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Graphical Model
• Hyper graph 𝐻 = 𝑉, 𝐸

• 𝑉: vertices
• 𝐸 ⊆ 2!: hyper edges.

• Vertex: variable with domain 𝑄.

• Hyper edge: constraint on its variables.

• Weight functions(factors): Φ = (𝜙")"∈! ∪ 𝜙$ $∈%
• each variable 𝜙": 𝑄 → ℝ&';
• each constraint 𝜙$: 𝑄$ → ℝ&'.

• Each configuration 𝜎 ∈ 𝑄!: its weight

𝑤 𝜎 =5
"∈!

𝜙" 𝜎" 5
$∈%

𝜙$ 𝜎$ .
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hyper graph 
𝐻 = (𝑉, 𝐸)



Graphical Model
Instance ℐ = (𝑉, 𝐸, 𝑄,Φ)

• 𝑉: variables
• 𝐸: constraints
• 𝑄: domain
• Φ = (𝜙!)!∈# ∪ 𝜙$ $∈%: weight functions (factors)
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Gibbs distribution 𝜇 over 𝑄#:

∀𝜎 ∈ 𝑄#: 𝜇 𝜎 ∝ 𝑤 𝜎 =1
!∈#

𝜙! 𝜎! 1
$∈%

𝜙$ 𝜎$



Hardcore Model
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• Graph 𝐺 = (𝑉, 𝐸)
𝐼 𝐺 ={independent sets in 𝐺}. 

• Fugacity of vertex 𝑣 ∈ 𝑉:  𝜆" ∈ ℝ&'.
• Weight of independent set 𝑆 ∈ 𝐼(𝐺):

𝑤 𝑆 = 5
"∈/

𝜆" .

• Hardcore model: distribution 𝜇 over 𝐼 𝐺 , each 𝑆 ∈ 𝐼(𝐺):
𝜇 𝑆 ∝ 𝑤 𝑆 .

1 𝜆!𝜆"𝜆# 𝜆$ 𝜆#𝜆"Graph 𝐺

independent sets in 𝐺

Weight:

𝜆#
𝜆$𝜆"

𝜆!

product of
vertex fugacities



Ising Model
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• Graph 𝐺 = (𝑉, 𝐸).
• Inverse temperature of edge 𝑒 ∈ 𝐸: 𝛽$ ∈ ℝ&'.
• Spin state of vertex 𝑣 ∈ 𝑉: {−1,+1}.
• Weight of configuration 𝜎 ∈ −1,+1 !

𝑤 𝜎 = 5
$0 1," ∈%

exp(𝛽$𝜎1𝜎") .

• Ising model: distribution 𝜇 over −1,+1 !:
𝜇 𝜎 ∝ 𝑤 𝜎 .

𝛽!

𝛽"

𝛽#𝛽$ 𝛽% Weight=exp −𝛽# exp 𝛽$ exp 𝛽" exp(−𝛽!) exp(−𝛽%).

product of 
pairwise interactions



Graphical Model

Sampling from Graphical Model
• Input:     a graphical model ℐ;
• Output:  a sample 𝑿 ∼ 𝜇ℐ.
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• Machine Learning
representation, inference, learning;

• Statistical Physics
Ising model, hardcore model;

• Theoretical Computer Science
sampling, counting. application: image denoising



Dynamic Sampling Problem
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• Graphical model ℐ = (𝑉, 𝐸, 𝑄,Φ)

𝜇ℐ 𝜎 ∝/
"∈!

𝜙" 𝜎" /
$∈%

𝜙$ 𝜎$ .

• Random sample: 𝑿 ∼ 𝜇ℐ.

• Updates of graphical model ℐ → ℐ′
• add/delete constraints;
• change weight functions.

𝜙!𝜙!"

