Dynamic Sampling from Graphical Models

Weiming Feng
Nanjing University

Joint work with: Nisheeth K. Vishnoi (Yale University)

Yitong Yin (Nanjing University)

STOC 2019 Phoenix, AZ.

Graphical Model

- Hyper graph H = (V, E)
 - V: vertices
 - $E \subseteq 2^V$: hyper edges.
- Vertex: variable with domain Q.
- Hyper edge: constraint on its variables.
- Weight functions(factors): $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$
 - each variable $\phi_v:Q \to \mathbb{R}_{\geq 0}$;
 - each constraint $\phi_e: Q^e \to \mathbb{R}_{\geq 0}$.
- Each configuration $\sigma \in Q^V$: its weight

$$w(\sigma) = \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e).$$

hyper graph H = (V, E)

Graphical Model

Instance
$$\mathcal{I} = (V, E, Q, \Phi)$$

- V: variables
- E: constraints
- Q: domain
- $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$: weight functions (factors)

Gibbs distribution μ over Q^V :

$$\forall \sigma \in Q^V : \ \mu(\sigma) \propto w(\sigma) = \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e)$$

Hardcore Model

- Graph G = (V, E)
- $I(G) = \{ \text{independent sets in } G \}.$
- Fugacity of vertex $v \in V$: $\lambda_v \in \mathbb{R}_{\geq 0}$.
- Weight of independent set $S \in I(G)$:

• Hardcore model: distribution μ over I(G), each $S \in I(G)$:

Ising Model

- Graph G = (V, E).
- Inverse temperature of edge $e \in E$: $\beta_e \in \mathbb{R}_{\geq 0}$.
- Spin state of vertex $v \in V$: $\{-1, +1\}$.
- Weight of configuration $\sigma \in \{-1, +1\}^V$

$$w(\sigma) = \prod_{e=\{u,v\}\in E} \exp(\beta_e \sigma_u \sigma_v)$$
. product of pairwise interactions

• Ising model: distribution μ over $\{-1, +1\}^V$:

$$\mu(\sigma) \propto w(\sigma)$$
.

Weight= $\exp(-\beta_1) \exp(\beta_2) \exp(\beta_3) \exp(-\beta_4) \exp(-\beta_5)$.

Graphical Model

- Machine Learning representation, inference, learning;
- Statistical Physics
 Ising model, hardcore model;
- Theoretical Computer Science sampling, counting.

application: image denoising

Sampling from Graphical Model

- Input: a graphical model \mathcal{I} ;
- Output: a sample $X \sim \mu_{\mathcal{I}}$.

Dynamic Sampling Problem

• Graphical model $\mathcal{I} = (V, E, Q, \Phi)$

$$\mu_{\mathcal{I}}(\sigma) \propto \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e).$$

- Random sample: $X \sim \mu_{\mathcal{I}}$.
- Updates of graphical model $\mathcal{I} \to \mathcal{I}'$
 - add/delete constraints;
 - change weight functions.

Question: Can we modify X to $X' \sim \mu_{J'}$ with a *small incremental cost*?

random sample for updated graphical model

Update is **represented** by a pair (D, Φ_D)

- $D \subseteq V \cup 2^V$: updated variables & updated constraints;
- $\Phi_D = (\phi_a)_{a \in D}$: new weight functions.

input graphical model

$$\mathcal{I} = (V, E, Q, \Phi)$$

updated graphical model

$$\mathcal{I}' = (V, E', Q, \Phi')$$

updated constraints updated weight functions

Dynamic Sampling from Graphical Model

- a graphical model \mathcal{I} ; a sample $X \sim \mu_{\mathcal{I}}$ • Input: an update (D, Φ_D) that modifies \mathcal{I} to \mathcal{I}' ;
- **Output**: a sample $X' \sim \mu_{\tau'}$.

Offline adversary: update is **independent** with the input sample X.

Motivations

- Online learning with dynamic or streaming data
- Dynamic graphical models
 - Video: a sequence of closely related images.

- Approximate counting [Jerrum, Valiant, Vazirani, 1986]
 - Graph G = (V, E), count #{independent sets of G}.
 - Self reduction: a sequence of graphs $G_0, G_1, \dots, G_{|E|}$:

Static Sampling

- Input: a graphical model \mathcal{I} ;
- Output: a sample $X \sim \mu_{\mathcal{I}}$.

Well studied

Dynamic Sampling

- Input: a graphical model \mathcal{I} ; a sample $X \sim \mu_{\mathcal{I}}$ a update (D, Φ_D)
- Output: a sample $X' \sim \mu_{J'}$.

Lacking studies

Algorithms for static sampling

- Markov chain Monte Carlo (MCMC)
 - Metropolis Hastings [Metropolis 1953]
 - Glauber Dynamics [Glauber 1963]
- Coupling from the past (CFTP) [Propp and Wilson 1996]

Not suitable for dynamic sampling, per se.

