# Dynamic Sampling from Graphical Models

## Weiming Feng<sup>1</sup> Nisheeth K. Vishnoi<sup>2</sup> Yitong Yin<sup>1</sup>

<sup>1</sup>Nanjing University, China

<sup>2</sup>Yale University, USA

## **Abstract**

We study the problem of sampling from a graphical model when the model itself is changing dynamically with time.

- We give an algorithm that can sample dynamically from a broad class of graphical models efficiently.
- We give an equilibrium condition that guarantees the correctness of the dynamic sampling.

## **Graphical Model**

Graphical models arise in a variety of disciplines ranging from statistical physics, machine learning, statistics, to theoretical computer science. A graphical model instance is specified by a tuple  $\mathcal{I} = (V, E, Q, \Phi)$ :

- variable set (vertex set) V;
- constraint set (edge set)  $E \subseteq 2^V$ ;
- finite domain Q;
- factors (weight functions)
- $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$
- each  $\phi_v: Q \to \mathbb{R}_{\geq 0}$ ;



• Gibbs distribution  $\mu$  over  $Q^V$ :

$$\forall \sigma \in Q^V$$
,  $\mu(\sigma) \propto \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e)$ .

## Example: Ising model $\mathcal{J} = (V, E, \beta)$

- graph G = (V, E);
- finite domain  $Q = \{-1, +1\};$
- inverse temperature  $\boldsymbol{\beta} = (\beta_e)_{e \in E}$ , each  $\beta_e \in \mathbb{R}_{\geq 0}$ ;
- Gibbs distribution  $\mu$  over  $\{-1, +1\}^V$ :

$$\forall \sigma \in \{-1, +1\}^V, \qquad \mu(\sigma) \propto \prod_{e=(u,v)\in E} \exp(\beta_e \sigma_u \sigma_v)$$

uniqueness condition

$$\forall e \in E: \exp(-2|\beta_e|) > 1 - \frac{2}{\Delta}.$$

## Example: hardcore model $\mathcal{J} = (V, E, \lambda)$ .

- graph G = (V, E);
- finite domain  $Q = \{0,1\}$ ;
- fugacity  $\lambda = (\lambda_v)_{v \in V}$ , each  $\lambda_v \in \mathbb{R}_{\geq 0}$ ;
- Gibbs distribution  $\mu$  over  $\{0,1\}^V$ :  $\forall \sigma \in \{0,1\}^V$ ,



where  $I(\sigma) = \{ v \in V \mid \sigma_v = 1 \};$ 

uniqueness condition

$$\forall v \in V: \quad \lambda_v < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta - 2}.$$

## **Dynamic Sampling Problem**

Given: dynamic graphical model and current sample.

Main question: "Can we obtain a sample from an updated graphical model with a small incremental cost?"

#### **Updates of graphical model**

- add/delete constraints;
- change factors  $\phi_v \to \phi_v'$ ,  $\phi_e \to \phi_e'$ ;
- add/delete independent variables.

An update of graphical model  $\mathcal{I} = (V, E, Q, \Phi)$  is represented by a pair  $(D, \Phi_D)$ :

- $D \subseteq V \cup 2^V$ : updated variables and constraints;
- $\Phi_D := (\phi_v)_{v \in D \cap V} \cup (\phi_e)_{e \in D \cap 2} v$ : new factors.



Input graphical model  $\mathcal{I} = (V, E, Q, \Phi)$ 



updated graphical model  $\mathcal{I}' = (V, E', Q, \Phi')$ 

## Dynamic sampling from graphical model

- Input: a graphical model  $\mathcal{I}$ , a sample  $X \sim \mu_{\mathcal{I}}$ and an update  $(D, \Phi_D)$  that modifies  $\mathcal{I}$  to  $\mathcal{I}'$ .
- **Output**: a sample  $X' \sim \mu_{I'}$ .

**Offline adversary**: the update  $(D, \Phi_D)$  is independent with the input random sample  $X \sim \mu_{\mathcal{I}}$ .

#### Motivation

Approximate counting [Jerrum, Valiant, Vazirani, 1986]

- Given a graph G = (V, E),
  - count  $\#\{\text{independent sets of } G\}.$
- **Self reduction**: a sequence of graphs  $G_0, G_1, \dots, G_{|E|}$ :



Counting Sampling uniform independent sets.

#### Inference/learning tasks

- online learning with dynamic or streaming data;
- dynamic graphical models e.g. videos.

## **Dynamic Sampler**

#### **Notations**

- Update of graphical model  $(D, \Phi_D)$ .
- $vbl(D) := (D \cap V) \cup (\bigcup_{e \in D \cap 2^V} e)$ : variables **involved** by the update  $(D, \phi_D)$ :
  - updated variables;
  - variables incident to updated constraints.





 $E(\mathcal{R})$ : blue constraint  $\delta(\mathcal{R})$ : green constraints

- Subset of variables  $\mathcal{R} \subseteq V$ :
- internal constraints  $E(\mathcal{R}) := \{e \in E \mid e \subseteq \mathcal{R}\}$
- boundary constraints  $\delta(\mathcal{R}) := \{ e \in E \setminus E(\mathcal{R}) \mid e \cap \mathcal{R} \neq \emptyset \}$
- incident constraints  $E^+(\mathcal{R}) := E(\mathcal{R}) \cup \delta(\mathcal{R})$ .

