Dynamic Sampling from Graphical Models

Weiming Feng¹ Nisheeth K. Vishnoi² Yitong Yin¹

¹Nanjing University, China

²Yale University, USA

Abstract

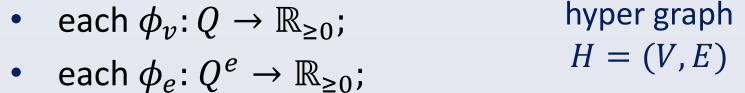
We study the problem of sampling from a graphical model when the model itself is changing dynamically with time.

- We give an algorithm that can sample dynamically from a broad class of graphical models efficiently.
- We give an equilibrium condition that guarantees the correctness of the dynamic sampling.

Graphical Model

Graphical models arise in a variety of disciplines ranging from statistical physics, machine learning, statistics, to theoretical computer science. A graphical model instance is specified by a tuple $\mathcal{I} = (V, E, Q, \Phi)$:

- variable set (vertex set) V;
- constraint set (edge set) $E \subseteq 2^V$;
- finite domain Q;
- factors (weight functions)
- $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$
- each $\phi_v: Q \to \mathbb{R}_{\geq 0}$;



• Gibbs distribution μ over Q^V :

$$\forall \sigma \in Q^V$$
, $\mu(\sigma) \propto \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e)$.

Example: Ising model $\mathcal{J} = (V, E, \beta)$

- graph G = (V, E);
- finite domain $Q = \{-1, +1\};$
- inverse temperature $\boldsymbol{\beta} = (\beta_e)_{e \in E}$, each $\beta_e \in \mathbb{R}_{\geq 0}$;
- Gibbs distribution μ over $\{-1, +1\}^V$:

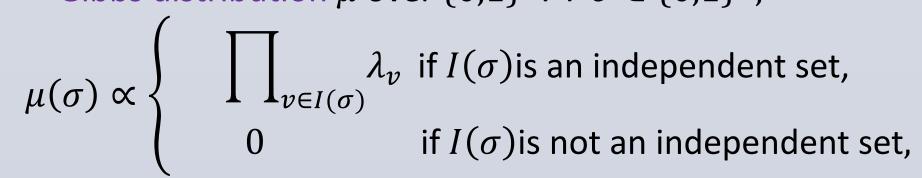
$$\forall \sigma \in \{-1, +1\}^V, \qquad \mu(\sigma) \propto \prod_{e=(u,v)\in E} \exp(\beta_e \sigma_u \sigma_v)$$

uniqueness condition

$$\forall e \in E: \exp(-2|\beta_e|) > 1 - \frac{2}{\Delta}.$$

Example: hardcore model $\mathcal{J} = (V, E, \lambda)$.

- graph G = (V, E);
- finite domain $Q = \{0,1\}$;
- fugacity $\lambda = (\lambda_v)_{v \in V}$, each $\lambda_v \in \mathbb{R}_{\geq 0}$;
- Gibbs distribution μ over $\{0,1\}^V$: $\forall \sigma \in \{0,1\}^V$,



where $I(\sigma) = \{ v \in V \mid \sigma_v = 1 \};$

uniqueness condition

$$\forall v \in V: \quad \lambda_v < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta - 2}.$$

Dynamic Sampling Problem

Given: dynamic graphical model and current sample.

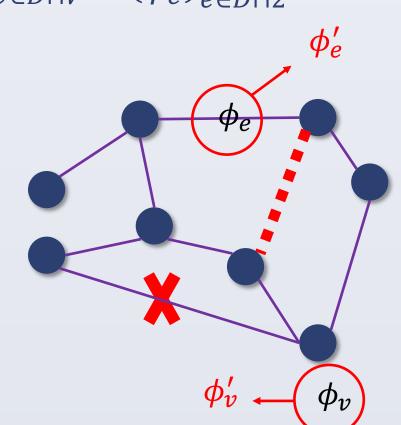
Main question: "Can we obtain a sample from an updated graphical model with a small incremental cost?"

Updates of graphical model

- add/delete constraints;
- change factors $\phi_v \to \phi_v'$, $\phi_e \to \phi_e'$;
- add/delete independent variables.

