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Difference between two distributions

Input: two distributions 𝜈 and 𝜇 over state space Ω
Question: how to measure the difference between 𝜈 and 𝜇 ?

𝜈 𝜇

continuous distributions

𝜇𝜈

discrete distributions



The 𝑓-divergence between two distributions

Let 𝑓:ℝ! → ℝ"# be a convex function s.t. 𝑓 1 = 0

𝐷$ 𝜈 𝜇) = 𝔼%∼' 𝑓
𝜈(𝑋)
𝜇 𝑋𝑓-divergence:

Ø 𝜒( divergence 𝑓 𝑥 = )
*
𝑥 − 1 ( for 𝛼 ≥ 1

𝛼 = 1 gives total variation (TV) distance 𝐷+, 𝜈 ‖ 𝜇 = )
*
∑-∈/ 𝜈 𝑥 − 𝜇(𝑥)

Ø 𝛼 divergence 𝑓 𝑥 = -!0(-0()0()
(((0))

for 𝛼 ∈ ℝ

𝛼 = 1 gives Kullback–Leibler (KL) divergence 𝐷34 𝜈 ‖ 𝜇 = )
*
∑-∈/ 𝜈 𝑥 ln 5(-)

'(-)
𝛼 = 0 gives Rényi divergence 𝐷6 𝜈 ‖ 𝜇 = 𝐷34 𝜇 ‖ 𝜈

Ø Squared Hellinger distance 𝑓 𝑥 = )
*

𝑥 − 1 *



Compute value the 𝒇-divergence

• Input: descriptions of two distributions 𝜈, 𝜇 over Ω and a function 𝑓

• Output: the 𝑓-divergence 𝐷! 𝜈 𝜇) between 𝜈 and 𝜇

for instance, TV distance: 𝐷"# 𝜈 𝜇) = $
%
∑&∈( 𝜈 𝑥 − 𝜇(𝑥)

Trivial algorithm: enumerate all 𝑥 ∈ Ω and add $
%
|𝜈 𝑥 − 𝜇(𝑥)| together

Challenge:𝜈 and 𝜇 have succinct descriptions (structured distribution)

• |Ω| can be exponentially large w.r.t. the size of input

• It can be challenging to evaluate the value of 𝜈(𝑥) and 𝜇(𝑥)

Examples: probabilistic graphical models, probabilistic circuits



Warm-up: Product distributions

Product distribution 𝜇 over {−,+})

𝜇 = 𝜇$×𝜇%×⋯×𝜇)
𝜇* is a distribution over −,+ .

Random sample 𝑋 = 𝑋$, 𝑋%, … , 𝑋) ∼ 𝜇

𝑋 ∈ {−,+}!: 𝑛-dimensional random vector 𝑋" ∈ {−,+}: independent sample from 𝜇"

• 𝜇 can be described by 𝑛 marginals
• Size the input 2𝑛
• Size of sample space Ω = 2)

Compute TV distance between product distributions
[Bhattacharyya, Gayen, Meel, Myrisiotis,Pavan,Vinodchandran, 2022]

• Input: distributions {𝜈*, 𝜇*|1 ≤ 𝑖 ≤ 𝑛} specifying 𝜈 and 𝜇 over {±})

• Output: the total variation distance between 𝜈 and 𝜇



Results for computing TV distance between product distributions

FPTAS (Full Poly-time Approximation Scheme)

A deterministic algorithm outputs a 9𝑑 in time poly(𝑛, 1/𝜖)
1 − 𝜖 𝐷+, 𝜈 𝜇) ≤ 9𝑑 ≤ 1 + 𝜖 𝐷+, 𝜈 𝜇)

FPRAS (Full Poly-time Randomised Approximation Scheme)

A randomized algorithm outputs a random 9𝑑 in time poly(𝑛, 1/𝜖)
Pr 1 − 𝜖 𝐷+, 𝜈 𝜇) ≤ 9𝑑 ≤ 1 + 𝜖 𝐷+, 𝜈 𝜇) ≥ 2/3

Theorem [BGMMPV22]: the exact computing is #P-complete.