## The Algorithm

Assumption: normalized factors  $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$ each  $\phi_v: Q \to [0,1]$  is a distribution over Q; each  $\phi_e: Q^e \to [0,1]$ .

#### **Dynamic Sampler**

**Input**: a graphical model  $\mathcal{I}$  and a sample  $X \sim \mu_{\mathcal{I}}$ ; **Update**: an update  $(D, \phi_D)$  that modifies  $\mathcal{I} \to \mathcal{I}'$ ;

- apply changes  $(D, \phi_D)$  to current graphical model  $\mathcal{I}$ ;
- $\mathcal{R} \leftarrow \text{vbl}(D)$ ;
- While( $\mathcal{R} \neq \emptyset$ )
  - $(X, \mathcal{R}) \leftarrow \text{Local-Resample}(X, \mathcal{R});$
- Return X;

### Local-Resample(X, $\mathcal{R}$ ):

- each  $e \in E^+(\mathcal{R})$  computes  $\kappa_e$ ; first, compute  $\kappa_e$
- each  $v \in \mathcal{R}$  resamples  $X_v \sim \phi_v$ ; then , update  $X_{\mathcal{R}}$
- each  $e \in E^+(\mathcal{R})$  samples  $F_e \in \{0,1\}$  independently s.t.
  - $\Pr[F_e = 0] = \kappa_e \phi_e(X_e);$  depend on
- $X' \leftarrow X$  and  $\mathcal{R}' \leftarrow \bigcup_{e \in E^+(\mathcal{R}): F_e = 1} e$ ;

both old and new samples

• Return  $(X', \mathcal{R}')$ ;

 $\kappa_e := \frac{1}{\phi_e(X_e)} \quad \min_{y \in Q^e} \quad \phi_e(y)$ 

(with the convention  $\frac{0}{0} = 1$ ).  $\kappa_e$ : the minimum value of  $\phi_e(y)$  conditioning on the assignment of y on  $e \cap \mathcal{R}$  is fixed as  $X_{e \cap \mathcal{R}}$ .

#### **Properties:**

- for each  $e \in E(\mathcal{R})$ ,  $\kappa_e = 1$ ;
- for each  $e \in \delta(\mathcal{R})$ ,  $\kappa_e \leq 1$ .

## **Our Results**

#### **Theorem: Correctness**

The dynamic sampler outputs the correct sample  $X \sim \mu_{I'}$ . guaranteed by the **equilibrium condition** 

#### Features of the Algorithm

dynamic, exact sampling, Las Vegas, distributed/parallel.

#### **Theorem: Fast Convergence**

- $d := \max_{e \in F} |\{e' \in E \setminus \{e\} \mid e \cap e' \neq \emptyset\}|$ : the maximum degree of the dependency graph
- $\forall e \in E$ :  $\min \phi_e \ge \sqrt{1 \frac{1}{d+1}}$ ,
- ⇒ the cost of the dynamic sampler:
  - $O(\log |D|)$  iterations in expectation;
  - O(|D|) resamplings in expectation.

Better results on concrete graphical models:

- Ising model:  $\forall e \in E$ :  $\exp(-2|\beta_e|) \ge 1 \frac{1}{2,221\Delta + 1}$ ;
- Hardcore model:  $\forall v \in V$ :  $\lambda_v \leq \frac{1}{\sqrt{2}\Lambda 1}$ .

## **Equilibrium Condition**

The dynamic sampler maintains a random pair  $(X,\mathcal{R}) \in Q^V \times 2^V$ .



- $\mathcal{R}$ : current **resample set** that contains the problematic variables to be resampled;
- $\mathcal{R}$ : current sanity set that contains the non-problematic variables.

#### **Conditional Gibbs property:**

A random pair  $(X, \mathcal{R}) \in Q^V \times 2^V$  is conditionally Gibbs w.r.t.  $\mu$  if conditioning on any  $\mathcal{R} \subseteq V$  and any assignment  $\sigma \in Q^{\mathcal{R}}$ of  $X_{\mathcal{R}}$ , the distribution of  $X_{V \setminus \mathcal{R}}$  is precisely  $\mu_{V \setminus \mathcal{R}}^{\sigma}$ .

 $\mu_{V\setminus\mathcal{R}}^{\sigma}$ : marginal distribution of  $\mu$  on  $V\setminus\mathcal{R}$  conditioning on  $\sigma$ .

When  $\mathcal{R} = \emptyset$ , the random sample  $X \sim \mu$ .

#### Resampling chain

The resampling algorithm is a Markov chain over  $Q^V \times 2^V$ with transition matrix  $P: (X, \mathcal{R}) \to (X', \mathcal{R}')$ .

#### **Equilibrium condition** for resampling chain:

If  $(X, \mathcal{R})$  is conditionally Gibbs w.r.t.  $\mu$ , then  $(X', \mathcal{R}')$  is also conditionally Gibbs w.r.t.  $\mu$ .

The condition is established by verifying equation system:  $\forall S, T \subseteq V, \sigma \in Q^{V \setminus S} \text{ and } \tau \in Q^{V \setminus T},$ 

 $\forall y \in Q^V, y_{V \setminus T} = \tau : \sum_{x \in Q^V} \mu_S^{\sigma}(x_S) \cdot P((x, S), (y, T)) = C(S, \sigma, T, \tau) \cdot \mu_T^{\tau}(y_T).$ 

**Dynamic Sampling** Algorithm

a solution to

**Equation System Equilibrium Condition**