Approximately counting knapsack solutions in sub-quadratic time

Weiming Feng (The University of Hong Kong)

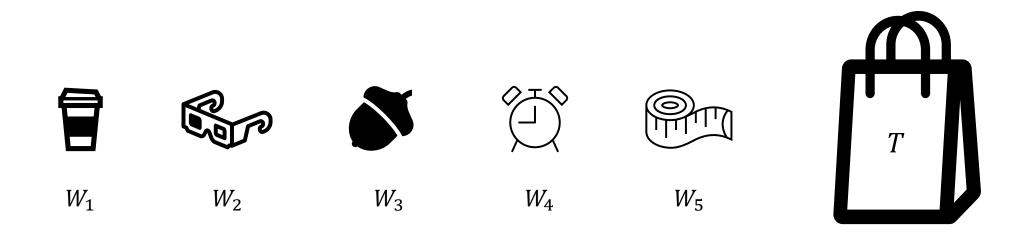
Joint work with Ce Jin (MIT)

Pre-AAAC Theory Workshop at HKU 29 May 2025

#Knapsack Problem

Knapsack instance: *n* items with weights $(W_i)_{i=1}^n$ and total capacity T > 0

Knapsack solutions: Boolean vector $x \in \{0,1\}^n$ such that $\sum_{1 \le i \le n} W_i x_i \le T$



#Knapsack Problem

Knapsack instance: *n* items with weights $(W_i)_{i=1}^n$ and total capacity T > 0

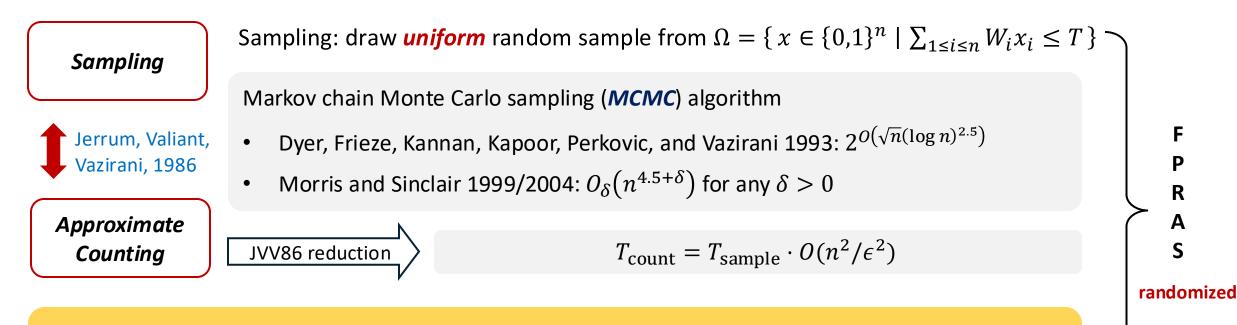
Knapsack solutions: Boolean vector $x \in \{0,1\}^n$ such that $\sum_{1 \le i \le n} W_i x_i \le T$

#Knapsack
$$Z = |\Omega| = \left| \left\{ x \in \{0,1\}^n : \sum_{i=1}^n W_i x_i \le T \right\} \right|$$

#{Boolean cube points in a half space}

- *Exact counting*: #P-complete problem
- **Approximate counting**: given any $\epsilon > 0$, in poly (input size, $\frac{1}{\epsilon}$) time, output
 - **FPTAS**: a number \hat{Z} s.t. $(1 \epsilon)Z \le \hat{Z} \le (1 + \epsilon)Z$
 - **FPRAS**: a random number \hat{Z} s.t. $\Pr[(1 \epsilon)Z \le \hat{Z} \le (1 + \epsilon)Z] \ge \frac{2}{3}$

Known results



Rounding + Dynamic Programming + Rejection Sampling [Dyer 2003]: counting in time $\tilde{O}(n^{2.5} + n^2/\epsilon^2)$

Dynamic Programming based counting algorithms

- Gopalan, Klivans, Meka, Štefankovič, Vempala, and Vigoda 2011: $\tilde{O}(n^3/\epsilon)$ •
- Gawrychowski, Markin, and Weimann 2018: $\tilde{O}(n^{2.5}/\epsilon)$ ٠

deterministic

Our Result

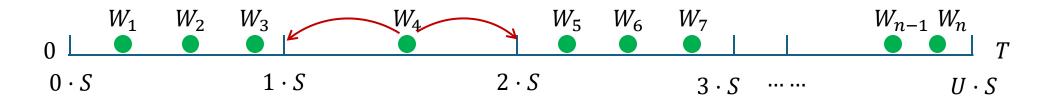
There is an **FPRAS** for #Knapsack in time $O\left(\frac{n^{1.5}}{\epsilon^2} \operatorname{polylog}\left(\frac{n}{\epsilon}\right)\right)$