Results for computing TV distance between product distributions

Theorem [BGMMPV22]: the exact computing is #P-complete.

Theorem [BGMMPV22] FPTAS/FPRAS exists one of the following condition holds

• 𝜇 has constant number of distinct marginals (e.g. uniform distribution over −,+ 7)

• ∀𝑖 ∈ 𝑛 , 𝜈8 1 ≥ 𝜇8(1) and 𝜈8 1 ≥ 1/2

break symmetry lower bound

Theorem [FGJW23 and FLL23]

General product distributions 𝜈, 𝜇 and error bound 0 < 𝜖 < 1

• FPTAS running time: K𝑂 7"

9
log )

:#$ 5 ')

• FPRAS running time : K𝑂 7"

9"



Beyond product distribution: graphical models

Ising modelsBayesian network

• Vertices are random variables and edges model local interactions

• Graphical models define joint distributions with complex correlations



Beyond product distribution: graphical models

Ising modelsBayesian network

FPRAS for two Bayesian networks
with bounded treewidth
[Bhattacharyya, Gayen, Meel, Myrisiotis, 
Pavan, Vinodchandran 2025] 

Focus of this talk



Ising model (𝐺, 𝐽, ℎ)
Graph 𝐺 = 𝑉, 𝐸 , weighted adjacent matrix 𝐽 ∈ ℝ,×,, and external fields ℎ ∈ ℝ,
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Weight

𝜇 𝜎 =
𝑤(𝜎)
𝑍

𝑍 = 0
#∈{&',)'}!

𝑤(𝑥)Probability
Partition
Function

∀ configurtation
𝜎 ∈ −,+ ,

--

+-

+

++-

+

𝐽 𝑢, 𝑣 > 0: 𝜎< and 𝜎= prefer to take the same value

𝐽 𝑢, 𝑣 < 0: 𝜎< and 𝜎= prefer to take different values

+7

-8

ℎ(𝑣) > 0: 𝜎= prefer to take the + value
+3

ℎ 𝑣 < 0: 𝜎= prefer to take the - value
−1

Ising model (𝐺, 𝐽, ℎ)
Graph 𝐺 = 𝑉, 𝐸 , weighted adjacent matrix 𝐽 ∈ ℝ,×,, and external fields ℎ ∈ ℝ,

𝑤 𝜎 = exp
𝜎+𝐽𝜎
2

+ 𝜎+ℎ = exp 0
,,- ∈.

𝜎,𝜎-𝐽,- +0
-∈/

𝜎-ℎ-



Weight

𝜇 𝜎 =
𝑤(𝜎)
𝑍

𝑍 = 0
#∈{&',)'}!

𝑤(𝑥)Probability
Partition
Function

∀ configurtation
𝜎 ∈ −,+ ,

--

+-

+

++-

+

Ising model (𝐺, 𝐽, ℎ)
Graph 𝐺 = 𝑉, 𝐸 , weighted adjacent matrix 𝐽 ∈ ℝ,×,, and external fields ℎ ∈ ℝ,

Empty Graph
𝐽 = 0 Product Distribution 

𝑤 𝜎 = exp
𝜎+𝐽𝜎
2

+ 𝜎+ℎ = exp 0
,,- ∈.

𝜎,𝜎-𝐽,- +0
-∈/

𝜎-ℎ-



Ising model (𝐺, 𝐽, ℎ)
Graph 𝐺 = 𝑉, 𝐸 , weighted adjacent matrix 𝐽 ∈ ℝ,×,, and external fields ℎ ∈ ℝ,

Weight

𝜇 𝜎 =
𝑤(𝜎)
𝑍

𝑍 = 0
#∈{&',)'}!