- can not use the input sample X;
- rerunning sampling algorithm on \mathcal{I}' is wasteful.

Our Contribution

New **Algorithm**

Dynamic Sampling Problem

- **Input**: a graphical model \mathcal{I} ; a sample $X \sim \mu_{\mathcal{I}}$ a update (D, Φ_D)
- **Output**: a sample $X' \sim \mu_{I'}$.

- Fast
 - a broad class of graphical models $\Longrightarrow \mathbb{E}[\text{running time}] = O(|D|)$

- Exact Sampling
 - **X** follows precisely distribution $\mu_{I'}$
- Las Vegas algorithm knows when to stop
- Distributed / Parallel each step uses only local information

Graphical Model

Instance
$$\mathcal{I} = (V, E, Q, \Phi)$$

- V: variables
- E: constraints
- Q: domain
- $\Phi = (\phi_v)_{v \in V} \cup (\phi_e)_{e \in E}$: weight functions (factors)

Gibbs distribution μ over Q^V :

$$\forall \sigma \in Q^V : \ \mu(\sigma) \propto w(\sigma) = \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e)$$

Rejection Sampling

Graphical model $\mathcal{I} = (V, E, Q, \Phi)$ with Gibbs distribution

$$\mu_{\mathcal{I}}(\sigma) \propto \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e).$$

Assumption: normalized weighted functions

- each $\phi_v: Q \to [0,1]$ is a **distribution** over $Q: \sum_{c \in Q} \phi_v(c) = 1$;
- each $\phi_e: Q^e \to [0,1]$.

Rejection Sampling

- Each $v \in V$ samples $X_v \sim \phi_v$ ind.;
- Each $e \in E$ becomes accepted ind. w.p. $\phi_e(X_e)$; o.w. e becomes rejected
- Accept $X = (X_v)_{v \in V}$ if all $e \in E$ are accepted;
- **Reject** *X* if otherwise.

$$\Pr[X = \sigma \land X \text{ is accepted}] = \prod_{v \in V} \phi_v(\sigma_v) \prod_{e \in E} \phi_e(\sigma_e).$$

$$\text{generate } X = \sigma \text{ all } e \in E \text{ are accepted}$$

$$\Pr[\text{all } e \in E \text{ are accepted}] = \exp(-\Omega(|E|)).$$

Rejection Sampling is Correct but Slow.

Question

Can we obtain an **efficient** rejection sampling algorithm?

- Fast
- Dynamic
- Distributed / Parallel

This problem was **partially solved** by Partial Rejection Sampling (PRS) [Guo, Jerrum, Liu, 2017].

- Boolean weight function $\phi_e \to \{0,1\}$
- Not known to be dynamic
- Not distributed / parallel

Our Contribution

New Algorithm

Dynamic Sampling Problem

• Input: a graphical model \mathcal{I} ;

a sample $X \sim \mu_{\mathcal{I}}$

a update (D, Φ_D)

• Output: a sample $X' \sim \mu_{I'}$.

Efficient Rejection Sampling

- Fast
- Dynamic
- Distributed/Parallel

Rejection Sampling

- Each $v \in V$ samples $X_v \sim \phi_v$ ind.;
- Each $e \in E$ becomes accepted ind. w.p. $\phi_e(X_e)$; o.w. e becomes rejected
- Accept $X = (X_v)_{v \in V}$ if all $e \in E$ are accepted;
- Reject X if otherwise.

The sample X is rejected

Set of **Bad Variables**

$$\mathcal{R} = \bigcup_{\substack{e \in E:\\ e \text{ is rejected}}} e,$$

 \mathcal{R} : variables in rejected constraints

accepted constraint rejected constraint

- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$ ind.; o.w. e becomes rejected
- each $e \in ICD(\mathcal{R})$ becomes accepted ind. w.p. $\phi_e(X_e)$;
- construct new $\mathcal{R} \leftarrow \bigcup_{e \in E:e \text{ is rejected } e}$.

 $ICD(\mathcal{R})$: constraints **incident** to \mathcal{R}

$$ICD(\mathcal{R}) = \{ e \in E \mid e \cap \mathcal{R} \neq \emptyset \}.$$

- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$ ind.; o.w. e becomes rejected
- each $e \in ICD(\mathcal{R})$ becomes accepted ind. w.p. $\phi_e(X_e)$;
- construct new $\mathcal{R} \leftarrow \bigcup_{e \in E:e \text{ is rejected }} e$.

While $(\mathcal{R} \neq \emptyset)$ Update (X, \mathcal{R}) by "Natural" Resampling Algorithm Output X.