- Our algorithm works in *standard word-RAM model* with word length $polylog\left(\frac{n}{\epsilon}\right)$ bits
- We assume all W_i and T has bit length polylog(n);
 otherwise the running time will be multiplied by O(log T) factor
- The dependency to n is *sub-quadratic*, which is *rare* in approximate counting most approximate counting algorithms take quadratic time (due to counting-to-sampling reduction) but there some exceptions e.g. spanning trees, network unreliability, special spin systems
- The dependency to $\frac{1}{\epsilon}$ is *near-quadratic*, which is *common* for Monte Carlo algorithms

Dyer's algorithm

Assume $0 < W_1 \le W_2 \le \dots \le W_n \le T$

Dyer's algorithm



• Set the *scale* parameter $S = \frac{T}{2Kn}$, where $K = \sqrt{n} \cdot \text{polylog}\left(\frac{n}{\epsilon}\right)$

• For each $i \in [n]$, round W_i to a **random nearest multiple** $w_i \in \left\{ \left\lfloor \frac{W_i}{S} \right\rfloor S, \left\lceil \frac{W_i}{S} \right\rceil S \right\}$ of S such that

$$\mathbb{E}[w_i] = W_i$$

• Round capacity T to a T' = T + KS

Original solution space
$$\Omega$$

 $X \in \{0,1\}^n$ s. t. $W(X) = \sum_{i=1}^n W_i x_i \le T$
Rounded random solution space Ω'
 $X \in \{0,1\}^n$ s. t. $w(X) = \sum_{i=1}^n w_i x_i \le T'$
 Ω
 Ω'

• For any *solution* $X \in \Omega$, w.h.p., $X \in \Omega' \implies \Omega' \cap \Omega \approx \Omega$

 $\mathbb{E}[w(X)] = W(X) \le T$ $\mathbb{E}[w(X)] \quad T \quad T' = T + KS$

• For any *non-solution* $Y \in \Omega_d$ s.t. Y needs to throw d heaviest items to make it in Ω , then

$$\mathbb{E}[w(Y)] = W(Y) \ge T + \frac{d-1}{n} \cdot T$$

$$T$$

$$T' = T + KS$$

$$\mathbb{E}[w(Y)]$$
for $d \ge 2$

$$\mathbb{E}[w(Y)]$$

We can ignore $Y \in \Omega_d$ for $d \ge 2$. The only *missing part* is $Y \in \Omega_1$ but $|\Omega_1| \le n \cdot |\Omega|$. Overall, $|\Omega' \setminus \Omega| \le O(n) \cdot |\Omega|$

• $\Omega' \cap \Omega \approx \Omega$

• $|\Omega' \setminus \Omega| \le O(n) \cdot |\Omega|$

- We can approximately count $|\Omega \cap \Omega'| \approx |\Omega|$
- Exact count $|\Omega'|$ by *dynamic programming*, because all w_i is a *multiple* of S

Running time:
$$O\left(n \cdot \frac{T'}{S}\right) = O\left(n \cdot \frac{T+KS}{T/(2Kn)}\right) = O(n^2K) = \tilde{O}(n^{2.5})$$

• Draw $O\left(\frac{n}{\epsilon^2}\right)$ uniform random sample X from Ω' and test whether $X \in \Omega$ to approximate $\frac{|\Omega \cap \Omega'|}{|\Omega'|} \approx \frac{|\Omega|}{|\Omega'|} = \Omega\left(\frac{1}{n}\right)$

Running time:
$$O\left(\frac{n^2}{\epsilon^2}\right)$$

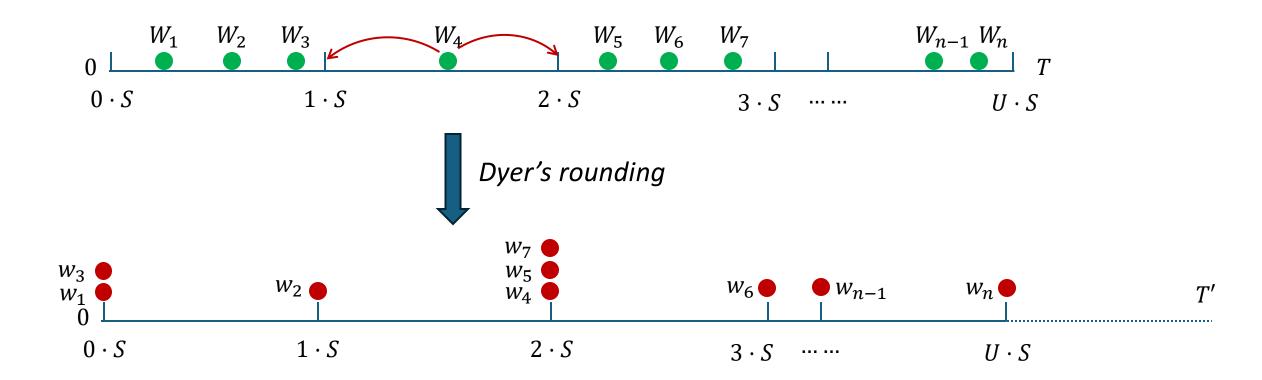
• Output: $|\Omega \cap \Omega'| = \frac{|\Omega \cap \Omega'|}{|\Omega'|} \cdot |\Omega'|$

