Dynamic Sampling from Graphical Models ## Weiming Feng¹ Nisheeth K. Vishnoi² Yitong Yin¹ ¹Nanjing University, China ²Yale University, USA ## **Abstract** We study the problem of sampling from a graphical model when the model itself is changing dynamically with time. - We give an algorithm that can sample dynamically from a broad class of graphical models efficiently. - We give an equilibrium condition that guarantees the correctness of the dynamic sampling. ## **Graphical Model** Graphical models arise in a variety of disciplines ranging from statistical physics, machine learning, statistics, to theoretical computer science. A graphical model instance is specified by a tuple $\mathcal{I} = (V, E, Q, \Phi)$: - variable set (vertex set) V; - constraint set (edge set) $E \subseteq 2^V$; - finite domain Q; - factors (weight functions) - $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$ - each $\phi_v: Q \to \mathbb{R}_{\geq 0}$; • Gibbs distribution μ over Q^V : $$\forall \sigma \in Q^V$$, $\mu(\sigma) \propto \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e)$. ## Example: Ising model $\mathcal{J} = (V, E, \beta)$ - graph G = (V, E); - finite domain $Q = \{-1, +1\};$ - inverse temperature $\boldsymbol{\beta} = (\beta_e)_{e \in E}$, each $\beta_e \in \mathbb{R}_{\geq 0}$; - Gibbs distribution μ over $\{-1, +1\}^V$: $$\forall \sigma \in \{-1, +1\}^V, \qquad \mu(\sigma) \propto \prod_{e=(u,v)\in E} \exp(\beta_e \sigma_u \sigma_v)$$ uniqueness condition $$\forall e \in E: \exp(-2|\beta_e|) > 1 - \frac{2}{\Delta}.$$ ## Example: hardcore model $\mathcal{J} = (V, E, \lambda)$. - graph G = (V, E); - finite domain $Q = \{0,1\}$; - fugacity $\lambda = (\lambda_v)_{v \in V}$, each $\lambda_v \in \mathbb{R}_{\geq 0}$; - Gibbs distribution μ over $\{0,1\}^V$: $\forall \sigma \in \{0,1\}^V$, where $I(\sigma) = \{ v \in V \mid \sigma_v = 1 \};$ uniqueness condition $$\forall v \in V: \quad \lambda_v < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta - 2}.$$ ## **Dynamic Sampling Problem** Given: dynamic graphical model and current sample. Main question: "Can we obtain a sample from an updated graphical model with a small incremental cost?" #### **Updates of graphical model** - add/delete constraints; - change factors $\phi_v \to \phi_v'$, $\phi_e \to \phi_e'$; - add/delete independent variables. An update of graphical model $\mathcal{I} = (V, E, Q, \Phi)$ is represented by a pair (D, Φ_D) : - $D \subseteq V \cup 2^V$: updated variables and constraints; - $\Phi_D := (\phi_v)_{v \in D \cap V} \cup (\phi_e)_{e \in D \cap 2} v$: new factors. Input graphical model $\mathcal{I} = (V, E, Q, \Phi)$ updated graphical model $\mathcal{I}' = (V, E', Q, \Phi')$ ## Dynamic sampling from graphical model - Input: a graphical model \mathcal{I} , a sample $X \sim \mu_{\mathcal{I}}$ and an update (D, Φ_D) that modifies \mathcal{I} to \mathcal{I}' . - **Output**: a sample $X' \sim \mu_{I'}$. **Offline adversary**: the update (D, Φ_D) is independent with the input random sample $X \sim \mu_{\mathcal{I}}$. #### Motivation Approximate counting [Jerrum, Valiant, Vazirani, 1986] - Given a graph G = (V, E), - count $\#\{\text{independent sets of } G\}.$ - **Self reduction**: a sequence of graphs $G_0, G_1, \dots, G_{|E|}$: Counting Sampling uniform independent sets. #### Inference/learning tasks - online learning with dynamic or streaming data; - dynamic graphical models e.g. videos. ## **Dynamic Sampler** #### **Notations** - Update of graphical model (D, Φ_D) . - $vbl(D) := (D \cap V) \cup (\bigcup_{e \in D \cap 2^V} e)$: variables **involved** by the update (D, ϕ_D) : - updated variables; - variables incident to updated constraints. $E(\mathcal{R})$: blue constraint $\delta(\mathcal{R})$: green constraints - Subset of variables $\mathcal{R} \subseteq V$: - internal constraints $E(\mathcal{R}) := \{e \in E \mid e \subseteq \mathcal{R}\}$ - boundary constraints $\delta(\mathcal{R}) := \{ e \in E \setminus