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: Abstract

We study the problem of sampling from a graphical model
when the model itself is changing dynamically with time.

 We give an algorithm that can sample dynamically from a
broad class of graphical models efficiently.

 We give an equilibrium condition that guarantees the
correctness of the dynamic sampling.

Graphical Model

Graphical models arise in a variety of disciplines ranging from
statistical physics, machine learning, statistics, to theoretical
computer science. A graphical model instance is specified by a
tuple = (V,E, Q, D):
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* each ¢,: Q¢ - R.;
* Gibbs distribution u over QV:
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Example: Ising model 7 = (V, E, 8)
 graphG = (V,E);
* finite domain Q = {—1,+1};
* inverse temperature B = (B.)ccr, €ach B, € R.g;
 Gibbs distribution u over {—1, +1}":

p@ o« || exn(eouo);

e=(u,v)EE

Voe{-1,+1},

* unigueness condition
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Example: hardcore model 7 = (V,E, ).

 graphG = (V,E);

* finite domain Q = {0,1};

» fugacity A = (4,),ey, €ach 4, € R, ;

Gibbs distribution u over {0,1}V: vV o € {0,1}",

1_[ A, if I(o)is an independent set,
vel(o)
0 if I(o)is not an independent set,

where (o) ={veEV |ag, =1}
* unigueness condition
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Dynamic Sampling Problem

Given: dynamic graphical model and current sample.

Main question : "Can we obtain a sample from an updated
graphical model with a small incremental cost?"

Updates of graphical model
 add/delete constraints;

 change factors ¢, = ¢,, d, > P.;
 add/delete independent variables.

An update of graphical model 7 = (V, E, Q, ®) is represented
by a pair (D, &p):
« D c V uU2V:updated variables and constraints;

* Dp = (Py)vepnv Y (@Pe) .cpnyv: NEW factors.
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Dynamic sampling from graphical model

* Input: a graphical model 7, a sample X ~ u4
and an update (D, ®) that modifies 7 to 7'.

* Output: asample X' ~ p,r.

Offline adversary: the update (D, @) is independent with
the input random sample X ~ u,.

Motivation

Approximate counting [Jerrum, Valiant, Vazirani, 1986]
* GivenagraphG = (V,E),
count #{independent sets of G }.
* Self reduction: a sequence of graphs G, Gy, ..., Gg|:
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e Counting == Sampling uniform independent sets.
Inference/learning tasks

* online learning with dynamic or streaming data;

 dynamic graphical models e.g. videos.

Dynamic Sampler

Notations
Update of graphical model (D, ®p).
vbl(D) := (D NV) U (U,.pn,,v e): variables involved by the
update (D, ¢p) :

e updated variables;

* variables incident to updated constraints.
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© © 6 (R): green constraints
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vbl(D): red variables

Subset of variables R € I/

* internal constraints E(R) :={e € E | e € R}

* boundary constraints 6(R) :={e € E\E(R) |lenR # @}
* incident constraints ET(R) := E(R) U §(R).

The Algorithm

Assumption: normalized factors ® = (¢,),ecy U (@p) ek
each ¢,: Q — [0,1] is a distribution over Q;
each ¢,: Q¢ — [0,1].

Dynamic Sampler
Input: a graphical model 7 and a sample X ~ uy;
Update: an update (D, ¢p) that modifies 7 — 7’;
* apply changes (D, ¢p) to current graphical model 7;
« R < vbl(D);
* While(R # 0)
* (X,R) «<Local-Resample(X, R);
* Return X;

Local-Resample(X, R):

* eache € ET(R) computes k,; <= first, compute K,

* eachv € Rresamples X,, ~ ¢,,; <4=m then, update X5

* eache € ET(R) samples F, € {0,1} independently s.t.
Pr[F, = 0] = k.. (X.); 4mm depend on

e X « Xand R’ « UeEE+(:R):Fe=1 e: both old and

new samples
* Return (X',R"); °

- De (Xe) 3{23}3 Pe (y)

Yenfle:Xen%e
(with the convention 0= 1).
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K,: the minimum value of ¢, (y) conditioning on the
assignment of yone N R is fixed as X, 5.

Properties:
 foreache € E(R), k, = 1;
e foreache € 6(R), Kk, < 1.

4 Our Results

Theorem: Correctness

The dynamic sampler outputs the correct sample X ~ p,r .

guaranteed by the equilibrium condition

Features of the Algorithm

dynamic, exact sampling, Las Vegas, distributed/parallel.

Theorem: Fast Convergence
¢ d:= max [{e’ € E\{e} | e n e’ + @}|: the maximum
e
degree of the dependency graph

. 1
Ve € E: ming, 2\/1—d—+1,

— the cost of the dynamic sampler:
* O(log|D]) iterations in expectation;
* O(|D]) resamplings in expectation.

Better results on concrete graphical models:
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* Ising model: Ve € E: exp(—2|6.]) =1 —

1
V2A—1"

 Hardcore model: Vv eV: A, <

Equilibrium Condition

The dynamic sampler maintains a random pair
(X,R) € QVx2V.

pmblemaD R: current resample set that contains the

set R problematic variables to be resampled;

R: current sanity set that contains the
non-problematic variables.

sanity set
R =V\R

Conditional Gibbs property:

A random pair (X, R) € QVx2" is conditionally Gibbs w.r.t.
u if conditioning on any R € V and any assignment o € Q%
of X, the distribution of Xy ¢ is precisely u{;\ﬂ.

Uy »: marginal distribution of 4 on V\R conditioning on o

When R = @, the random sample X ~ wu.

Resampling chain
The resampling algorithm is a Markov chain over Q¥ x2V
with transition matrix P: (X,R) - (X', R’).

Equilibrium condition for resampling chain:

If (X, R) is conditionally Gibbs w.r.t. i, then (X', R’) is also
conditionally Gibbs w.r.t. .

The condition is established by verifying equation system:
VSTCV,ogeQ"Sandt e "V,

vy € QV,ynr = T: z ul(xs) - P((x,5), (v, T))=C(S,0,T,7) - uf-(yr).

x€QV
xV\S =0

a solution to
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