𝜙#

𝜙#"

Question: Can we modify 𝑿 to 𝑿4 ∼ 𝜇ℐ& with a small incremental cost?

random sample for updated graphical model 
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Update is represented by a pair (𝐷,Φ5)
• 𝐷 ⊆ 𝑉 ∪ 2!: updated variables & updated constraints;
• Φ5 = 𝜙6 6∈5: new weight functions.

input graphical model
ℐ = (𝑉, 𝐸, 𝑄,Φ)

updated graphical model
ℐ4 = (𝑉, 𝐸4, 𝑄, Φ′)

update (𝐷,Φ5)

updated constraints updated weight functions

Dynamic Sampling from Graphical Model
• Input:     a graphical model ℐ; a sample 𝑿 ∼ 𝜇ℐ

an update (𝐷,Φ5) that modifies ℐ to ℐ′;
• Output:  a sample 𝑿4 ∼ 𝜇ℐ&.

Offline adversary: update is independent with the input sample 𝑿.



Motivations
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• Approximate counting [Jerrum, Valiant, Vazirani, 1986]
• Graph 𝐺 = (𝑉, 𝐸), count #{𝐢𝐧𝐝𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 𝐬𝐞𝐭𝒔 of 𝐺}.
• Self reduction: a sequence of graphs 𝐺!, 𝐺", … , 𝐺 # :

𝐺& 𝐺! 𝐺% 𝐺$𝐺" 𝐺#𝐺

• Online learning with dynamic or streaming data 

• Dynamic graphical models
• Video: a sequence of  closely related images.
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Static Sampling
• Input:     a graphical model ℐ;
• Output:  a sample 𝑿 ∼ 𝜇ℐ.

Dynamic Sampling
• Input:    a graphical model ℐ; 

a sample 𝑿 ∼ 𝜇ℐ
a update (𝐷,Φ()

• Output:  a sample 𝑿) ∼ 𝜇ℐ!.

Well studied Lacking studies 

Algorithms for static sampling
• Markov chain Monte Carlo (MCMC)
• Metropolis Hastings [Metropolis 1953]
• Glauber Dynamics [Glauber 1963]

• Coupling from the past (CFTP) [Propp and Wilson 1996]

Not suitable for dynamic sampling, per se.
• can not use the input sample 𝑿;
• rerunning sampling algorithm on ℐ! is wasteful.



Our Contribution
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New 
Algorithm

Dynamic Sampling Problem
• Input:    a graphical model ℐ; 

a sample 𝑿 ∼ 𝜇ℐ
a update (𝐷,Φ()

• Output:  a sample 𝑿) ∼ 𝜇ℐ!.

• Fast  
a broad class of graphical models          𝔼 running time = 𝑂(|𝐷|)

• Exact Sampling
𝑿 follows precisely distribution 𝜇ℐ!

• Las Vegas
algorithm knows when to stop

• Distributed / Parallel
each step uses only local information



Graphical Model
Instance ℐ = (𝑉, 𝐸, 𝑄,Φ)

• 𝑉: variables
• 𝐸: constraints
• 𝑄: domain
• Φ = (𝜙!)!∈# ∪ 𝜙$ $∈%: weight functions (factors)
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Gibbs distribution 𝜇 over 𝑄#:

∀𝜎 ∈ 𝑄#: 𝜇 𝜎 ∝ 𝑤 𝜎 =1
!∈#

𝜙! 𝜎! 1
$∈%

𝜙$ 𝜎$



Rejection Sampling
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Graphical model ℐ = (𝑉, 𝐸, 𝑄, 𝛷) with Gibbs distribution

𝜇ℐ 𝜎 ∝.
#∈%

𝜙# 𝜎# .
&∈'

𝜙& 𝜎& .

Assumption: normalized weighted functions

• each 𝜙#: 𝑄 → 0,1 is a distribution over 𝑄: ∑(∈)𝜙# 𝑐 = 1;

• each 𝜙&: 𝑄& → [0,1].
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Pr 𝑿 = 𝜎 ∧ 𝑿 is accepted =5
"∈!

𝜙" 𝜎" 5
$∈%

𝜙$ 𝜎$ .

all 𝑒 ∈ 𝐸 are acceptedgenerate 𝑿 = 𝜎

Pr all 𝑒 ∈ 𝐸 are accepted = exp −Ω 𝐸 .

Rejection Sampling is Correct but Slow.

