Approximately counting knapsack solutions
in sub-quadratic time

Weiming Feng
(The University of Hong Kong)

Joint work with
Ce lin
(MIT)

Pre-AAAC Theory Workshop at HKU
29 May 2025

#Knapsack Problem

Knapsack instance: n items with weights (W;);.; and total capacity T > 0

Knapsack solutions: Boolean vector x € {0,1}" such that },;;,, W;x; <T

#Knapsack Problem

Knapsack instance: n items with weights (W;);.; and total capacity T > 0

Knapsack solutions: Boolean vector x € {0,1}" such that },;;,, W;x; <T

#Knapsack Z=\Q|=

n
{x e (0,1)™: z Wix; < T}
=1

#{Boolean cube points in a half space}

* Exact counting: #P-complete problem

* Approximate counting: given any € > 0, in poly (input size, i) time, output
e« FPTAS:anumberZst.(1—e)Z<Z<(1+¢€)Z
« FPRAS: a random number Z st. Pr[(l —e)Z<Z<(1+ e)Z] > g

Known results

Sampling: draw uniform random sample from Q = {x € {0,1}"* | X1<;<cn Wixi < T}
Sampling

Markov chain Monte Carlo sampling (MCMC) algorithm

Jerrum, Valiant, e Dyer, Frieze, Kannan, Kapoor, Perkovic, and Vazirani 1993: 20(Vn(logm)>?) F

Vazirani, 1986 5 P

* Morris and Sinclair 1999/2004: 05(n4'5+) foranyd > 0 R

Approximate > A

Counting JVV86 reduction > Teount = Tsample - 0(n?/€%) S
randomized

Rounding + Dynamic Programming + Rejection Sampling [Dyer 2003]: counting in time O(n?° + n?/e?)
~/

Dynamic Programming based counting algorithms

deterministic

» Gopalan, Klivans, Meka, Stefankovi¢, Vempala, and Vigoda 2011: 5(n3/6) >

w P> =—- TN

* Gawrychowski, Markin, and Weimann 2018: 0(n?®/¢€)

Our Result

15 n
There is an FPRAS for #Knapsack in time ¢ (? polylog (E))

Our algorithm works in standard word-RAM model with word length polylog (E) bits
We assume all W; and T has bit length polylog(n);
otherwise the running time will be multiplied by O(log T) factor

The dependency to n is sub-quadratic, which is rare in approximate counting
most approximate counting algorithms take quadratic time (due to counting-to-sampling reduction)
but there some exceptions e.g. spanning trees, network unreliability, special spin systems

The dependency toi is near-quadratic, which is common for Monte Carlo algorithms

Dyer’s algorithm

W, Ws We W,
@ @ o o

Assume O < W, <W, <--- < W,

IA

Dyer’s algorithm

W, W, W, W, we W, W, W, . W,
Lo o e e N e e e 1 | ®

0-S 1-S 2-S 3.6 e U-s

n
€

* Setthe scale parameter S = %, where K =+/n - polylog()

* Foreachi € [n], round W; to a random nearest multiple w; € ﬂ%‘ S, [%} S} of S such that

Elw;] = W;
* RoundcapacityTtoaT' =T + KS
o e
w w
oo

0-S 1-S 2-S 3.6 e U.s

Original solution space () Rounded random solution space Q'

n n
Xe{01}"s.t W(X) = Z Wix; <T X e{01}"s.t.w(X) = 2 wix; < T’
i=1 =1
_ /L y,

e ForanysolutionX € Q,wh.p, X € == Q' NQ=(

= <
ElwX)] =WX)<T) S
E[w(X)] T T'=T+KS
* For any non-solutionY € (), s.t. Y needs to throw d heaviest items to make it in £}, then

— ford = 2

E[w(Y)] = W(Y) >T+d LT

w = > _—
n e
T T' =T +KS E[w(Y)]

We canignore Y € Q, for d = 2. The only missing partisY € Q, but [Q;| < n - |Q]. Overall,
1Q\Q| < 0(n) - Q|

Original solution space () Rounded random solution space Q'

n n
Xe{01}"s.t W(X) = Z Wix; <T X e{01}"s.t.w(X) = 2 wix; < T’
i=1 =1
\§ J y,

c A'NQ =

We can approximately count [Q N Q| = |Q] 10N\ < 0(n) - 10

Exact count |Q'| by dynamic programming, because all w; is a multiple of S

i Fime: T A TRRSET 21 — A(n25
Runnmgtlme.O(n S)—O(n T/(ZKn))—O(n K) = 0(n*>)

!/
Draw O (:—2) uniform random sample X from Q' and test whether X € () to approximate Iﬂlgfll |~ ||g?r|| = () (%l)

2
Running time: O (%)
QanQ’|

Output: [A N Q'|= o

1)

