A distributed algorithm that faithfully simulates continuous Metropolis chain to time 𝑇 s.t.
• w.h.p., the cost of  simulation is 𝑂(Δ𝑇 + log 𝑛);
• if  a Lipschitz condition is satisfied, w.h.p., the cost of  simulation is 𝑂(𝑇 + log 𝑛).
A new technique: resolve update in advance.

Open problems

Simulate the general single-site dynamics beyond the Metropolis chain
• Gibbs sampling (conditional update rule)

• Coloring: update 𝑌" as a uniform color in 𝒒 \ {𝒀𝒖 ∣ 𝒖 ∈ 𝑵(𝒗)}.
• New technique to resolve the conditional updates.

Thank you!