- Similar to Moser-Tardos for LLL. [Moser, Tardos, 2009]
- The output X does **NOT** follow the Gibbs distribution μ . [Harris, Srinivasan, 2016], [Guo, Jerrum, Liu, 2017]

- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$ ind.;
- each $e \in ICD(\mathcal{R})$ becomes accepted ind. w.p. $\phi_e(X_e)$;
- construct new $\mathcal{R} \leftarrow \bigcup_{e \in E:e \text{ is rejected } e}$.

 $ICD(\mathcal{R})$: constraints incident to set \mathcal{R}

$$\operatorname{ICD}(\mathcal{R})$$

internal constraints

$$E(\mathcal{R}) = \{ e \in E \mid e \subseteq \mathcal{R} \};$$

ICD(
$$\mathcal{R}$$
) = { $e \in E \mid e \subseteq \mathcal{R}$ };
• boundary constraints $\delta(\mathcal{R}) = \{ e \in E \setminus E(\mathcal{R}) \mid e \cap \mathcal{R} \neq \emptyset \}.$

- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$ ind.;
- each $e \in ICD(\mathcal{R})$ becomes accepted ind. w.p. $\phi_e(X_e)$;
- construct new $\mathcal{R} \leftarrow \bigcup_{e \in E:e \text{ is rejected } e}$.

Our Algorithm: Local-Resample(X, \mathcal{R})

- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$ ind.;
- each $e \in E(\mathcal{R})$ becomes accepted ind. w.p. $\phi_e(X_e)$;
- each $e \in \delta(\mathcal{R})$ becomes accepted ind. with a modified probability;
- construct new $\mathcal{R} \leftarrow \bigcup_{e \in E:e}$ is rejecte e.
- return (X, \mathcal{R}) ;

Our Algorithm: Local-Resample(X, \mathcal{R})

- each $v \in \mathcal{R}$ resamples $X_v \sim \phi_v$ ind.;
- 2 each $e \in E(\mathcal{R})$ becomes accepted ind. w.p. $\phi_e(X_e)$;
- ③ each $e \in \delta(\mathcal{R})$ becomes accepted ind. w.p. $C_e \cdot \frac{\phi_e(X_e)}{\phi_e(X_e^{old})} \le 1$;
- 4 construct new $\mathcal{R} \leftarrow \bigcup_{e \in E:e \text{ is rejected } e} e$. normalization factor
- (5) return (X, \mathcal{R}) ;

 $X^{old} \in Q^V$ is the old X before the resampling in step 1

Normalization Factor
$$C_e = C_e(X_{\mathcal{R}}^{old})$$
:
$$C_e = \min_{y \in Q^e: y_{e \cap \mathcal{R}} = X_{e \cap \mathcal{R}}^{old}} \phi_e(y).$$

While(
$$\mathcal{R} \neq \emptyset$$
)
$$(X, \mathcal{R}) \leftarrow \textbf{Local-Resample}(X, \mathcal{R})$$
Output X .

Correct **Distribution**

Dynamic Sampler

Dynamic Sampling from Graphical Model

- Input: a graphical model \mathcal{I} ; a sample $X \sim \mu_{\mathcal{I}}$ a update (D, Φ_D) that modifies \mathcal{I} to \mathcal{I}' ;
- Output: a sample $X' \sim \mu_{\gamma'}$.
- D: updated variables & updated constraints;
- vbl(D): variables **involved** by the update:
 - updated variables: $D \cap V$;
 - variables incident to updated constraints: $\bigcup_{e \in D \cap 2^V} e$.

The initial bad set $\mathcal{R} = \text{vbl}(D)$.

Dynamic Sampler

- Apply changes (D, Φ_D) to current graphical model \mathcal{I} .
- $\mathcal{R} \leftarrow \text{vbl}(D)$;
- While($\mathcal{R} \neq \emptyset$)
 - $(X, \mathcal{R}) \leftarrow \text{Local-Resample}(X, \mathcal{R});$
- Return *X*;

Theorem: Correctness [This Work]

Upon termination, the dynamic sampler outputs $X \sim \mu_{J'}$.

A dynamic sampler for general graphical model:

- Exact sampling
- Las Vegas
- Distributed / Parallel

Proof of Correctness

Dynamic Sampler

- Apply changes (D, Φ_D) to current graphical model \mathcal{I} .
- $\mathcal{R} \leftarrow \text{vbl}(D)$;
- While(R ≠ Ø)
 - $(X, \mathcal{R}) \leftarrow \text{Local-Resample}(X, \mathcal{R});$
- Return *X*;

The algorithm maintains $(X, \mathcal{R}) \in Q^V \times 2^V$

- \mathcal{R} : bad set;
- $V \setminus \mathcal{R}$: good set

 $X_{V \setminus \mathcal{R}}$ follows "correct" distribution.