Rejection Sampling
• Each 𝑣 ∈ 𝑉 samples 𝑋# ∼ 𝜙# ind.;
• Each 𝑒 ∈ 𝐸 becomes accepted ind. w.p. 𝜙&(𝑋&);
• Accept 𝑿 = 𝑋# #∈% if all 𝑒 ∈ 𝐸 are accepted;
• Reject 𝑿 if otherwise.

o.w. 𝑒 becomes rejected
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Question
Can we obtain an efficient rejection sampling algorithm ?
• Fast
• Dynamic
• Distributed / Parallel

This problem was partially solved by 
Partial Rejection Sampling (PRS) [Guo, Jerrum, Liu, 2017].

• Boolean weight function 𝜙* → {0,1}
• Not known to be dynamic
• Not distributed / parallel



Our Contribution
Dynamic Sampling Problem
• Input:    a graphical model ℐ; 

a sample 𝑿 ∼ 𝜇ℐ
a update (𝐷,Φ*)

• Output: a sample 𝑿! ∼ 𝜇ℐ$.
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Efficient Rejection Sampling 
• Fast
• Dynamic
• Distributed/Parallel

New 
Algorithm
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accepted constraint
rejected constraint

Set of Bad Variables

ℛ = *
*∈,:

* is rejected

𝑒,

ℛ: variables in rejected constraints

The sample 𝑿 is rejected

Rejection Sampling
• Each 𝑣 ∈ 𝑉 samples 𝑋" ∼ 𝜙" ind.;
• Each 𝑒 ∈ 𝐸 becomes accepted ind. w.p. 𝜙$(𝑋$);
• Accept 𝑿 = 𝑋" "∈! if all 𝑒 ∈ 𝐸 are accepted;
• Reject 𝑿 if otherwise.

o.w. 𝑒 becomes rejected
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A “Natural” Resampling Algorithm
• each 𝑣 ∈ ℛ resamples 𝑋. ∼ 𝜙. ind.;
• each 𝑒 ∈ ICD(ℛ) becomes accepted ind. w.p. 𝜙*(𝑋*);
• construct new ℛ ← ⋃*∈,:* is rejected 𝑒.

ICD(ℛ): constraints incident to ℛ

ICD ℛ = 𝑒 ∈ 𝐸 𝑒 ∩ ℛ ≠ ∅ . ℛ

o.w. 𝑒 becomes rejected
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A “Natural” Resampling Algorithm
• each 𝑣 ∈ ℛ resamples 𝑋. ∼ 𝜙. ind.;
• each 𝑒 ∈ ICD(ℛ) becomes accepted ind. w.p. 𝜙*(𝑋*);
• construct new ℛ ← ⋃*∈,:* is rejected 𝑒.

o.w. 𝑒 becomes rejected

While(ℛ ≠ ∅)
Update (𝑋, ℛ) by “Natural” Resampling Algorithm 

Output 𝑿.

Wrong
Distribution

• Similar to Moser-Tardos for LLL. [Moser, Tardos, 2009]
• The output 𝑿 does NOT follow the Gibbs distribution 𝜇.

[Harris, Srinivasan, 2016], [Guo, Jerrum, Liu, 2017]
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• internal constraints
𝐸 ℛ = 𝑒 ∈ 𝐸 𝑒 ⊆ ℛ ;

• boundary constraints
𝛿 ℛ = 𝑒 ∈ 𝐸\𝐸(ℛ) 𝑒 ∩ ℛ ≠ ∅ .

ICD(ℛ)

ICD(ℛ):  constraints incident to set ℛ

A “Natural” Resampling Algorithm
• each 𝑣 ∈ ℛ resamples 𝑋. ∼ 𝜙. ind.;
• each 𝑒 ∈ ICD(ℛ) becomes accepted ind. w.p. 𝜙*(𝑋*);
• construct new ℛ ← ⋃*∈,:* is rejected 𝑒.