An update of graphical model $\mathcal{I} = (V, E, Q, \Phi)$ is represented by a pair (D, Φ_D) :

- $D \subseteq V \cup 2^V$: updated variables and constraints;
- $\Phi_D := (\phi_v)_{v \in D \cap V} \cup (\phi_e)_{e \in D \cap 2} v$: new factors.



Input graphical model $\mathcal{I} = (V, E, Q, \Phi)$

updated graphical model $\mathcal{I}' = (V, E', Q, \Phi')$

Dynamic sampling from graphical model

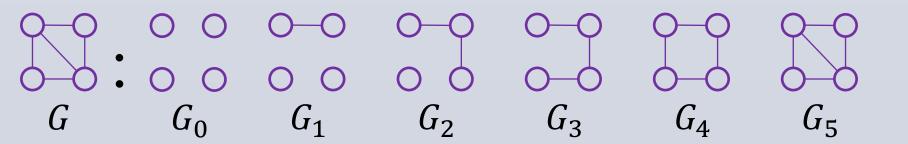
- Input: a graphical model \mathcal{I} , a sample $X \sim \mu_{\mathcal{I}}$ and an update (D, Φ_D) that modifies \mathcal{I} to \mathcal{I}' .
- **Output**: a sample $X' \sim \mu_{I'}$.

Offline adversary: the update (D, Φ_D) is independent with the input random sample $X \sim \mu_{\mathcal{I}}$.

Motivation

Approximate counting [Jerrum, Valiant, Vazirani, 1986]

- Given a graph G = (V, E),
 - count $\#\{\text{independent sets of } G\}.$
- **Self reduction**: a sequence of graphs $G_0, G_1, \dots, G_{|E|}$:



Counting Sampling uniform independent sets.

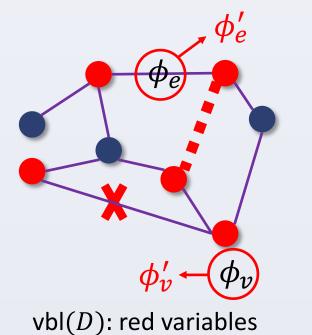
Inference/learning tasks

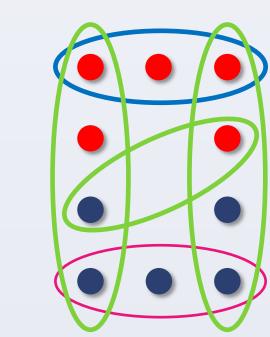
- online learning with dynamic or streaming data;
- dynamic graphical models e.g. videos.

Dynamic Sampler

Notations

- Update of graphical model (D, Φ_D) .
- $vbl(D) := (D \cap V) \cup (\bigcup_{e \in D \cap 2^V} e)$: variables **involved** by the update (D, ϕ_D) :
 - updated variables;
 - variables incident to updated constraints.





 $E(\mathcal{R})$: blue constraint $\delta(\mathcal{R})$: green constraints

- Subset of variables $\mathcal{R} \subseteq V$:
- internal constraints $E(\mathcal{R}) := \{e \in E \mid e \subseteq \mathcal{R}\}$
- boundary constraints $\delta(\mathcal{R}) := \{ e \in E \setminus E(\mathcal{R}) \mid e \cap \mathcal{R} \neq \emptyset \}$
- incident constraints $E^+(\mathcal{R}) := E(\mathcal{R}) \cup \delta(\mathcal{R})$.

The Algorithm

Assumption: normalized factors $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$ each $\phi_v: Q \to [0,1]$ is a distribution over Q; each $\phi_e: Q^e \to [0,1]$.

Dynamic Sampler

Input: a graphical model \mathcal{I} and a sample $X \sim \mu_{\mathcal{I}}$; **Update**: an update (D, ϕ_D) that modifies $\mathcal{I} \to \mathcal{I}'$;

- apply changes (D, ϕ_D) to current graphical model \mathcal{I} ;
- $\mathcal{R} \leftarrow \text{vbl}(D)$;
- While($\mathcal{R} \neq \emptyset$)
 - $(X, \mathcal{R}) \leftarrow \text{Local-Resample}(X, \mathcal{R});$
- Return X;

Local-Resample(X, \mathcal{R}):