Conditional Gibbs property w.r.t. μ

Conditioning on any $\mathcal{R} \subseteq V$ and any assignment $\sigma \in Q^{\mathcal{R}}$ of $X_{\mathcal{R}}$, the distribution of $X_{V \setminus \mathcal{R}}$ is $\mu_{V \setminus \mathcal{R}}^{\sigma}$.

 $\mu_{V\setminus\mathcal{R}}^{\sigma}$: marginal distribution of μ on $V\setminus\mathcal{R}$ conditioning on σ .

Local-Resample(X, \mathcal{R})

Resampling chain

- Markov chain on $\Omega = Q^V \times 2^V$
- Transition Matrix $P \in \mathbb{R}^{\Omega \times \Omega}$

 $P \colon (X, \mathcal{R}) \to (X', \mathcal{R}')$

Equilibrium Condition

If (X, \mathcal{R}) satisfies the conditionally Gibbs property w.r.t. μ , then so does (X', \mathcal{R}') .

Equation System for Equilibrium Condition

$$\forall \ S,T\subseteq V,\sigma\in Q^{V\backslash S} \ \text{and} \ \tau\in Q^{V\backslash T},$$

$$\forall y\in Q^V,y_{V\backslash T}=\tau\colon \sum_{\substack{x\in Q^V\\x_{V\backslash S}=\sigma}}\mu_S^\sigma(x_S)\cdot P\big((x,S),(y,T)\big)=C(S,\sigma,T,\tau)\cdot \mu_T^\tau(y_T).$$

Our algorithm is a solution to this equation system.

Theorem: Fast Convergence [This Work]

The updated graphical model satisfies d = O(1), $\max_{e \in E'} |e| = O(1)$, and

$$\forall e \in E' \colon \min_{x} \phi'_{e}(x) > \sqrt{1 - \frac{1}{d+1}}$$

where d is the maximum degree of the dependency graph.

The cost of the dynamic sampler is

- $O(\log |D|)$ iterations in expectation;
- O(|D|) resamplings in expectation.

$$\mathcal{J}$$
 Update (\mathbf{D}, Φ_D) \mathcal{J}'

Ising Model: $\forall e \in E$:

Uniqueness Regime: $\forall e \in E$:

$$1 - \exp(-2|\beta_e|) < \frac{2}{\Delta}$$

Theorem: Fast Convergence [This Work]

Hardcore model and Ising model on bounded degree graph s.t.

- Hardcore model: $\forall v \in V$: $\lambda_v \leq \frac{1}{\sqrt{2}\Delta 1}$.
- Ising model: $\forall e \in E$: $1 \exp(-2|\beta_e|) \le \frac{1}{2.2214+1}$,

where Δ is the maximum degree.

The **cost** of the dynamic sampler is

- $O(\log |D|)$ iterations in expectation;
- O(|D|) resamplings in expectation;

Uniqueness Regime:

• Hardcore model:
$$\forall v \in V$$
: $\lambda_v < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta - 2}$.
$$\lambda_v = O\left(\frac{1}{\Delta}\right)$$
• Ising model: $\forall e \in E$: $1 - \exp(-2|\beta_e|) < \frac{2}{\Delta}$. $1 - \exp(-2|\beta_e|) = O\left(\frac{1}{\Delta}\right)$

• Ising model:
$$\forall e \in E: 1 - \exp(-2|\beta_e|) < \frac{2}{\Delta}$$

$$\lambda_v = O\left(\frac{1}{\Delta}\right)$$

$$1 - \exp(-2|\beta_e|) = O\left(\frac{1}{\Delta}\right)$$

Proof of the Fast Convergence

$$\mathcal{R}_0 = \mathrm{vbl}(D)$$
 \longrightarrow \mathcal{R}_1 \longrightarrow \mathcal{R}_2 \longrightarrow \circ \circ \longrightarrow $\mathcal{R}_T = \emptyset$

Potential function on bad set \mathcal{R}_t

$$H: 2^V \to \mathbb{Z}_{\geq 0}$$

Step-wise decay on expectation of $H(\mathcal{R}_t)$

$$\mathbb{E}[H(\mathcal{R}_t)] \le (1 - \delta)\mathbb{E}[H(\mathcal{R}_{t-1})].$$

Summary

- Dynamic sampling problem.
- Dynamic sampler for general graphical models
 Exact Sampling & Las Vegas & Distributed/Parallel.
- Equilibrium conditions for resampling.

Future Work

- Dynamic MCMC sampling [Feng, He, Yin, Sun, arXiv:1904.11807]
- Improve the regimes for efficient dynamic sampling correlation decay \Rightarrow efficient dynamic sampling algorithm.
- Extend to continuous distributions & global constraints.

Thank You

See you at the poster session #131