𝑤(𝑥)Probability
Partition
Function

∀ configurtation
𝜎 ∈ −,+ ,

Simplified Ising model (𝐺, 𝛽)

• All edges have a unified value in interaction matrix 𝐽 𝑢, 𝑣 = 𝛽 for all {𝑢, 𝑣} ∈ 𝐸
• All vertices have zero external field ℎ 𝑣 = 0 for all 𝑣 ∈ 𝑉

𝜇 𝜎 ∝ [
<,= ∈?

exp 𝜎<𝜎=𝛽 ∝ [
<,= ∈?:A%BA&

exp 2𝛽 = exp(2𝛽 ⋅ #monochromatic	edges)

𝑤 𝜎 = exp
𝜎+𝐽𝜎
2

+ 𝜎+ℎ = exp 0
,,- ∈.

𝜎,𝜎-𝐽,- +0
-∈/

𝜎-ℎ-



Approximating the 𝝌𝜶-divergence between two Ising models

• Input: two Ising models (𝐺, 𝐽5 , ℎ5) and (𝐺, 𝐽' , ℎ') defining 𝜈 and 𝜇
integer parameter 𝛼 and error bound 𝜖 > 0

• Output: 𝐷 ∈ (1 + 𝜀) ⋅ 𝐷D! 𝜈 𝜇) for 𝜒(-divergence 𝐷D! 𝜈 𝜇)

𝐷D! 𝜈 𝜇) =
1
2k-∈/

𝜇 𝑥 ⋅ 1 −
𝜈 𝑥
𝜇 𝑥

(

Reduction

Sampling: draw random sample 𝑋 ∼ 𝜇 from the law of 𝜇 = Ising(𝐺, 𝐽, ℎ)

Approximate Counting: compute an estimate 9𝑍 the partition function of Ising(𝐺, 𝐽, ℎ)

1 − 𝜀 𝑍 ≤ 9𝑍 ≤ 1 + 𝜀 𝑍



Our result: total variation distance (𝛼 = 1)

Definition Marginal lower bound for Ising model
For any subset 𝑆 ⊆ 𝑉, any vertex 𝑣 ∈ 𝑉\𝑆, any pinning 𝜏 ∈ {−1,+1}E,

∀𝑐 ∈ −1,+1 , 𝜇= 𝑐 𝜏 = Ω(1)
Under any conditional, the marginal distribution on one vertex cannot be too biased

+

+-

-

++

-

marginal distribution at 𝑣
𝜇= + 𝜏 , 𝜇= − 𝜏 = Ω(1)

The assumption also appeared in learning [Bresler15], sampling and counting [CLV21]

𝑆
𝑣



Our result: total variation distance (𝛼 = 1)

Theorem: total variation distance (𝜶 = 𝟏) [F, Liu, Yang, 2025]

Two Ising models 𝜈 = Ising 𝐺, 𝐽0 , ℎ0 and 𝜇 = Ising 𝐺, 𝐽1 , ℎ1 with marginal lower bound

Two models both admit poly 𝑛/𝜖 -time algos for
• sampling
• approximate counting

poly 𝑛/𝜖 -time algorithms for

approximate 𝐷+/ 𝜈 𝜇)

• Our result also work for other graphical models
• The marginal lower bound can be removed in some graphical models

Definition Marginal lower bound for Ising model
For any subset 𝑆 ⊆ 𝑉, any vertex 𝑣 ∈ 𝑉\𝑆, any pinning 𝜏 ∈ {−1,+1}E,

∀𝑐 ∈ −1,+1 , 𝜇= 𝑐 𝜏 = Ω(1)
Under any conditional, the marginal distribution on one vertex cannot be too biased



Simplified Ising model (𝐺, 𝛽)

• All edges have a unified value in interaction matrix 𝐽 𝑢, 𝑣 = 𝛽 for all {𝑢, 𝑣} ∈ 𝐸
• All vertices have zero external field ℎ 𝑣 = 0 for all 𝑣 ∈ 𝑉

𝜇 𝜎 ∝ [
<,= ∈?