ℛ
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Our Algorithm: Local-Resample(𝑿,ℛ)
• each 𝑣 ∈ ℛ resamples 𝑋. ∼ 𝜙. ind.;

each 𝑒 ∈ 𝐸 ℛ becomes accepted ind. w.p. 𝜙*(𝑋*);
each 𝑒 ∈ 𝛿(ℛ) becomes accepted ind. with a modified probability;
• construct new ℛ ← ⋃*∈,:* is rejecte 𝑒.
• return (𝑋, ℛ);

A “Natural” Resampling Algorithm
• each 𝑣 ∈ ℛ resamples 𝑋. ∼ 𝜙. ind.;
• each 𝑒 ∈ ICD(ℛ) becomes accepted ind. w.p. 𝜙*(𝑋*);
• construct new ℛ ← ⋃*∈,:* is rejected 𝑒.
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Our Algorithm: Local-Resample(𝑿,ℛ)
① each 𝑣 ∈ ℛ resamples 𝑋" ∼ 𝜙" ind.;
② each 𝑒 ∈ 𝐸 ℛ becomes accepted ind. w.p. 𝜙$(𝑋$);

③ each 𝑒 ∈ 𝛿(ℛ) becomes accepted ind. w.p. ∝ 8" 9"
8"(9"#$%)

④ construct new ℛ ← ⋃$∈%:$ is rejected 𝑒.
⑤ return (𝑋,ℛ);

𝑿;<= ∈ 𝑄! is the old 𝑿 before the resampling in step ①

ℛ
𝑿ℛ;<=

Normalization Factor 𝐶$ = 𝐶$(𝑿ℛ&'(): 
𝐶$ = min

)∈+":)"∩ℛ-."∩ℛ
#$%
𝜙$ 𝑦 .

While(ℛ ≠ ∅)
𝑋,ℛ ←Local-Resample( 𝑿,ℛ)

Output 𝑿.

Correct
Distribution

Our Algorithm: Local-Resample(𝑿,ℛ)
① each 𝑣 ∈ ℛ resamples 𝑋" ∼ 𝜙" ind.;
② each 𝑒 ∈ 𝐸 ℛ becomes accepted ind. w.p. 𝜙$(𝑋$);

③ each 𝑒 ∈ 𝛿(ℛ) becomes accepted ind. w.p. 𝐶$ ⋅
8" 9"
8" 9"#$%

≤ 1;

④ construct new ℛ ← ⋃$∈%:$ is rejected 𝑒.

⑤ return (𝑋,ℛ);
normalization 

factor 



Dynamic Sampler
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Dynamic Sampling from Graphical Model
• Input:     a graphical model ℐ; a sample 𝑿 ∼ 𝜇ℐ

a update (𝐷,Φ() that modifies ℐ to ℐ′;
• Output:  a sample 𝑿) ∼ 𝜇ℐ!.

𝜙"𝜙"4

𝜙$

𝜙$4

• 𝐷: updated variables & updated constraints;
• vbl 𝐷 : variables involved by the update: 
• updated variables: 𝑫 ∩ 𝑽;
• variables incident to updated constraints:⋃𝒆∈𝑫∩𝟐𝑽 𝒆.

vbl(𝐷)
Graphical models ℐ and ℐ′ differ only on vbl 𝐷 .

The initial bad set ℛ = vbl(𝐷).  
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Dynamic Sampler

• Apply changes (𝐷,Φ*) to current graphical model ℐ.
• ℛ ← vbl(𝐷);
• While(ℛ ≠ ∅)
• 𝑿,ℛ ←Local-Resample(𝑿,ℛ);

• Return 𝑿;

Theorem: Correctness [This Work]
Upon termination, the dynamic sampler outputs 𝑿 ∼ 𝜇ℐ/. 

A dynamic sampler for general graphical model:
• Exact sampling
• Las Vegas
• Distributed / Parallel



Proof of Correctness
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Dynamic Sampler
• Apply changes (𝐷,Φ!) to current graphical model ℐ.
• ℛ ← vbl(𝐷);
• While(ℛ ≠ ∅)

• 𝑿,ℛ ←Local-Resample(𝑿,ℛ);
• Return 𝑿;

The algorithm maintains 𝑋,ℛ ∈ 𝑄%×2%

• ℛ: bad set;
• 𝑉 \ ℛ: good set
𝑋%\ℛ follows “correct” distribution.

bad
 se

t ℛ

good set V\ℛ

Conditional Gibbs property w.r.t. 𝝁

Conditioning on any ℛ ⊆ 𝑉 and any assignment 
𝜎 ∈ 𝑄ℛ of 𝑋ℛ , the distribution of 𝑋0\ℛ is 𝜇0\ℛ

2 .