Bounded-ratio case

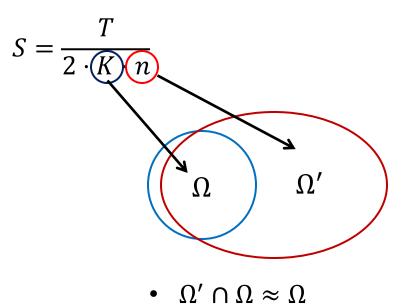
• Capacity T and n items with weights $(W_i)_{i=1}^n$, where for any $W_i \in \left(\frac{T}{\ell}, \frac{2T}{\ell}\right)$ and $2 \le \ell \le 2n$

• Approximately count $Z = |\Omega| = |\{x \in \{0,1\}^n \mid \sum_{i=1}^n W_i x_i \le T\}|$ with error ϵ . Assume $\epsilon = 10^{-5}$.

for simplicity



Dyer's rounding: the scale parameter is $S = \frac{T}{2Kn}$ and new capacity T' = T + KS for $K = \tilde{\Theta}(\sqrt{n})$



•
$$|\Omega' \setminus \Omega| \le O(n) \cdot |\Omega|$$

Dyer's rounding: the scale parameter is $S = \frac{T}{2Kn}$ and new capacity T' = T + KS for $K = \tilde{\Theta}(\sqrt{n})$

• for any solution $X \in \Omega$, $|X| \le n$, we require $X \in \Omega'$, the total rounding error is at most

Rounding Error
$$\leq \sum_{i \in X} (w_i - W_i)$$

Sum of $\leq n$ independent random variables in range [-S, S]

Dyer's rounding: the scale parameter is $S = \frac{T}{2Kn}$ and new capacity T' = T + KS for $K = \tilde{\Theta}(\sqrt{n})$

• for any solution $X \in \Omega$, $|X| \le n$, we require $X \in \Omega'$, the total rounding error is at most

Rounding Error
$$\leq \sum_{i \in X} (w_i - W_i) =_{\text{whp}} S \cdot \tilde{O}(\sqrt{n})$$

Sum of $\leq n$ independent random variables in range [-S, S]

Dyer's rounding: the scale parameter is $S = \frac{T}{2Kn}$ and new capacity T' = T + KS for $K = \widetilde{\Theta}(\sqrt{n})$

• for any solution $X \in \Omega$, $|X| \le n$, we require $X \in \Omega'$, the total rounding error is at most

Rounding Error
$$\leq \sum_{i \in X} (w_i - W_i) =_{\text{whp}} S \cdot \tilde{O}(\sqrt{n}) \leq T' - T = \text{Slack of Capacity}$$

 $= KS = \widetilde{\Theta}(S\sqrt{n})$
Sum of $\leq n$ independent random variables in range $[-S, S]$

Bounded ratio case:
$$W_i \in \left(\frac{T}{\ell}, \frac{2T}{\ell}\right] \implies \text{for any solution } X \in \Omega, |X| \le \ell$$

In the bounded ratio case, one can round *more aggressively* by setting a *larger scale*

Such simple improvement does not help if $\ell = \Theta(n)$

Our algorithm: bounded-ratio case

Bounded ratio case:
$$W_i \in \left(\frac{T}{\ell}, \frac{2T}{\ell}\right)$$
 for any solution $X \in \Omega$, $|X| \leq \ell$

Step-I: Balls-into-Bins Hashing [Bringmann 2017]

For each item $i \in [n]$, sample a bin $j \in [\ell]$ u.a.r., and throw i to B_j