Bounded-ratio case

 Capacity T and n items with weights (W;)i.,, where for any W; € G,Z—ﬂ and2 < ¥ < 2n

for simplicity

« Approximately count Z = Q]| = [{x € {0,1}" | X}, W;x; < T}| with error E[Assume € = 10_5}

W, W, W W We W, W, W, . W,
Lo e e e e o o | | ® o | 7
0-S 1.5 2.5 3.5 e U

Dyer’s rounding

o e ®

3 Wg

1 @ V2@ w, @ We® Ow,_4 w, @ !
0 | I I | | Lo
0-S 1-S 2-S 3.6 e U-S

Dyer’s rounding: the scale parameteris S = % and new capacity T' = T + KS for K = 0(yn)

- 'NQ~Q
+ la\al = 0() - 10

) . T . ~
Dyer’s rounding: the scale parameteris S = Py and new capacityT' =T + KS for K = 0(\/n)
« forany solution X € Q, |X| < n, we require X € (), the total rounding error is at most

Rounding Error < Z (w; —W;)
iex

Sum of < n independent random variables in range [—S§, S]

) . T . ~
Dyer’s rounding: the scale parameteris S = Py and new capacityT' =T + KS for K = 0(\/n)
« forany solution X € Q, |X| < n, we require X € (), the total rounding error is at most

Rounding Error < z

\

(Wi _ VVl) —whp S - 6(@

Sum of < n independent random variables in range [—S§, S]

1EX

Dyer’s rounding: the scale parameteris S = % and new capacityT' = T + KS for K = 0(yn)
« foranysolution X € Q, |X| < n, we require X € ', the total rounding error is at most

Rounding Error < E Wi = W) =wnp S~ OGn) <T'—T =Slack of Capacity
1
) Y ’ = KS = 0(Syn)

Sum of < n independent random variables in range [—S§, S]

Bounded ratio case: W; € (T ZT] mm) for any solution X € Q, |X| < ¢

In the bounded ratio case, one can round more aggressively by setting a larger scale

)= (o

Such simple improvement does not help if £ = O(n)

Our algorithm: bounded-ratio case

T 2T]

Bounded ratio case: W; € (‘ for any solution X € Q, | X| < ¢

Step-I: Balls-into-Bins Hashing [Bringmann 2017]

n items (balls) For eachitem i € [n], sample a bin j € [£] u.a.r,, and throw i to B;
® O " “
. _ logn
f \ \ For any solution X € Q, w.h.p.|XNB;| <B =0 (loglogn)
E E @ @ Define collection of good subsets O = {X € [n] | Vb € [£],|B, N X| < B}
e
S R G R G

¢ bins: By, By, ..., By ‘ Q] = |§\2 n Q' <:| Approximately Count

Step-ll: partition-and-convolve with multi-level rounding

scale S level h = 0
V

scale Sy level h =1
V

scal:Slogg @ @ @ @ @ @ @ @ level h = log ¢

For every node u at level h, define B, =U,, By, for leaves k in subtree rooted at u

The node u (implicitly) defines a random weight w,: O N 2B« — R., such that V X € O n 254,

MTh/Z such that 0 < w,,(X) < L, Sy,

o E[w,(X)] =W(X) =Y,ex W; and wy, (X) is concentrated around its mean

* wy(X) is a multiple of the scale S}, =

The node u explicitly maintains f,,:{0S,, 1Sy, 2Sy,, ... LySy} = Ry suchthat V0 < i < L,

 fuGSh) = [{X € Qn 284 | wy, (X) < iSp}
j<i y

Y
Prefix Sum to i

L

Base Case: Rounding at leaf nodes u

For leaf node, set the scale S, = %, where H = log ¥

For each item i € By, round W; to w, (i) = {SH {%‘ , Sy [?B such that E[w,(i)] = W,
H H

olooor‘/\o/\looo|oo

”% s, :>”

V goodsubset X €e A n28«, w,(X) = z wy, (1)
iex

Compute the function f,;: {0, Sy, 2S5y, ..., LySy} = Rs, via dynamic programming,

M(i, j, k): how many subsets X of first i items with |X| = j and total weight k - S,

AN

| < |By| 2T ~
l ._0< logn) k<55~ B=0(ve)

loglogn

Base Case: Rounding at leaf nodes u

T

For leaf node, set the scale S, = 777 where H = log ¥

For each item i € By, round W; to w, (i) = {SH {%‘ , Sy [?B such that E[w,(i)] = W;
H H

olooor/\o/\looo|oo
P —

V goodsubset X €e A n28«, w,(X) = z wy, (1)
iex

Compute the function f,,: {0, Sy, 2S5y, ..., LySy} = Rs, via dynamic programming, in time

0 (1Bl B 55-) = 0U1Bul VD)