- each $e \in E^+(\mathcal{R})$ computes κ_e ; first, compute κ_e
- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$; then , update $X_{\mathcal{R}}$
- each $e \in E^+(\mathcal{R})$ samples $F_e \in \{0,1\}$ independently s.t.
 - $\Pr[F_e = 0] = \kappa_e \phi_e(X_e);$ depend on
- $X' \leftarrow X$ and $\mathcal{R}' \leftarrow \bigcup_{e \in E^+(\mathcal{R}): F_e = 1} e$;

both old and new samples

• Return (X', \mathcal{R}') ;

 $\kappa_e := \frac{1}{\phi_e(X_e)} \quad \min_{y \in Q^e} \quad \phi_e(y)$

(with the convention $\frac{0}{0} = 1$). κ_e : the minimum value of $\phi_e(y)$ conditioning on the assignment of y on $e \cap \mathcal{R}$ is fixed as $X_{e \cap \mathcal{R}}$.

Properties:

- for each $e \in E(\mathcal{R})$, $\kappa_e = 1$;
- for each $e \in \delta(\mathcal{R})$, $\kappa_e \leq 1$.

Our Results

Theorem: Correctness

The dynamic sampler outputs the correct sample $X \sim \mu_{I'}$. guaranteed by the **equilibrium condition**

Features of the Algorithm

dynamic, exact sampling, Las Vegas, distributed/parallel.

Theorem: Fast Convergence

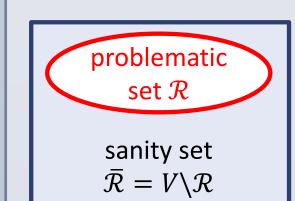
- $d := \max_{e \in F} |\{e' \in E \setminus \{e\} \mid e \cap e' \neq \emptyset\}|$: the maximum degree of the dependency graph
- $\forall e \in E$: $\min \phi_e \ge \sqrt{1 \frac{1}{d+1}}$,
- ⇒ the cost of the dynamic sampler:
 - $O(\log |D|)$ iterations in expectation;
 - O(|D|) resamplings in expectation.

Better results on concrete graphical models:

- Ising model: $\forall e \in E$: $\exp(-2|\beta_e|) \ge 1 \frac{1}{2,221\Delta + 1}$;
- Hardcore model: $\forall v \in V$: $\lambda_v \leq \frac{1}{\sqrt{2}\Lambda 1}$.

Equilibrium Condition

The dynamic sampler maintains a random pair $(X,\mathcal{R}) \in Q^V \times 2^V$.



- \mathcal{R} : current **resample set** that contains the problematic variables to be resampled;
- \mathcal{R} : current sanity set that contains the non-problematic variables.

Conditional Gibbs property:

A random pair $(X, \mathcal{R}) \in Q^V \times 2^V$ is conditionally Gibbs w.r.t. μ if conditioning on any $\mathcal{R} \subseteq V$ and any assignment $\sigma \in Q^{\mathcal{R}}$ of $X_{\mathcal{R}}$, the distribution of $X_{V \setminus \mathcal{R}}$ is precisely $\mu_{V \setminus \mathcal{R}}^{\sigma}$.

 $\mu_{V\setminus\mathcal{R}}^{\sigma}$: marginal distribution of μ on $V\setminus\mathcal{R}$ conditioning on σ .

When $\mathcal{R} = \emptyset$, the random sample $X \sim \mu$.

Resampling chain

The resampling algorithm is a Markov chain over $Q^V \times 2^V$ with transition matrix $P: (X, \mathcal{R}) \to (X', \mathcal{R}')$.

Equilibrium condition for resampling chain:

If (X, \mathcal{R}) is conditionally Gibbs w.r.t. μ , then (X', \mathcal{R}') is also conditionally Gibbs w.r.t. μ .

The condition is established by verifying equation system: $\forall S, T \subseteq V, \sigma \in Q^{V \setminus S} \text{ and } \tau \in Q^{V \setminus T},$

 $\forall y \in Q^V, y_{V \setminus T} = \tau : \sum_{x \in Q^V} \mu_S^{\sigma}(x_S) \cdot P((x, S), (y, T)) = C(S, \sigma, T, \tau) \cdot \mu_T^{\tau}(y_T).$

Dynamic Sampling Algorithm

a solution to

Equation System Equilibrium Condition