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Graphical Model

* Hyper graph H = (V,E)
* I/ vertices
« E € 2V: hyper edges.
* Vertex: variable with domain Q.

* Hyper edge: constraint on its variables.

» Weight functions(factors): ® = (¢,)per U (Pe) ecE
* each variable ¢,: Q = R.;
* each constraint ¢,: Q¢ — R.

e Each configuration o € Q"': its weight

w(@) = | [#u() | et

vev eeE

hyper graph
H=(V,E)



Graphical Model

Instance ] = (V,E,Q, D)
e V: variables
* [': constraints
* (): domain
e d = (¢p,)pery U (@p)ocr: Weight functions (factors)

Gibbs distribution u over QV:

Vo € QV: u(o) x w(o) = 1_[¢v(0v) 1_[¢e(0-8)
VeV eckE
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Hardcore Model
* GraphG = (V,E)
1(G) ={independent sets in G}.
* Fugacity of vertexv € V: 4, € R.,.
« Weight of independent set S € I(G):

. product of
w(S) = 1_[ Ay . vertex fugacities

VES
* Hardcore model: distribution u over I(G), each S € I(G):

u(S) ccw(s).

60 iﬁiﬁiﬁﬁiﬁﬁ

Graph G Weight: 1

|

independent setsin G
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Ising Model

* Graph G = (V,E).

* Inverse temperature of edgee € E: [, € R.,.
* Spin state of vertexv € V: {—1, +1}.
 Weight of configuration ¢ € {—1, +1}"

w(o) = 1_[ exp(fe0y0y) . product of

pairwise interactions

e={u,v}€E
* Ising model: distribution u over {—1, +1}":
u(o) < w(o).
B P2 Weight=exp(—p1) exp(B2) exp(B3) exp(—pa) exp(—Ps).

B3
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Graphical Model

* Machine Learning
representation, inference, learning;

Statistical Physics
Ising model, hardcore model;

Theoretical Computer Science
sampling, counting. application: image denoising

Sampling from Graphical Model

* Input: a graphical model 7;

Output: a sample X ~ uj.
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Dynamic Sampling Problem

* Graphical model 7 = (V, E, Q, ) ‘ ‘Cbe
Hg (0-) X quv(o-v) l_[ d)e(o-e)- . ‘
vevV ecE
¢ 7
N

* Random sample: X ~ us.

e Updates of graphical model 7 —» 7’

 add/delete constraints; (/)1')4_

* change weight functions.

Question: Can we modify X to with a small incremental cost?
1

random sample for updated graphical model
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Update is represented by a pair (D, ®p)
D €V U2Y:updated variables & updated constraints;
e &y = (¢p,)qep: new weight functions.

input graphical model update (D, ®p) updated graphical model
7= (V,E,Q,®) 7= (VE, QP

updated constraints updated weight functions

Dynamic Sampling from Graphical Model
* Input: agraphical model 7; a sample X ~ u4
an update (D, ®p) that modifies 7 to 7';
* Output: a sample X' ~ p,.

Offline adversary: update is independent with the input sample X.
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Motivations

* Online learning with dynamic or streaming data

* Dynamic graphical models
* Video: a sequence of closely reIated images.

* Approximate counting [Jerrum, Valiant, Vazirani, 1986]

* Graph G = (V,E), count #{independent sets of G}.
* Self reduction: a sequence of graphs G, Gy, ..., Gg):

52 5555 o8 of 23 &
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. . Dynamic Sampling
Static Sampling * Input: a graphical model 7;
e Input: a graphical model J; asample X ~ gy

* Output: asample X ~ . a update (D, Pp)
* Output: asample X' ~ pqr.