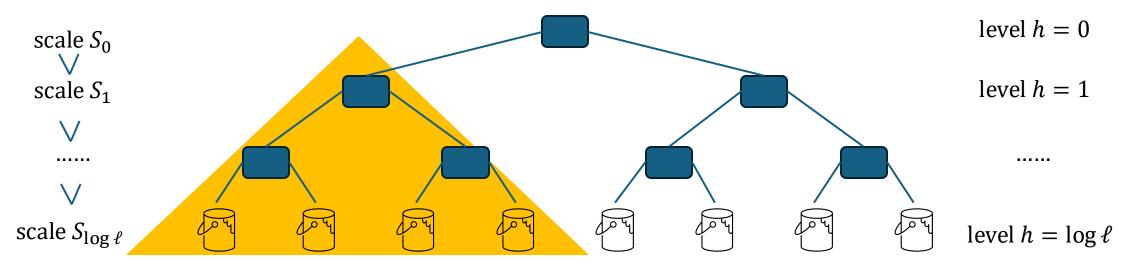
For any solution $X \in \Omega$, w.h.p. $|X \cap B_i| \le B = O\left(\frac{\log n}{\log \log n}\right)$

Define collection of *good subsets* $\widehat{\Omega} = \{X \subseteq [n] \mid \forall b \in [\ell], |B_b \cap X| \leq B\}$

$$\blacksquare$$
 $|\Omega| \approx |\widehat{\Omega} \cap \Omega|$ \bigcirc Approximately Count

n items (balls)

Step-II: partition-and-convolve with multi-level rounding



For every node u at level h, define $B_u = \bigcup_k B_k$ for *leaves* k in subtree rooted at u

The node u (implicitly) defines a *random weight* $w_u: \widehat{\Omega} \cap 2^{B_u} \to \mathbb{R}_{\geq 0}$ such that $\forall X \in \widehat{\Omega} \cap 2^{B_u}$,

- $w_u(X)$ is a *multiple* of the *scale* $S_h \approx \frac{T}{\ell \cdot 2^{h/2}}$ such that $0 \le w_u(X) \le L_h S_h$
- $\mathbb{E}[w_u(X)] = W(X) = \sum_{i \in X} W_i$ and $w_u(X)$ is **concentrated** around its mean

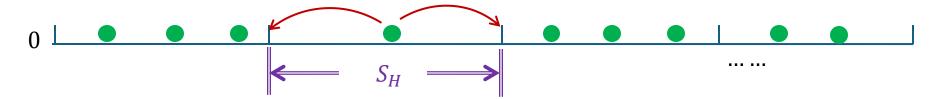
The node *u* explicitly *maintains* f_u : {0 S_h , 1 S_h , 2 S_h , ... L_hS_h } $\rightarrow \mathbb{R}_{\geq 0}$ such that $\forall 0 \leq i \leq L_h$,

$$\sum_{j \le i} f_u(jS_h) \approx \left| \left\{ X \in \widehat{\Omega} \cap 2^{B_u} \mid w_u(X) \le iS_h \right\} \right|$$
Prefix Sum to *i*

Base Case: Rounding at leaf nodes u

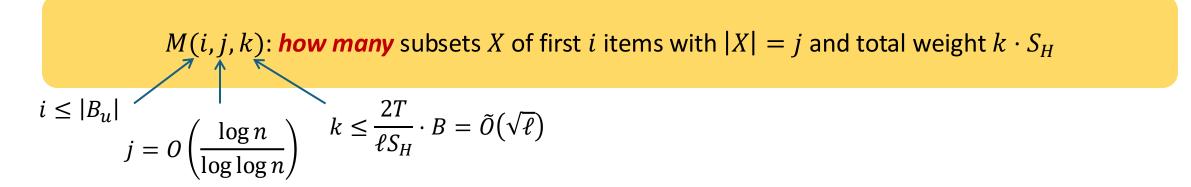
For leaf node, set **the scale** $S_H \approx \frac{T}{\ell \sqrt{\ell}}$, where $H = \log \ell$

For each item $i \in B_u$, round W_i to $w_u(i) = \left\{S_H\left[\frac{W_i}{S_H}\right], S_H\left[\frac{W_i}{S_H}\right]\right\}$ such that $\mathbb{E}[w_u(i)] = W_i$



$$\forall$$
 good subset $X \in \widehat{\Omega} \cap 2^{B_u}$, $w_u(X) = \sum_{i \in X} w_u(i)$

Compute the function $f_u: \{0, S_H, 2S_H, \dots, L_HS_H\} \rightarrow \mathbb{R}_{\geq 0}$, via dynamic programming,



Base Case: Rounding at leaf nodes u

For leaf node, set **the scale** $S_H \approx \frac{T}{\ell \sqrt{\ell}}$, where $H = \log \ell$

For each item $i \in B_u$, round W_i to $w_u(i) = \left\{S_H\left[\frac{W_i}{S_H}\right], S_H\left[\frac{W_i}{S_H}\right]\right\}$ such that $\mathbb{E}[w_u(i)] = W_i$