exp 𝜎<𝜎=𝛽 ∝ [
<,= ∈?:A%BA&

exp 2𝛽

Computational Phase Transition for Sampling and Approx. Counting

Max degree of graph Δ. Uniqueness threshold 𝛽F = 𝛽F(Δ) < 0 s.t. exp 2𝛽F = G0*
G

• Polynomial time sampling and approx. counting if 𝛽 ≥ 𝛽F [JS93, CCYZ25]

• Sampling and approx. counting is hard (unless NP=RP) if 𝛽 < 𝛽F[SS14, GŠV16]

𝛽' =
1
2 ln

Δ − 2
Δ



Corollary [F, Liu, Yang, 2025]

Two Ising models 𝜈 = Ising 𝐺, 𝛽0 and 𝜇 = Ising 𝐺, 𝛽1

Two models both above the threshold
min 𝛽0, 𝛽1 ≥ 𝛽2(Δ)

FPRAS for the

TV distance 𝐷+/ 𝜈 𝜇)

Simplified Ising model (𝐺, 𝛽) with constant 𝛽, Δ marginal lower bound

Hardness result [Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, Vinodchandran, 2025]

Two Ising models 𝜈 = Ising 𝐺, 𝛽0 and 𝜇 = Ising 𝐺, 𝛽1

Two models both below the threshold
max 𝛽0, 𝛽1 < 𝛽2(Δ)

No FPRAS for TV-distance

unless NP=RP



Our result: 𝜒x-divergence

• Input: an integer 𝛼 ≥ 1, two Ising models 𝐺, 𝐽0 , ℎ0 and 𝐺, 𝐽1 , ℎ1 , an error bound 𝜖 > 0

• Output: 𝐷 ∈ 1 ± 𝜖 𝐷3! 𝜈 𝜇) for 𝜒4-divergence

𝐷3! 𝜈 𝜇) = 9
#∈ ± $

𝜇 𝑥 1 −
𝜈 𝑥
𝜇 𝑥

4



Our result: 𝜒x-divergence

Theorem: approximation algorithm [F and Fu, 2025]

Two Ising models 𝜈 = Ising 𝐺, 𝐽0 , ℎ0 and 𝜇 = Ising 𝐺, 𝐽1 , ℎ1 with marginal lower bound

A family of Ising models ℱ = 𝐺, 𝐽 6 , ℎ 6 ∣ integer 0 ≤ 𝑘 ≤ 𝛼 , where

𝐽(6) = 𝑘𝐽0 − 𝑘 − 1 𝐽1

ℎ(6) = 𝑘ℎ0 − 𝑘 − 1 ℎ1

All Ising models in ℱ admit poly 𝑛/𝜖 -time algos for
• sampling
• approximate counting

poly 𝑛/𝜖 -time algorithms for

approximate 𝐷3" 𝜈 𝜇)

𝜒4-divergence
with 𝛼 = 1 𝐷+/ = 𝐷3"

ℱ only contains two
input Ising 𝜈 and 𝜇

Recover TV-
distance result



Corollary: simplified Ising model [F, Fu, 2025]

Two zero field Ising models (𝐺, 𝛽0) and (𝐺, 𝛽1) with unified non-zero values in interaction matrices

ℱ = 𝐺, 𝛽6 ∣ integer 0 ≤ 𝑘 ≤ 𝛼 , with 𝛽6 = 𝛽1 + 𝑘(𝛽0 − 𝛽1) (note 𝛽9 = 𝛽1 and 𝛽' = 𝛽0)

𝛽' =
1
2 ln

Δ − 2
Δ

Case 𝛽0 ≥ 𝛽1: poly-time algorithm for 𝜒4-divergence exist if 𝛽1 ≥ 𝛽2

𝛽( 𝛽) 𝛽* 𝛽+ 𝛽,

𝛽' =
1
2 ln

Δ − 2
Δ

Case 𝛽1 > 𝛽0: poly-time algorithm for 𝜒4-divergence exist if 𝛽4 = 𝛽1 + 𝑘(𝛽0 − 𝛽1) ≥ 𝛽2

𝛽, 𝛽- 𝛽+ 𝛽(𝛽)

Is it necessary to assume oracles for all Ising models in 𝓕 ?