Well studied Lacking studies

Algorithms for static sampling

 Markov chain Monte Carlo (MCMC)
 Metropolis Hastings [Metropolis 1953]
* Glauber Dynamics [Glauber 1963]

* Coupling from the past (CFTP) [Propp and Wilson 1996]

Not suitable for dynamic sampling, per se.
* can not use the input sample X;
* rerunning sampling algorithm on 7’ is wasteful.
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Our Contribution

Dynamic Sampling Problem

New * Input: a graphical model 7;
. a sample X ~ g
Algorithm a update (D, ®p)
* Output: asample X' ~ pqr.
* Fast
a broad class of graphical models ™ E[running time] = O(|D|)
* Exact Sampling
X follows precisely distribution pr
* Las Vegas

algorithm knows when to stop

Distributed / Parallel

each step uses only local information
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Graphical Model

Instance ] = (V,E,Q, D)
e V: variables
* [': constraints
* (): domain
e d = (¢p,)pery U (@p)ocr: Weight functions (factors)

Gibbs distribution u over QV:

Vo € QV: u(o) x w(o) = 1_[¢v(0v) 1_[¢e(0-8)
VeV eckE
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Rejection Sampling

Graphical model 7 = (V, E, Q, @) with Gibbs distribution

p(@) o | [du(a) | [ gelon).

vevV eeE

Assumption: normalized weighted functions

* each ¢,: Q — [0,1] is a distribution over Q: .o ¢, (c) = 1;
* each ¢,.: Q¢ — [0,1].
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Rejection Sampling

Each v € V samples X,, ~ ¢, ind.;

Each e € E becomes accepted ind. w.p. ¢.(X,); o.w. e becomes rejected

Accept X = (X,),ey if all e € E are accepted;

* Reject X if otherwise.

Pr|X = o A X is accepted] = 1_[ ¢, (0y,) 1_[ ¢b.(0,).

vevV eeE

generate X = o all e € E are accepted
Pr[all e € E are accepted] = exp(—Q(IEI)).

Rejection Sampling is Correct but Slow.

2019/6/26 Dynamic Sampling from Graphical Models
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Question

Can we obtain an efficient rejection sampling algorithm ?
* Fast

* Dynamic

e Distributed / Parallel

This problem was partially solved by
Partial Rejection Sampling (PRS) [Guo, Jerrum, Liu, 2017].

* Boolean weight function ¢, — {0,1}
* Not known to be dynamic
* Not distributed / parallel

2019/6/26 Dynamic Sampling from Graphical Models
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Our Contribution

Dynamic Sampling Problem

* Input: a graphical model 7;
asample X ~ uy
a update (D, ®p)

* Output: a sample X' ~ .

New
Algorithm
Efficient Rejection Sampling
* Fast
* Dynamic

 Distributed/Parallel
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R: variables in rejected constraints

2019/6/26

Rejection Sampling

Eachv € V samples X, ~ ¢, ind.;

Each e € E becomes accepted ind. w.p. ¢.(X.); o.w. e becomes rejected
Accept X = (X,,) ey if all e € E are accepted;

Reject X if otherwise.

The sample X is rejected

Set of Bad Variables ®
O O
R = U e, E‘ ‘ ® \ y
eeLk:

e isrejected

O accepted constraint
O rejected constraint

Dynamic Sampling from Graphical Models
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A “Natural” Resampling Algorithm
* each v € R resamples X,, ~ ¢, ind.; 0.w. e becomes rejected
* each e € ICD(R) becomes accepted ind. w.p. ¢, (X,);

o — . :
construct new R UeEE:e is rejected e.

ICD(R): constraints incident to R
ICD(R)={e€E|lenR+=0Q}

2019/6/26 Dynamic Sampling from Graphical Models
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A “Natural” Resampling Algorithm
* each v € R resamples X,, ~ ¢, ind.; 0.w. e becomes rejected
* each e € ICD(R) becomes accepted ind. w.p. ¢, (X,);

o — . :
construct new R UeEE:e is rejected e.

While(R + Q)
Update (X, R) by “Natural” Resampling Algorithm «
Output X.

Wrong
Distribution

e Similar to Moser-Tardos for LLL. [Moser, Tardos, 2009]

* The output X does NOT follow the Gibbs distribution p.
[Harris, Srinivasan, 2016], [Guo, Jerrum, Liu, 2017]
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A “Natural” Resampling Algorithm
*eachv € R resamples X, ~ ¢, ind.;
* each e € ICD(R) becomes accepted ind. w.p. ¢, (X,);

o — . :
construct new R UeEE:e is rejected e.