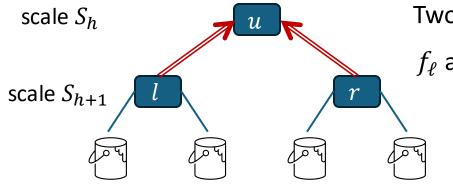
$$\forall$$
 good subset $X \in \widehat{\Omega} \cap 2^{B_u}$, $w_u(X) = \sum_{i \in X} w_u(i)$

Compute the function $f_u: \{0, S_H, 2S_H, \dots, L_HS_H\} \to \mathbb{R}_{\geq 0}$, *via dynamic programming*, in time $O\left(|B_u| \cdot B \cdot \frac{T}{\ell \cdot S_H}\right) = \tilde{O}(|B_u| \cdot \sqrt{\ell})$

The total complexity contributed by all leaf nodes is

$$\sum_{u} \tilde{O}(|B_{u}| \cdot \sqrt{\ell}) = \tilde{O}(n\sqrt{\ell}) = \tilde{O}(n^{1.5})$$

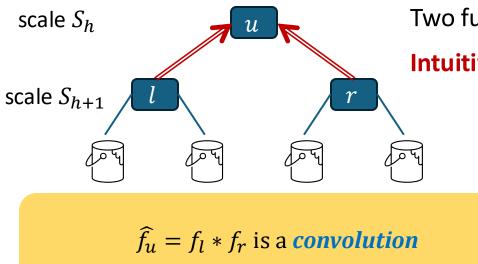
Induction Step: convolution and rounding



Two functions $f_l, f_r: \{0, S_{h+1}, 2S_{h+1}, \dots, L_{h+1}S_{h+1}\} \to \mathbb{R}$ at nodes l and r f_ℓ achieves **prefix-sum approximation** such that for any i $\sum_{j \le i} f_u(jS_{h+1}) \approx |\{X \in \widehat{\Omega} \cap 2^{B_\ell} \mid w_\ell(X) \le iS_{h+1}\}|$

approximate the number of subsets with weight $\leq iS_{h+1}$

Induction Step: convolution and rounding



$$f_u(xS_{h+1}) = \sum_{0 \le i \le x} f_l(iS_{h+1})f_r((x-i)S_{h+1})$$

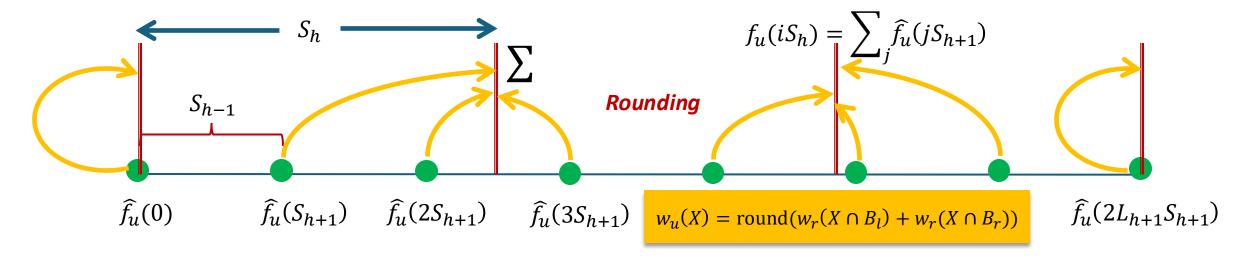
Two functions f_l , f_r : {0, S_{h+1} , $2S_{h+1}$, ..., $L_{h+1}S_{h+1}$ } $\rightarrow \mathbb{R}$ at nodes l and rIntuitively, one may think that

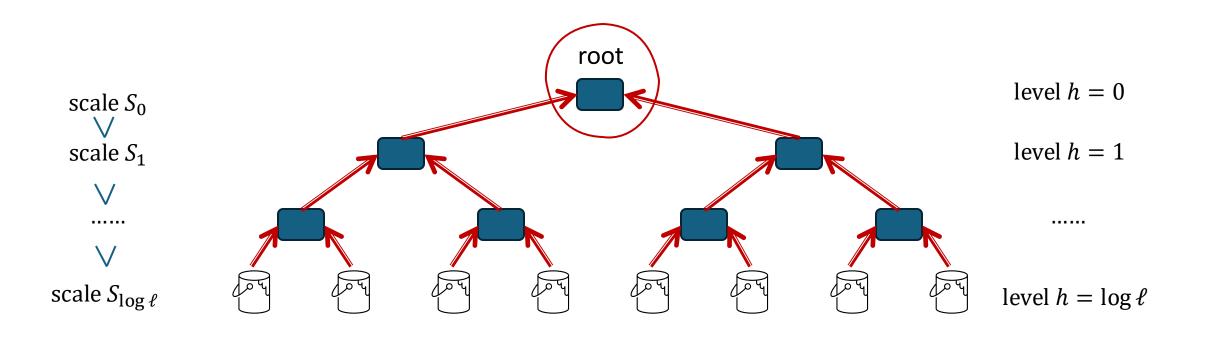
$$f_{\ell}(jS_{h+1}) \approx \left| \left\{ X \in \widehat{\Omega} \cap 2^{B_{\ell}} \mid w_{\ell}(X) = jS_{h+1} \right\} \right|$$

for the approximation measured by the prefix-sum

- We only require $f_{\ell} * f_r$ achieve *prefix-sum approximation*
- The values in f_{ℓ} and f_r are at most $n^{O(2^{H-h}\log n)} = 2^M$

