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We study the problem of sampling from a graphical model 
when the model itself is changing dynamically with time.
• We give an algorithm that can sample dynamically from a 

broad class of graphical models efficiently.
• We give an equilibrium condition that guarantees the 

correctness of the dynamic sampling.

Abstract

Graphical Model

Given: dynamic graphical model and current sample.
Main question : "Can we obtain a sample from an updated 

graphical model with a small incremental cost?"

Dynamic Sampling Problem Dynamic Sampler Our Results

Theorem: Correctness

The dynamic sampler outputs the correct sample ! ∼ #
ℐ
% .

guaranteed by the equilibrium condition

Updates of graphical model

• add/delete constraints;
• change factors &' → &'

)
, &+ → &+

) ;
• add/delete independent variables.

An update of graphical model ℐ = -, ., /,Φ is represented
by a pair (2,Φ3):
• 2 ⊆ - ∪ 2

8: updated variables and constraints;
• Φ3 ∶= &' '∈3∩8 ∪ &+ +∈3∩<

=: new factors.

&'&'
)

&+

&+
)

Input 
graphical model
ℐ = (-, ., /,Φ)

updated 
graphical model
ℐ
)
= (-, .

)
, /,Φ′)

Update (2,Φ3)

• Input: a graphical model ℐ, a sample ! ∼ #ℐ

and an update (2,Φ3) that modifies ℐ to ℐ′.

• Output:  a sample !) ∼ #
ℐ
%.

Offline adversary: the update (2,Φ3) is independent with
the input random sample ! ∼ #ℐ.

Dynamic sampling from graphical model

Equilibrium Condition

Motivation

Approximate counting [Jerrum, Valiant, Vazirani, 1986]
• Given a graph ? = (-, .), 

count #{independent sets of ?}.
• Self reduction: a sequence of graphs ?F, ?G, … , ? I :

• Counting Sampling uniform independent sets.

?F ?G ?< ?K?L ?M?

Inference/learning tasks

• online learning with dynamic or streaming data;
• dynamic graphical models e.g. videos.

Graphical models arise in a variety of disciplines ranging from 
statistical physics, machine learning, statistics, to theoretical 
computer science. A graphical model instance is specified by a
tuple ℐ = -, ., /,Φ :
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Dynamic Sampling from Graphical Models

• variable set (vertex set) -;
• constraint set (edge set) . ⊆ 2

8;
• finite domain /;
• factors (weight functions)

Φ = (&')'∈8 ∪ &+ +∈I

• each &': / → ℝOF;

• each &+: /+ → ℝOF;

• Gibbs distribution # over /8:

∀R ∈ /
8
, #(R) ∝T

'∈8

&' R' T

+∈I

&+ R+ .

hyper graph
U = (-, .)

Example: Ising model V = W, X, Y

• graph ? = (-, .);
• finite domain / = {−1,+1};
• inverse temperature Y = ]+ +∈I , each ]+ ∈ ℝOF;
• Gibbs distribution # over −1,+1 8:

∀ R ∈ −1,+1
8
, # R ∝ T

+^ _,' ∈I

exp ]+R_R' ;

• uniqueness condition 

∀c ∈ .: exp −2 ]+ > 1 −
2

Δ
.

Example: hardcore model V = W, X, f .

• graph ? = (-, .);
• finite domain / = {0,1};
• fugacity f = h' '∈8 , each h' ∈ ℝOF;
• Gibbs distribution # over 0,1 8: ∀ R ∈ 0,1

8
,

# R ∝ i
T

'∈j(k)

h' if l R is an independent set,

0 if l R is not an independent set,

where l R = m ∈ - R' = 1 ;

• uniqueness condition 

∀m ∈ -: h' <
Δ − 1

opG

Δ − 2 o
≈

c

Δ − 2
.

Notations

• Update of graphical model 2,Φ3 .

• vbl 2 ∶= 2 ∩ - ∪ (⋃
+∈3∩<=

c): variables involved by the 
update (2, &3) : 

• updated variables; 

• variables incident to updated constraints.