𝜇%\ℛ- : marginal distribution of 𝜇 on 𝑉\ℛ conditioning on 𝜎.

𝜎
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Local-Resample(𝑿,ℛ)

Resampling chain
• Markov chain on Ω = 𝑄!×2!
• Transition Matrix 𝑃 ∈ ℝI×I

𝑃: 𝑿,ℛ → 𝑿4, ℛ4

define

Equilibrium Condition
If 𝑿,ℛ satisfies the conditionally Gibbs property w.r.t. 𝜇, 
then so does 𝑿3, ℛ3 .

Equation System for Equilibrium Condition
∀ 𝑆, 𝑇 ⊆ 𝑉, 𝜎 ∈ 𝑄+\- and 𝜏 ∈ 𝑄+\.,

∀𝑦 ∈ 𝑄+, 𝑦+\/ = 𝜏: >
0∈2"
0"\$34

𝜇54 𝑥5 ⋅ 𝑃 𝑥, 𝑆 , 𝑦, 𝑇 = 𝐶 𝑆, 𝜎, 𝑇, 𝜏 ⋅ 𝜇.6 𝑦. .

Our algorithm is a solution to this equation system. 
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Theorem: Fast Convergence [This Work]
The updated graphical model satisfies 𝑑 = 𝑂 1 , max

$∈%&
𝑒 = 𝑂 1 , and

∀𝑒 ∈ 𝐸4: min
K
𝜙$4 𝑥 > 1 −

1
𝑑 + 1

where 𝑑 is the maximum degree of the dependency graph.

The cost of the dynamic sampler is
• 𝑂(log |𝐷|) iterations in expectation;
• 𝑂(|𝐷|) resamplings in expectation.

Ising Model:  ∀𝑒 ∈ 𝐸:

1 − exp −2 𝛽* <
1
4Δ

Uniqueness Regime:  ∀𝑒 ∈ 𝐸:

1 − exp −2 𝛽* <
2
Δ

ℐ ℐ3Update (𝑫,Φ5)
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Theorem: Fast Convergence [This Work]
Hardcore model and Ising model on bounded degree graph s.t.
• Hardcore model: ∀𝑣 ∈ 𝑉: 𝜆" ≤

L
MNOL

.

• Ising model: ∀𝑒 ∈ 𝐸: 1 − exp −2 𝛽$ ≤ L
M.MMLNQL

,
where Δ is the maximum degree.

The cost of the dynamic sampler is
• 𝑂(log |𝐷|) iterations in expectation;
• 𝑂(|𝐷|) resamplings in expectation;

Uniqueness Regime:

• Hardcore model: ∀𝑣 ∈ 𝑉: 𝜆#<
./0 %&'

./1 % ≈ &
./1

. 𝜆# = 𝑂 0
.

• Ising model: ∀𝑒 ∈ 𝐸: 1 − exp −2 𝛽& < 1
.
. 1 − exp −2 𝛽& = 𝑂 0

.



Proof of the Fast Convergence
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ℛ2 = vbl(𝐷) ℛ0 ℛ1 ℛ3 = ∅

Potential function on bad set ℛD

𝐻: 20 → ℤEF

Step-wise decay on expectation of 𝐻(ℛD)

𝔼 𝐻(ℛD) ≤ 1 − 𝛿 𝔼 𝐻(ℛDGH) .

𝔼[𝐻(ℛD)]

𝑡
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Summary
• Dynamic sampling problem.

• Dynamic sampler for general graphical models

Exact Sampling & Las Vegas & Distributed/Parallel.

• Equilibrium conditions for resampling.

Future Work 
• Dynamic MCMC sampling [Feng, He, Yin, Sun, arXiv:1904.11807] 

• Improve the regimes for efficient dynamic sampling

correlation decay             efficient dynamic sampling algorithm.

• Extend to continuous distributions & global constraints.
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We study the problem of sampling from a graphical model 
when the model itself is changing dynamically with time.
• We give an algorithm that can sample dynamically from a 

broad class of graphical models efficiently.
• We give an equilibrium condition that guarantees the 

correctness of the dynamic sampling.