The approximate convolution \widehat{f}_u takes time $\widetilde{O}(L_{h+1}\sqrt{M})$

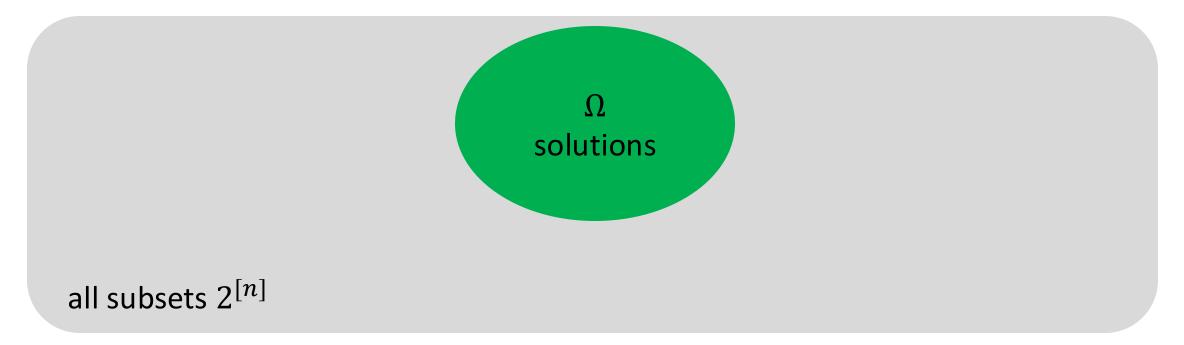




- Compute the function f_u for each node from **bottom to up**
- The total computational complexity is $ilde{O}(n^{1.5})$

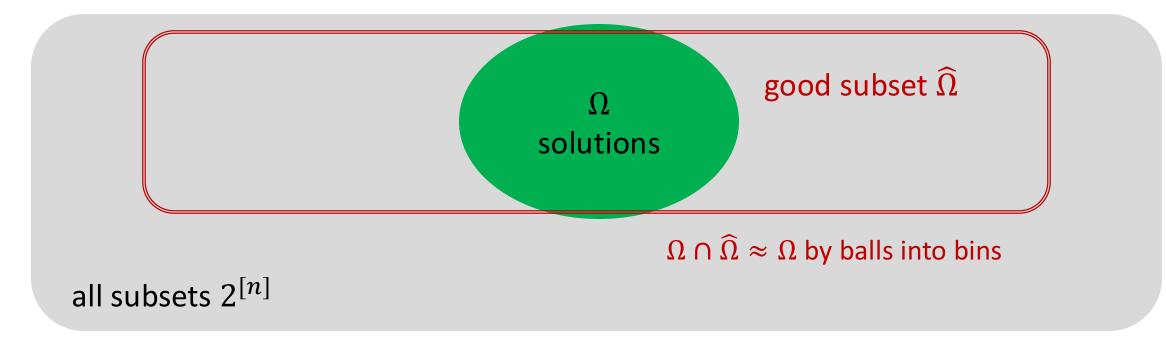
$$\forall X \in \widehat{\Omega}, \qquad \mathbb{E}[w_{\text{root}}(X)] = W(X) \text{ and } w. h. p. w_{\text{root}}(X) \approx W(X) \pm \frac{T}{\ell}$$

$$\Omega' = \left\{ X \in \widehat{\Omega} \mid w_{\text{root}}(X) \le T + \widetilde{O}\left(\frac{T}{\ell}\right) \right\}$$



$$\forall X \in \widehat{\Omega}, \qquad \mathbb{E}[w_{\text{root}}(X)] = W(X) \text{ and } w. h. p. w_{\text{root}}(X) \approx W(X) \pm \frac{T}{\ell}$$

$$\Omega' = \left\{ X \in \widehat{\Omega} \mid w_{\text{root}}(X) \le T + \widetilde{O}\left(\frac{T}{\ell}\right) \right\}$$



$$\forall X \in \widehat{\Omega}, \quad \mathbb{E}[w_{\text{root}}(X)] = W(X) \text{ and } w. h. p. w_{\text{root}}(X) \approx W(X) \pm \frac{T}{\ell}$$