• Subset of variables ℛ ⊆ -:

• internal constraints . ℛ ∶= {c ∈ . ∣ c ⊆ ℛ}

• boundary constraints x ℛ ∶= c ∈ .\. ℛ c ∩ ℛ ≠ ∅

• incident constraints .+ ℛ ∶= . ℛ ∪ x(ℛ).

&'&'
)

&+

&+
)

vbl(2): red variables

ℛ: red variables

. ℛ : blue constraint

x ℛ : green constraints

Dynamic Sampler

Input: a graphical model ℐ and a sample ! ∼ #ℐ;
Update: an update (2, &3) that modifies ℐ → ℐ

);
• apply changes (2, &3) to current graphical model ℐ;
• ℛ ← vbl(2);
• While(ℛ ≠ ∅)

• !,ℛ ←Local-Resample(!,ℛ);
• Return !;

Local-Resample(!,ℛ):
• each c ∈ .}(ℛ) computes ~+;
• each m ∈ ℛ resamples �' ∼ &';
• each c ∈ .}(ℛ) samples Ä+ ∈ {0,1} independently s.t.

Pr Ä+ = 0 = ~+&+(�+);
• !

)
← ! and ℛ)

← ⋃+∈IÉ ℛ :ÑÖ^G
c;

• Return (!), ℛ′);

~+ ∶=
1

&+ �+

min
â∈äÖ

âÖ∩ℛ^ãÖ∩ℛ

&+(å)

(with the convenYon F

F
= 1).

~+: the minimum value of &+(å) conditioning on the  
assignment of å on c ∩ ℛ is fixed as �+∩ℛ .

Properties:

• for each c ∈ . ℛ , ~+ = 1;
• for each c ∈ x(ℛ), ~+ ≤ 1.

The Algorithm

Assumption: normalized factors Φ = (&')'∈8 ∪ &+ +∈I

each &': / → [0,1] is a distribution over /;
each &+: /+ → 0,1 .

Theorem: Fast Convergence

• ê ∶= max
c∈.

| c
)
∈ .\{c ∣ c ∩ c

)
≠ ∅}|: the maximum

degree of the dependency graph

• ∀c ∈ .: min&c ≥ 1 −
1

ê+1
,

⟹ the cost of the dynamic sampler:
• ï(log|2|) iterations in expectation;
• ï(|2|) resamplings in expectation.

Better results on concrete graphical models:

• Ising model: ∀c ∈ .: exp −2 ]c ≥ 1 −
1

2.221Δ+1
;

• Hardcore model: ∀m ∈ -: hm ≤
1

2Δ−1
.

Features of the Algorithm

dynamic, exact sampling,  Las Vegas, distributed/parallel.

The dynamic sampler maintains a random pair 
!,ℛ ∈ /

8
×2

8
.

problematic 
set ℛ

sanity set
òℛ = -\ℛ

ℛ: current resample set that contains the 
problematic variables to be resampled;

òℛ: current sanity set that contains the    
non-problematic variables.

Equilibrium condition for resampling chain:

If !,ℛ is conditionally Gibbs w.r.t. #, then !), ℛ) is also 
conditionally Gibbs w.r.t. #.

Resampling chain

The resampling algorithm is a Markov chain over /8×28
with transition matrix ô: !,ℛ → !

)
, ℛ

)
.

Conditional Gibbs property:

A random pair !,ℛ ∈ /
8
×2

8 is conditionally Gibbs w.r.t. 
# if conditioning on any ℛ ⊆ - and any assignment R ∈ /ℛ
of �ℛ , the distribution of �8\ℛ is precisely #

8\ℛ

k .

#
8\ℛ

k : marginal distribution of # on -\ℛ conditioning on R.

The condition is established by verifying equation system:
∀ ö, õ ⊆ -, R ∈ /

-\S and ù ∈ /-\õ,

∀å ∈ /
-
, å-\T = ù: ü

†∈/-

†-\S=R

#ö
R
†ö ⋅ ô †, ö , å, õ =¢ ö, R, õ, ù ⋅ #õ

ù
åõ .

Dynamic Sampling
Algorithm

Equation System
Equilibrium Condition

a solution to

first , compute ~+
then , update �ℛ

When ℛ = ∅, the random sample ! ∼ #.

depend on
both old and
new samples