ICD(R): constraints to set R
* internal constraints

E(R)={e€eE|ecS R}
* boundary constraints
S(R)={e€e EA\E(R)|enR+0}.

[CD(R
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A “Natural” Resampling Algorithm
*eachv € R resamples X, ~ ¢, ind.;
* each e € ICD(R) becomes accepted ind. w.p. ¢, (X,);

o — . :
construct new R UeEE:e is rejected e.

Our Algorithm: Local-Resample(X, R)
*each v € R resamples X, ~ ¢, ind.;
{ each e € E(R) becomes accepted ind. w.p. ¢, (X,);

each e € 6(R) becomes accepted ind. with a modified probability;

e construct new R « U
* return (X, R);

ecE:e is rejecte ¢

2019/6/26 Dynamic Sampling from Graphical Models
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Our Algorithm: Local-Resample(X, R)
1) each v € R resamples X,, ~ ¢, ind.;
(2) each e € E(R) becomes accepted ind. w.p. ¢, (X,);
Pe(Xe)

(3 each e € 6(R) becomes accepted ind. w.p. C, 5o (21 <1;
@) constructnew R « U, .. is rejected ¢ normalization \
B return (X, R); factor )
X°4 € QV is the old X before the resampling in step (1)
Normalization Factor C, = Ce(X%ld ; While(R # @)
C, = min :
€ yEQe:ye:R: xold Pe(y) (X,R) <Local-Resample( X, R)

Output X.

)j?OldQ Correct
i Distribution
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Dynamic Sampler

Dynamic Sampling from Graphical Model
* Input: agraphical model 7; a sample X ~ 4 ‘ @
a update (D, ®p) that modifies 7 to 7';

* Output: asample X' ~ . ‘ ‘
@

e D:updated variables & updated constraints;
e vbl(D): variables involved by the update:

e updated variables: D N V; @
* variables incident to updated constraints:U__, ,v €. Pv .
Graphical models 7 and 7’ differ only on vbl(D).

4

The initial bad set R = vbl(D).
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Dynamic Sampler

* Apply changes (D, ®p) to current graphical model J.
* R « vbl(D);
* While(R # Q)
* (X,R) «<Local-Resample(X, R);
* Return X;

Theorem: Correctness [This Work]
Upon termination, the dynamic sampler outputs X ~ p.

A dynamic sampler for
* Exact sampling

* Las Vegas

* Distributed / Parallel



Proof of Correctness

Dynamic Sampler The algorithm maintains (X, R) € QVx2V

* Apply changes (D, ®p) to current graphical model J. ° R: bad Set"
* R < vbl(D);
. While(R # )  I/'\ R:good set
* (X,R) «<Local-Resample(X, R); " o a . .
+ Return X; Xinr follows “correct” distribution.

Conditional Gibbs property w.r.t. u

Conditioning on any R € V and any assignment
0 € Q* of Xz, the distribution of X\ is tp\z.

good set V\R
ug\R: marginal distribution of u on V\R conditioning on o.



Resampling chain

define  ° Markov chain on Q = Q" x2V
Local-Resample(X, R) mmmm=) « Transition Matrix P € R®**¢

P: X,R) » X, R")

Equilibrium Condition

If (X, R) satisfies the conditionally Gibbs property w.r.t. 4,
then so does (X', R').

)

Equation System for Equilibrium Condition
VSTCV,oceQ"Sandt e "V,

vy e ypr =1 ) uExs) P65, 1) = HE ().
ST |

Our algorithm is a solution to this equation system.




Theorem: Fast Convergence [This Work]

The updated graphical model satisfies d = 0(1), m%)lilel = 0(1), and
ec

1
Ve € E': min ¢, > 1 ———
e €5 mingi() > |1-g55

where d is the maximum degree of the dependency graph.