E(\mathcal{R}) \mid e \cap \mathcal{R} \neq \emptyset \}$ - incident constraints $E^+(\mathcal{R}) := E(\mathcal{R}) \cup \delta(\mathcal{R})$. ## The Algorithm Assumption: normalized factors $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$ each $\phi_v: Q \to [0,1]$ is a distribution over Q; each $\phi_e: Q^e \to [0,1]$. #### **Dynamic Sampler** **Input**: a graphical model \mathcal{I} and a sample $X \sim \mu_{\mathcal{I}}$; **Update**: an update (D, ϕ_D) that modifies $\mathcal{I} \to \mathcal{I}'$; - apply changes (D, ϕ_D) to current graphical model \mathcal{I} ; - $\mathcal{R} \leftarrow \text{vbl}(D)$; - While($\mathcal{R} \neq \emptyset$) - $(X, \mathcal{R}) \leftarrow \text{Local-Resample}(X, \mathcal{R});$ - Return X; ### Local-Resample(X, \mathcal{R}): - each $e \in E^+(\mathcal{R})$ computes κ_e ; first, compute κ_e - each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$; then , update $X_{\mathcal{R}}$ - each $e \in E^+(\mathcal{R})$ samples $F_e \in \{0,1\}$ independently s.t. - $\Pr[F_e = 0] = \kappa_e \phi_e(X_e);$ depend on - $X' \leftarrow X$ and $\mathcal{R}' \leftarrow \bigcup_{e \in E^+(\mathcal{R}): F_e = 1} e$; both old and new samples • Return (X', \mathcal{R}') ; $\kappa_e := \frac{1}{\phi_e(X_e)} \quad \min_{y \in Q^e} \quad \phi_e(y)$ (with the convention $\frac{0}{0} = 1$). κ_e : the minimum value of $\phi_e(y)$ conditioning on the assignment of y on $e \cap \mathcal{R}$ is fixed as $X_{e \cap \mathcal{R}}$. #### **Properties:** - for each $e \in E(\mathcal{R})$, $\kappa_e = 1$; - for each $e \in \delta(\mathcal{R})$, $\kappa_e \leq 1$. ## **Our Results** #### **Theorem: Correctness** The dynamic sampler outputs the correct sample $X \sim \mu_{I'}$. guaranteed by the **equilibrium condition** #### Features of the Algorithm dynamic, exact sampling, Las Vegas, distributed/parallel. #### **Theorem: Fast Convergence** - $d := \max_{e \in F} |\{e' \in E \setminus \{e\} \mid e \cap e' \neq \emptyset\}|$: the maximum degree of the dependency graph - $\forall e \in E$: $\min \phi_e \ge \sqrt{1 \frac{1}{d+1}}$, - ⇒ the cost of the dynamic sampler: - $O(\log |D|)$ iterations in expectation; - O(|D|) resamplings in expectation. Better results on concrete graphical models: - Ising model: $\forall e \in E$: $\exp(-2|\beta_e|) \ge 1 \frac{1}{2,221\Delta + 1}$; - Hardcore model: $\forall v \in V$: $\lambda_v \leq \frac{1}{\sqrt{2}\Lambda 1}$. ## **Equilibrium Condition** The dynamic sampler maintains a random pair $(X,\mathcal{R}) \in Q^V \times 2^V$. - \mathcal{R} : current **resample set** that contains the problematic variables to be resampled; - \mathcal{R} : current sanity set that contains the non-problematic variables. #### **Conditional Gibbs property:** A random pair $(X, \mathcal{R}) \in Q^V \times 2^V$ is conditionally Gibbs w.r.t. μ if conditioning on any $\mathcal{R} \subseteq V$ and any assignment $\sigma \in Q^{\mathcal{R}}$ of $X_{\mathcal{R}}$, the distribution of $X_{V \setminus \mathcal{R}}$ is precisely $\mu_{V \setminus \mathcal{R}}^{\sigma}$. $\mu_{V\setminus\mathcal{R}}^{\sigma}$: marginal distribution of μ on $V\setminus\mathcal{R}$ conditioning on σ . When $\mathcal{R} = \emptyset$, the random sample $X \sim \mu$. #### Resampling chain The resampling algorithm is a Markov chain over $Q^V \times 2^V$ with transition matrix $P: (X, \mathcal{R}) \to (X', \mathcal{R}')$. #### **Equilibrium condition** for resampling chain: If (X, \mathcal{R}) is conditionally Gibbs w.r.t. μ , then (X', \mathcal{R}') is also conditionally Gibbs w.r.t. μ . The condition is established by verifying equation system: $\forall S, T \subseteq V, \sigma \in Q^{V \setminus S} \text{ and } \tau \in Q^{V \setminus T},$ $\forall y \in Q^V, y_{V \setminus T} = \tau : \sum_{x \in Q^V} \mu_S^{\sigma}(x_S) \cdot P((x, S), (y, T)) = C(S, \sigma, T, \tau) \cdot \mu_T^{\tau}(y_T).$ **Dynamic Sampling** Algorithm a solution to **Equation System Equilibrium Condition**