Theorem: hardness of approximation [F. and Fu, 2025]
Fix integers 𝛼 ≥ 2 and Δ ≥ 3. Fix 𝛽1 > 𝛽0 ≥ 𝛽2(Δ) such that

𝛽4 = 𝛽1 + 𝑘 𝛽0 − 𝛽1 < 𝛽2 Δ .

Unless NP=RP, no FPRAS for 𝜒4-divergence between (𝐺, 𝛽0) and (𝐺, 𝛽1) on Δ-regular graphs 𝐺

𝛽' =
1
2 ln

Δ − 2
Δ

𝛽, 𝛽- 𝛽+ 𝛽(𝛽)

hard to approximate even if oracles exist for 𝜈, 𝜇

Poly-time approximation algorithm
𝜒!-divergence 𝐷"! 𝜈 ‖ 𝜇

Poly-time approximate
counting algorithm for 𝐺, 𝛽!

Approximate counting is hard for 𝛽4 < 𝛽2 [Sly and Sun 14, Galanis, Štefankovič and Vigoda 16]



Theorem: hardness of approximation [F. and Fu, 2025]
Fix integers 𝛼 ≥ 2 and Δ ≥ 3. Fix 𝛽1 > 𝛽0 ≥ 𝛽2(Δ) such that

𝛽4 = 𝛽1 + 𝛼 𝛽0 − 𝛽1 < 𝛽2 Δ .

Unless NP=RP, no FPRAS for 𝜒4-divergence between (𝐺, 𝛽0) and (𝐺, 𝛽1) on Δ-regular graphs 𝐺

Corollary: approximation algorithms [F. and Fu, 2025]
Fix integers 𝛼 ≥ 2 and Δ ≥ 3. Fix 𝛽1 > 𝛽0 ≥ 𝛽2(Δ) such that

𝛽4 = 𝛽1 + 𝛼 𝛽0 − 𝛽1 ≥ 𝛽2 Δ .

FPRAS exists for 𝜒4-divergence between (𝐺, 𝛽0) and (𝐺, 𝛽1) on graph 𝐺 with max degree Δ

Computational Phase Transition



Summary of algorithmic results

Divergence Function 𝑓 Existence of oracles for
sampling / counting

𝜒4 for 𝛼 ∈ ℕ 𝑓 𝑥 =
1
2
𝑥 − 1 4 𝐺, 𝐽 6 , ℎ 6 ∣ 0 ≤ 𝑘 ≤ 𝛼

𝛼-divergence for 𝛼 ≠ 0,1 𝑓 𝑥 = :"&4:&('&4)
4(4&') 𝐺, 𝐽 6 , ℎ 6 ∣ 𝑘 = 0,1, 𝛼

Kullback–Leibler
Rényi

Jensen-Shannon

𝑓 𝑥 = 𝑥 ln 𝑥 − 𝑥 + 1
𝑓 𝑥 = − ln 𝑥 + 𝑥 − 1

𝑓 𝑥 =
1
2
𝑥 ln 𝑥 − 𝑥 + 1 ln

𝑥 + 1
2

𝐺, 𝐽 0 , ℎ 0 and 𝐺, 𝐽 1 , ℎ 1

Squared Hellinger 𝑓 𝑥 =
1
2

𝑥 − 1 ;
𝐺, 𝐽 0 , ℎ 0 , 𝐺, 𝐽 1 , ℎ 1

and 𝐺, <
($))<(&)

; , =
($))=(&)

;



Algorithm for 𝜒x-divergence between two Ising models

All Ising models in ℱ admit poly 𝑛/𝜖 -time algos for
• sampling
• approximate counting

poly 𝑛/𝜖 -time algorithms for

approximate 𝐷3" 𝜈 𝜇)