The cost of the dynamic sampler is Update (D, ®p) qr

J
* O(log|D]|) iterations in expectation;
* O(|D|) resamplings in expectation.
Ising Model: Ve € E: Uniqueness Regime: Ve € L
1 2
1 —exp(=2|Bel) <% 1 —exp(—=2|B.]) <+

4A A



Theorem: Fast Convergence [This Work]

Hardcore model and Ising model on bounded degree graph s.t.

1
. L] L} <
Hardcore model: Vv € V: A, < NI

, 1
Ising model: Ve € E: 1 — exp(—2|B,|) < TTIIVEL

where A is the maximum degree.

The cost of the dynamic sampler is
* O(log|D]) iterations in expectation;

* 0O(|D]|) resamplings in expectation;

Uniqueness Regime:

. . @D e =0 (=
Hardcore model: Vv € V: 4,,< B2h S Az Ay =0 (A)

* Ising model: Ve € E: 1 — exp(—2|B,]) < %- 1 —exp(=2[Bcl) = 0 (%)




Proof of the Fast Convergence
Ro=vbl(D) W) R, W) R, W) W) R =0

Potential function on bad set R, E[H(R.)]

H:ZV _)ZZO

Step-wise decay on expectation of H(R;)

IE[H(:Rt)] <(1- S)E[H(jet—l)]- L
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Summary

Dynamic sampling problem.

Dynamic sampler for general graphical models

Exact Sampling & Las Vegas & Distributed/Parallel.

Equilibrium conditions for resampling.

Future Work

Dynamic MCMC sampling [Feng, He, Yin, Sun, arXiv:1904.11807]

Improve the regimes for efficient dynamic sampling

correlation decay Q7 efficient dynamic sampling algorithm.

Extend to continuous distributions & global constraints.
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Abstract

We study the problem of sampling from a graphical model
when the model itself is changing dynamically with time.

* We give an algorithm that can sample dynamically from a
broad class of graphical models efficiently

We give an equilibrium condition that guarantees the
correctness of the dynamic sampling.

Graphical Model

Graphical models arise in a variety of disciplines ranging from
statistical physics, machine learning, statistics, to theoretical
computer science. A graphical model instance is specified by a
tuple 7 = (V. E, Q. );

variable set (vertex set) V;
constraint set (edge set) E € 2¥;
finite domain Q;
factors (weight functions)
@ = (@o)ver U (bedeek
« each ¢:Q — Rg; hyper graph
« each : Q° = Rug; =)

Gibbs distribution u over Q”
[#e
£

Example: Ising model 7 = (V, E, §)
+ graph G = (V,E);
« finite domain Q = {~1,+1};
* inverse temperature B = (8 )ece, €ach f € Ryo;
* Gibbs distribution  over {~1,+1}¥:
Voe{-1,+1), (o) 1_[ exp(Beaudy)

e=tui)er

vaeq', x|

uniueness condition
2
VeEE: exp(-2l)>1-7.

Example: hardcore model 7 = (V, E, 4).
+ graph G = (V,E);
finite domain Q = {0,1};
* fugacity 2= (0y)vey, each 4, € Rs;
* Gibbs distribution u over {0,1}: V o € {0,1}",

Ay if 1()is an independent set,
n(o) x vei()
0 if I(0)is not an independent set,
where () = {vEV o, =1};
* uniqueness condition

Dynamic Sampling from Graphical Models

Dynamic Sampling Problem

Given: dynamic graphical model and current sample.
Main question : "Can we obtain a sample from an updated
graphical model with a small incremental cost?"

Updates of graphical model
+ add/delete constraints;

« change factors ¢, — ¢}, @, = bl

* add/delete independent variables.

An update of graphical model 7 = (V, E, Q, ®) is representet
bya pair (D, ®p)
D €V U2"; updated variables and constraints;
* o = ($o)vepnv U (@e)eepnzv: new factors.
¢

Input CE@) updated
graphical model  e— graphical model
V.,E, Q@) 7 =(V,E,Q%)

Dynamic sampling from graphical model

d

* Input: a graphical model 7, a sample X ~ g,
and an update (D, ) that modifies 7 to 7"

* Output: asample X' ~ jiyr.