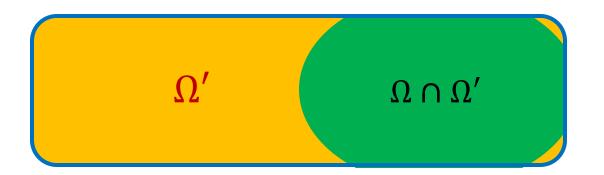
$$\Omega' = \left\{ X \in \widehat{\Omega} \mid w_{\text{root}}(X) \le T + \widetilde{O}\left(\frac{T}{\ell}\right) \right\}$$

$$\forall X \in \widehat{\Omega}, \qquad \mathbb{E}[w_{\text{root}}(X)] = W(X) \text{ and } w.h.p.w_{\text{root}}(X) \approx W(X) \pm \frac{T}{\ell}$$

$$\Omega' = \left\{ X \in \widehat{\Omega} \mid w_{\text{root}}(X) \le T + \widetilde{O}\left(\frac{T}{\ell}\right) \right\}$$

$$\forall X \in \widehat{\Omega}, \qquad \mathbb{E}[w_{\text{root}}(X)] = W(X) \text{ and } w. h. p. w_{\text{root}}(X) \approx W(X) \pm \frac{T}{\ell}$$

$$\Omega' = \left\{ X \in \widehat{\Omega} \mid w_{\text{root}}(X) \le T + \widetilde{O}\left(\frac{T}{\ell}\right) \right\}$$



- W.h.p., if $X \in \Omega$ then $X \in \Omega'$. $\longrightarrow \Omega \cap \Omega' \approx \Omega$.
- W.h.p., for most $X \in \Omega' \setminus \Omega$, it holds that $T < W(X) \le T + \frac{T}{\ell} \longrightarrow \Omega' \setminus \Omega$ is not too large Since $W_i \in \left(\frac{T}{\ell}, \frac{2T}{\ell}\right)$, X becomes a solution by throwing an *arbitrary* item

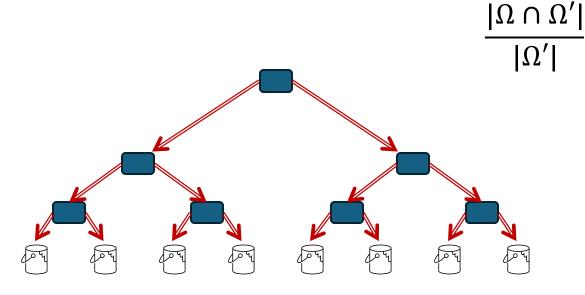
• Using the function f_{root} to approximate the size of Ω'

$$|\Omega'| \approx \sum_{jS_0 \leq T'} f_{\text{root}}(jS_0)$$

Sample Complexity

#samples = $O\left(\frac{|\Omega'|}{|\Omega \cap \Omega'|}\right)$

• Draw uniform random samples $X \in \Omega'$ and test whether $X \in \Omega \cap \Omega'$ to estimate

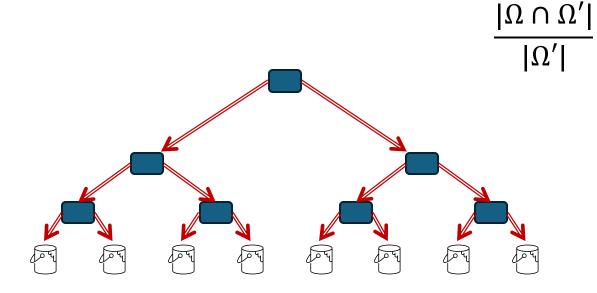


- Draw samples using a *top-down* process
- Each sample takes time $\tilde{O}(\ell^{1.5})$

• Using the function $f_{\rm root}$ to approximate the size of Ω'

$$|\Omega'| \approx \sum_{jS_0 \leq T'} f_{\text{root}}(jS_0)$$

• Draw uniform random samples $X \in \Omega'$ and test whether $X \in \Omega \cap \Omega'$ to estimate



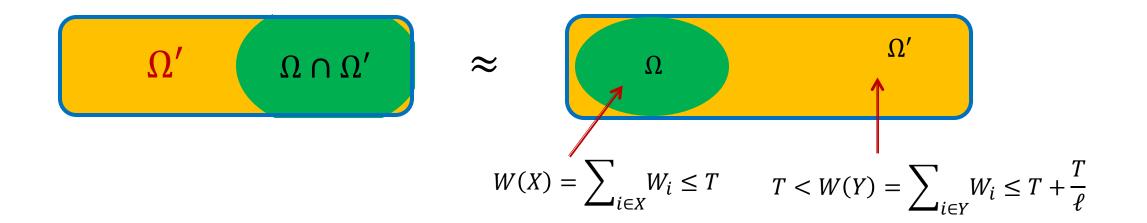
- Draw samples using a *top-down* process
- Each sample takes time $\tilde{O}(\ell^{1.5})$

hitting set

Sample Complexity

#samples = $O\left(\frac{|\Omega'|}{|\Omega \cap \Omega'|}\right) = \tilde{O}\left(\frac{n}{\ell}\right)$