Theorem: approximation algorithm [F and Fu, 2025]

Two Ising models 𝜈 = Ising 𝐺, 𝐽0 , ℎ0 and 𝜇 = Ising 𝐺, 𝐽1 , ℎ1 with marginal lower bound

A family of Ising models ℱ = 𝐺, 𝐽 6 , ℎ 6 ∣ integer 0 ≤ 𝑘 ≤ 𝛼 , where

𝐽(6) = 𝑘𝐽0 − 𝑘 − 1 𝐽1

ℎ(6) = 𝑘ℎ0 − 𝑘 − 1 ℎ1
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𝑑>?@ 𝜈, 𝜇 = max{edge diff, vertex diff}

• Edge diff: max
A∈B

|𝐽0(𝑒) − 𝐽1(𝑒)|

• Vertex diff: max
-∈/

|=$ - &=&(-)|
DEF' - )'

𝐺, 𝐽) , ℎ) 𝐺, 𝐽( , ℎ(

What is the relation between parameter distance and TV-distance/𝝌𝜶-divergence?

𝑑>?@(𝜈, 𝜇) is small
enough

𝐷+/ 𝜈 𝜇) is small

If two Ising model are different, then we can blame it on a node or an edge

a similar observation (but with different definitions of distances) was made in
“Test Ising Models” [Daskalakis, Dikkala and Kamath 19]



Parameter distance
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𝑑>?@ 𝜈, 𝜇 = max{edge diff, vertex diff}

• Edge diff: max
A∈B

|𝐽0(𝑒) − 𝐽1(𝑒)|

• Vertex diff: max
-∈/

|=$ - &=&(-)|
DEF' - )'

𝐺, 𝐽) , ℎ) 𝐺, 𝐽( , ℎ(

What is the relation between parameter distance and TV-distance/𝝌𝜶-divergence?

𝑑>?@(𝜈, 𝜇) is large 𝐷+/ 𝜈 𝜇) is large
marginal lower bound

[Feng, Liu and Yang 2025]



Our result: total variation distance (𝛼 = 1)

Definition Marginal lower bound for Ising model
For any subset 𝑆 ⊆ 𝑉, any vertex 𝑣 ∈ 𝑉\𝑆, any pinning 𝜏 ∈ {−1,+1}E,

∀𝑐 ∈ −1,+1 , 𝜇= 𝑐 𝜏 = Ω(1)
Under any conditional, the marginal distribution on one vertex cannot be too biased

+

+-

-

++

-

marginal distribution at 𝑣
𝜇= + 𝜏 , 𝜇= − 𝜏 = Ω(1)

The assumption also appeared in learning [Bresler15], sampling and counting [CLV21]

𝑆
𝑣



Parameter distance
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𝑑>?@ 𝜈, 𝜇 = max{edge diff, vertex diff}

• Edge diff: max
A∈B

|𝐽0(𝑒) − 𝐽1(𝑒)|

• Vertex diff: max
-∈/

|=$ - &=&(-)|
DEF' - )'

𝐺, 𝐽) , ℎ) 𝐺, 𝐽( , ℎ(

What is the relation between parameter distance and TV-distance/𝝌𝜶-divergence?

𝑑>?@(𝜈, 𝜇) is large 𝐷+/ 𝜈 𝜇) is large
marginal lower bound

[Feng, Liu and Yang 2025]

• Different edges/nodes may differ in different directions. Overall, all differences may be cancelled out

• The cancellation cannot happen for Ising models with marginal lower bounds



For two Ising models 𝜈 and 𝜇 both with marginal lower bound 𝑏 = Ω(1)

• The TV-distance: 𝐷+/(𝜈 𝜇 ≥ H(

;
𝑑>?@(𝜈, 𝜇) [Feng, Liu and Yang 2025]

• The 𝜒4-divergence: 𝐷3"(𝜈 𝜇 ≥ H("

;
𝑑>?@4 (𝜈, 𝜇) [Feng and Fu 2025]

• A family of 𝑓-divergence can also be lower bounded in terms of 𝑏 [Feng and Fu 2025]

Compute and check whether 𝑑HIJ 𝜈, 𝜇 ≤ )
HKLM(7)

?