Offline adversary: the update (D, &) is t

Dynamic Sampler
Notations
Update of graphical model (D, ).
VbI(D) i= (D NV) U (U,epv €): variables involved by the|
update (D, ¢p)
* updated variables;

 variables incident to updated constraints.

Rired varables

BCR); bue consraint

() green constaints
w0

VBI(DY: e variables

Subset of variables R < V:
« internal constraints E(R) = {e € E | e € R}
* boundary constraints §(R) := {e € E\E(R) | enR # 0}
« incident constraints E*(R) := E(R) U §(R).

The Algorithm

Assumption: normalized factors = (¢b,)yey U (fe)eck
each ¢,: Q ~ [0,1] is a distribution over Q;
each ¢:Q° > [0,1].

Dynamic Sampler
Input: a graphical model 7 and a sample X ~ juy;
Update: an update (D, ¢p) that modifies 7 — 7';
« apply changes (D, ¢, to current graphical model 7;
« R e vbl(D);
+ While(R # 0)
* (X,R) «Local-Resample(X, R);
« Retum X;

the input random sample X ~ 4y

Motivation
Approximate counting [Jerrum, Valiant, Vazirani, 1986]
* Givenagraph G = (V, E),
count #{independent sets of G}.

* Self reduction: a sequence of graphs Go, Gy, .., Gz
Nicoos ol e 2T Y

oo o0o0 o
G

G Gy Gy Gy Gy Gs

* Counting memp Sampling uniform independent sets.
Inference/learning tasks
« online learning with dynamic or streaming data;
« dynamic graphical models e.g. videos.

Local-Resample(X, R):

+ eache € E*(R) computes x,; e first, compute K,

* eachv € Rresamples X, ~ ¢,; 4mm then , update Xz

+ eache € E*(R) samples F; € (0,1} independently s..
Pr{F, = 0] = Kegpe (X.); 4mm depend on

¢ X e Xand R« Uyeprayryet € both old and

+ Return (X', R); new samples
- X
R xrall i
Yeon=te
3

(with the convention % = 1),
Ke: the minimurn value of ¢,(y) conditioning on the
assignment of y on e N R is fixed as Xenz

Properties:
« foreache € E(R), k, = 1;
« foreache € 5(R), k, < 1.

Our Results
Theorem: Correctness
‘The dynamic sampler outputs the correct sample X ~ ¢
guaranteed by the equilibrium condition
Features of the Algorithm
dynamic, exact sampling, Las Vegas, distributed/parallel.

Theorer

Fast Convergence
+ di=max|{e’ € E\{e} | e ne' # 0}f: the maximum
degree of the dependency graph

© Ve€E: ming, 2 =

= the cost of the dynamic sampler:
* 0(log|D]) iterations in expectation;
+ 0(ID]) resamplings in expectation.
Better results on concrete graphical models:

« Isingmodel: Ve € E: exp(—2|B,]) =1 —

1
prorey
1

+ Hardcore model: Vv € Vi 4, < 7

Equilibrium Condition

The dynamic sampler maintains a random pair
(X, R) € Q¥x2".

R: current resample set that contains the

problematic variables to be resampled;

R: current sanity set that contains the
non-problematic variables.

santy st
w

Conditional Gibbs property:

Arandom pair (X, R) € Q"x2 is conditionally Gibbs w.rt.
1 if conditioning on any R € V and any assignment o € Q%
of Xg, the distribution of Xy is precisely 4z

1§z marginal distribution of i on V\R conditioning on 0.

When R = 8, the random sample X ~ .

Resampling chain
‘The resampling algorithm is a Markov chain over Q" x2"
‘with transition matrix P: (X, R) — (X', R").

Equilibrium condition for resampling chain:
If (X, R) is conditionally Gibbs w.rt. 4, then (X', R'
conditionally Gibbs w.t.

‘The condition is established by verifying equation system:
¥ STEV,0eQ  andr e QY

VY EQ =15 ) ) P( 5, (nT)) =S, 0,T. ) ).
Dynamic Sampling  @solutionto  Equation System
Algorithm Equilibrium Condition
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