Abstract

Graphical Model

Given: dynamic graphical model and current sample.
Main question : "Can we obtain a sample from an updated 

graphical model with a small incremental cost?"

Dynamic Sampling Problem Dynamic Sampler Our Results

Theorem: Correctness

The dynamic sampler outputs the correct sample ! ∼ #
ℐ
% .

guaranteed by the equilibrium condition

Updates of graphical model

• add/delete constraints;
• change factors &' → &'

)
, &+ → &+

) ;
• add/delete independent variables.

An update of graphical model ℐ = -, ., /,Φ is represented
by a pair (2,Φ3):
• 2 ⊆ - ∪ 2

8: updated variables and constraints;
• Φ3 ∶= &' '∈3∩8 ∪ &+ +∈3∩<

=: new factors.

&'&'
)

&+

&+
)

Input 
graphical model
ℐ = (-, ., /,Φ)

updated 
graphical model
ℐ
)
= (-, .

)
, /,Φ′)

Update (2,Φ3)

• Input: a graphical model ℐ, a sample ! ∼ #ℐ

and an update (2,Φ3) that modifies ℐ to ℐ′.

• Output:  a sample !) ∼ #
ℐ
%.

Offline adversary: the update (2,Φ3) is independent with
the input random sample ! ∼ #ℐ.

Dynamic sampling from graphical model

Equilibrium Condition

Motivation

Approximate counting [Jerrum, Valiant, Vazirani, 1986]
• Given a graph ? = (-, .), 

count #{independent sets of ?}.
• Self reduction: a sequence of graphs ?F, ?G, … , ? I :

• Counting Sampling uniform independent sets.

?F ?G ?< ?K?L ?M?

Inference/learning tasks

• online learning with dynamic or streaming data;
• dynamic graphical models e.g. videos.

Graphical models arise in a variety of disciplines ranging from 
statistical physics, machine learning, statistics, to theoretical 
computer science. A graphical model instance is specified by a
tuple ℐ = -, ., /,Φ :

1Nanjing University, China 2Yale University, USA
Weiming Feng1 Nisheeth K. Vishnoi2 Yitong Yin1

Dynamic Sampling from Graphical Models

• variable set (vertex set) -;
• constraint set (edge set) . ⊆ 2

8;
• finite domain /;
• factors (weight functions)

Φ = (&')'∈8 ∪ &+ +∈I

• each &': / → ℝOF;

• each &+: /+ → ℝOF;

• Gibbs distribution # over /8:

∀R ∈ /
8
, #(R) ∝T

'∈8

&' R' T

+∈I

&+ R+ .

hyper graph
U = (-, .)

Example: Ising model V = W, X, Y

• graph ? = (-, .);
• finite domain / = {−1,+1};
• inverse temperature Y = ]+ +∈I , each ]+ ∈ ℝOF;
• Gibbs distribution # over −1,+1 8:

∀ R ∈ −1,+1
8
, # R ∝ T

+^ _,' ∈I

exp ]+R_R' ;

• uniqueness condition 

∀c ∈ .: exp −2 ]+ > 1 −
2

Δ
.

Example: hardcore model V = W, X, f .

• graph ? = (-, .);
• finite domain / = {0,1};
• fugacity f = h' '∈8 , each h' ∈ ℝOF;
• Gibbs distribution # over 0,1 8: ∀ R ∈ 0,1

8
,

# R ∝ i
T

'∈j(k)

h' if l R is an independent set,

0 if l R is not an independent set,

where l R = m ∈ - R' = 1 ;

• uniqueness condition 

∀m ∈ -: h' <
Δ − 1

opG

Δ − 2 o
≈

c

Δ − 2
.

Notations

• Update of graphical model 2,Φ3 .

• vbl 2 ∶= 2 ∩ - ∪ (⋃
+∈3∩<=

c): variables involved by the 
update (2, &3) : 

• updated variables; 

• variables incident to updated constraints.