• Yes. All parameters in (𝐽0 , 𝐽1) and (ℎ0 , ℎ1) are similar to each other
use the similarity of parameters to design well-concentrated estimator

• No. Then the𝐷@#(𝜈 𝜇 is large, at least '
>IJK(!)

relative-error approximation we can tolerate certain large error



The algorithm for small parameter distance 𝑑_`a 𝜈, 𝜇 ≤ b
_cde(f)
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• Draw random samples of 𝑊 to estimate )
𝔼[S]	

= V.
V/

 

• Draw random samples of 𝑊 to estimate the expectation of )
*
1 −𝑊 ⋅ V.

V/

(

• How many samples do we need?

• How well are 𝑊 and 1 −𝑊 ⋅ V.
V/

(
concentrated around their mean?

≈ 0 ≈ 0



The algorithm for small parameter distance 𝑑_`a 𝜈, 𝜇 ≤ b
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 samples are enough to achieve 
(1 ± 𝜀) relative error approximation 



Algorithm sketch for large parameter distance 𝑑IJK 𝜈, 𝜇 > L
IMNO(P)

 

𝑑>?@(𝜈, 𝜇) is large 𝐷3"(𝜈, 𝜇) is large
marginal lower bound

[Feng, Liu and Yang 2025]



If 𝐷3" 𝜈	‖	𝜇 > '
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, then the following lower bound holds 
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Algorithm sketch for large divergence 𝐷Q! 𝜈	‖	𝜇 > L
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Algorithm for 𝜒x-divergence between two Ising models

All Ising models in ℱ admit poly 𝑛/𝜖 -time algos for
• sampling
• approximate counting

poly 𝑛/𝜖 -time algorithms for

approximate 𝐷3" 𝜈 𝜇)

Theorem: approximation algorithm [F and Fu, 2025]

Two Ising models 𝜈 = Ising 𝐺, 𝐽0 , ℎ0 and 𝜇 = Ising 𝐺, 𝐽1 , ℎ1 with marginal lower bound

A family of Ising models ℱ = 𝐺, 𝐽 6 , ℎ 6 ∣ integer 0 ≤ 𝑘 ≤ 𝛼 , where

𝐽(6) = 𝑘𝐽0 − 𝑘 − 1 𝐽1

ℎ(6) = 𝑘ℎ0 − 𝑘 − 1 ℎ1
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Algorithm sketch for large divergence 𝐷Q! 𝜈	‖	𝜇 > L
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Algorithm sketch for large divergence 𝐷Q! 𝜈	‖	𝜇 > L
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Algorithm sketch for large divergence 𝐷Q! 𝜈	‖	𝜇 > L
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• Sample 𝑋 ∼ Ising 𝐺, 𝐽 6 , ℎ 6

• Estimator: 𝑊6 = 𝟏 𝜈 𝑋 > 𝜇 𝑋 ⋅ R&
)*+

R$)
𝑍(6)

𝔼 𝑊X =

We can only approximate 𝜈(𝑋) and 𝜇(𝑋), but cannot exactly compute 𝟏 𝜈 𝑋 > 𝜇 𝑋
• We only make mistake when 𝜈(𝑋) is very close to 𝜇(𝑋)

We use random samples to estimate the expectation and we need to put all terms together
• The concentration error can be bounded in a similar way as that for even 𝛼 case



Open problems

• remove the marginal lower bound assumption.

• more general graphical models or general distributions

• 𝜒O-divergence for real number 𝛼 or other divergences

• deterministic approximation algorithms

• faster algorithms (current algorithm require 𝛼 = 𝑂 1 with running time 𝑛P(O))

• connections or applications in learning and testing

Thank You