Hitting set: Improved sample complexity



Hitting set: Improved sample complexity

• Construct a *random* $H \subseteq [n]$ by selecting each $i \in [n]$ with probability $\frac{1}{\rho} \cdot \operatorname{polylog}(n)$

with prob. \geq 99%, $|H| \leq \tilde{O}(n/\ell)$

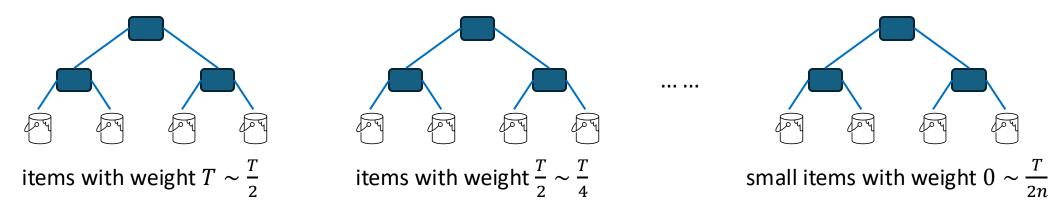
• For any $Y \in \Omega' \setminus \Omega$, we say Y is **hit** by H if $H \cap Y \neq \emptyset$.

 $|Y| > \Omega(\ell) \implies \text{(w.h.p. } Y \text{ is hit by } H \implies \text{(w.p. } \ge 99\%, \text{ at least } 1 - o(1) \text{ fraction in } \Omega' \setminus \Omega \text{ are hit by } H$

- By probabilistic method, $\exists H$ with size $\tilde{O}(n/\ell)$ that hits most $Y \in \Omega' \setminus \Omega$
- For any Y hit by H, throw away arbitrary $i \in H$ make $Y i \in \Omega$

General case

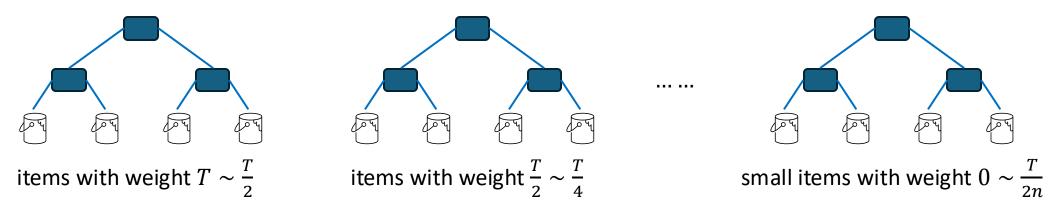
• Partition items into *groups* according to the weight



- Merge all $O(\log n)$ groups together, which requires that their roots have the same scale S
 - Compute $\ell = O(n)$ s.t. for all roots, set the same scale $\tilde{\Theta}(T/\ell)$

General case

• Partition items into *groups* according to the weight



- *Merge* all $O(\log n)$ groups together, which requires that their roots have the same scale S
 - most $X \subseteq [n]$ with $W_X = \Theta(T)$ contains $\widetilde{\Omega}(\ell)$ items with weight $\widetilde{\Theta}(T/\ell)_{\wedge}$
 - Compute $\ell = O(n)$ s.t. for all roots, set the same scale $\widetilde{\Theta}(T/\ell)$
- If there are many *tiny items*, then a sample X satisfies |X| = O(n). Running time $\tilde{O}\left(n \cdot \frac{n}{\ell}\right) = \tilde{O}\left(\frac{n^2}{\ell}\right)$ can be large. We reduce the running time to $\tilde{O}(n^{1.5})$ using
 - 1. Tiny items are typically *rounded to weight 0*. We maintain tiny items implicitly. In other words, we draw *partial samples* containing only non-tiny items.

sample complexity $\tilde{O}(n/\ell)$

- 2. Each tiny item with rounded weight 0 should be included with $\frac{1}{2}$ probability. (cannot implement)
- 3. Construct *another #Knapsack instance* to take care the contribution of tiny items.

Open problems

- A near-linear time counting algorithm?
- FPTAS (*deterministic* algorithm) with improved running time?
 - Current best algorithm $\tilde{O}(n^{2.5})$ [Gawrychowski, Markin, and Weimann 2018]
- Extensions and applications
 - Integer #Knapsack and multi-dimensional #Knapsack
 - Contingency table
 - Apply ideas to other approximate counting problems