• Subset of variables ℛ ⊆ -:

• internal constraints . ℛ ∶= {c ∈ . ∣ c ⊆ ℛ}

• boundary constraints x ℛ ∶= c ∈ .\. ℛ c ∩ ℛ ≠ ∅

• incident constraints .+ ℛ ∶= . ℛ ∪ x(ℛ).

&'&'
)

&+

&+
)

vbl(2): red variables

ℛ: red variables

. ℛ : blue constraint

x ℛ : green constraints

Dynamic Sampler

Input: a graphical model ℐ and a sample ! ∼ #ℐ;
Update: an update (2, &3) that modifies ℐ → ℐ

);
• apply changes (2, &3) to current graphical model ℐ;
• ℛ ← vbl(2);
• While(ℛ ≠ ∅)

• !,ℛ ←Local-Resample(!,ℛ);
• Return !;

Local-Resample(!,ℛ):
• each c ∈ .}(ℛ) computes ~+;
• each m ∈ ℛ resamples �' ∼ &';
• each c ∈ .}(ℛ) samples Ä+ ∈ {0,1} independently s.t.

Pr Ä+ = 0 = ~+&+(�+);
• !

)
← ! and ℛ)

← ⋃+∈IÉ ℛ :ÑÖ^G
c;

• Return (!), ℛ′);

~+ ∶=
1

&+ �+

min
â∈äÖ

âÖ∩ℛ^ãÖ∩ℛ

&+(å)

(with the convenYon F

F
= 1).

~+: the minimum value of &+(å) conditioning on the  
assignment of å on c ∩ ℛ is fixed as �+∩ℛ .

Properties:

• for each c ∈ . ℛ , ~+ = 1;
• for each c ∈ x(ℛ), ~+ ≤ 1.

The Algorithm

Assumption: normalized factors Φ = (&')'∈8 ∪ &+ +∈I

each &': / → [0,1] is a distribution over /;
each &+: /+ → 0,1 .

Theorem: Fast Convergence

• ê ∶= max
c∈.

| c
)
∈ .\{c ∣ c ∩ c

)
≠ ∅}|: the maximum

degree of the dependency graph

• ∀c ∈ .: min&c ≥ 1 −
1

ê+1
,

⟹ the cost of the dynamic sampler:
• ï(log|2|) iterations in expectation;
• ï(|2|) resamplings in expectation.

Better results on concrete graphical models:

• Ising model: ∀c ∈ .: exp −2 ]c ≥ 1 −
1

2.221Δ+1
;

• Hardcore model: ∀m ∈ -: hm ≤
1

2Δ−1
.

Features of the Algorithm

dynamic, exact sampling,  Las Vegas, distributed/parallel.

The dynamic sampler maintains a random pair 
!,ℛ ∈ /

8
×2

8
.

problematic 
set ℛ

sanity set
òℛ = -\ℛ

ℛ: current resample set that contains the 
problematic variables to be resampled;

òℛ: current sanity set that contains the    
non-problematic variables.

Equilibrium condition for resampling chain:

If !,ℛ is conditionally Gibbs w.r.t. #, then !), ℛ) is also 
conditionally Gibbs w.r.t. #.

Resampling chain

The resampling algorithm is a Markov chain over /8×28
with transition matrix ô: !,ℛ → !

)
, ℛ

)
.

Conditional Gibbs property:

A random pair !,ℛ ∈ /
8
×2

8 is conditionally Gibbs w.r.t. 
# if conditioning on any ℛ ⊆ - and any assignment R ∈ /ℛ
of �ℛ , the distribution of �8\ℛ is precisely #

8\ℛ

k .

#
8\ℛ

k : marginal distribution of # on -\ℛ conditioning on R.

The condition is established by verifying equation system:
∀ ö, õ ⊆ -, R ∈ /

-\S and ù ∈ /-\õ,

∀å ∈ /
-
, å-\T = ù: ü

†∈/-

†-\S=R

#ö
R
†ö ⋅ ô †, ö , å, õ =¢ ö, R, õ, ù ⋅ #õ

ù
åõ .

Dynamic Sampling
Algorithm

Equation System
Equilibrium Condition

a solution to

first , compute ~+
then , update �ℛ

When ℛ = ∅, the random sample ! ∼ #.

depend on
both old and
new samples