T
£-Sy
The total complexity contributed by all leaf nodes is

Z O0(1B,| - V) = 6(nve) = 6 (n5)

Induction Step: convolution and rounding

scale Sp, Two functions f, f:{0,Sy4+1, 2Sh+1, «+» Lp41Syp+1} = Ratnodes l and r

fr achieves prefix-sum approximation such that for any i
Y isi fuGSn+1) = [{X € QN 282 | wy(X) < iSpy4}

@ @ @ @ approximate the number of subsets with weight < S,

scale Sp11

Induction Step: convolution and rounding

scale Sp, Two functions f, f:{0,Sy4+1, 2Sh+1, «+» Lp41Syp+1} = Ratnodes l and r

Intuitively, one may think that
feGShen) = [{X € QN 28¢ | wyp(X) = S

@ @ @ @ for the approximation measured by the prefix-sum

—~~

f. = f, f. is a convolution * We only require f; * f,. achieve prefix-sum approximation
O(ZH_hlog n) — 2M

scale Sp11

* The values in f; and f,- are at most n

(xSp+1) = ((Sp+) fr(Cx — DS . <
fulxSnt1 2 filiSns)fr 1) ‘ The approximate convolution f,, takes time O(Lhﬂ\/M)

0<i<x

e Sy —D fu(iSy) = z]_f;(jshﬂ)

)

Sh_1 Rounding
|

- O @ O o O O @
f.(0) ulSnir) fu@Sni1) FuBSni1) wy(X) = round(w(X N B) + wo(X N BY)) fu(2Lp+1She1)

scale S, level h = 0

v _— T
scale §; level h =1

N N

* Compute the function f,, for each node from bottom to up

* The total computational complexity is 0(n!)

* Root defines a random weight function

~ T
VX € (), E[Wroot(X)] = W(X) and w. h. p. Wyt (X) = W(X) + ;

* The set of solutions at the root

O’ ={XE§.‘Wroot(X) ST+6(§)}

all subsets 2[™]

Root defines a random weight function

VX € Q,

E[Wroot(X)] = W(X) and w. h. p. Wy (X) = W(X) i%

The set of solutions at the root

Q' = {XE O ‘ Wroot(X) < T+6(§)}
-
good subset
_

all subsets 2[™]

~N

J

QN Q = Q by balls into bins

Root defines a random weight function

VX € Q,

ElWrooc(X)] = W(X) and w. h. p. wyaot(X) ~ W(X) £ —

The set of solutions at the root

O ={X €| wooel) <T+0(

2)]

£

good subset O

~

Root defines a random weight function

~ T
VX € (), E[Wroot(X)] = W(X) and w. h. p. Wyt (X) = W(X) +

The set of solutions at the root

O’ ={XE§.‘Wroot(X) ST+6(§)}

£

; Q
Q

* Root defines a random weight function

~ T
VX € (), E[Wroot(X)] = W(X) and w. h. p. Wyt (X) = W(X) + ;

* The set of solutions at the root

O = {XE Q ‘ Wroot(X) < T+6(§)}
) N

oL
. Y

* Whp,ifX€QthenX € Q. sy O N Q" = (.
* W.h.p,formostX € Q' \Q,itholdsthatT <W(X) <T +§ mmmm) ()'\ () is not too large

T 2T

Since W; € (;, > X becomes a solution by throwing an arbitrary item

 Using the function f.,,; to approximate the size of Q' [,
)

Q] = z froot(JS0)

jSo<T'

* Draw uniform random samples X € Q' and test whether X € Q N Q' to estimate
QN Q'

joy

/.\ Sample Complexity
o m A m L
#samples = 0

8 8 8 8 8 8 8 8 Qna]

* Draw samples using a top-down process

* Each sample takes time O (£*>)

e Using the function fmot to approximate the size of Q' [/
Q)

Q] = z froot(JS0)

jSo<T'

« Draw uniform random samples X € Q' and test whether X € Q0 N Q' to estimate
QN Q|
|1

/.\ Sample Complexity
Q' ~ (N
m m #samples = 0(il) =0 (—)

78 8 8 88 8 &8 20 ¢

hitting set
* Draw samples using a top-down process
* Each sample takes time O (#1%) =) Complexity in sampling step:é(n\/?) = 0(n'®)

Hitting set: Improved sample complexity

- ®

T
W(X)— Wi <T T<W(Y)— W; <T+-—
lEX lEY t

Hitting set: Improved sample complexity

Q' T
W(X) = W, <T T <W(Y) = W, <T +—
iex icy 4

* Construct a random H € [n] by selecting each i € [n] with probability :1) - polylog(n)
with prob.>99%, |H| < 0(n/?)

 ForanyY € Q'\Q,wesayYishitbyHifHNY + Q.

[Y| > Q(¢)]‘[w.h.p. Y is hitby H J#[w.p. = 99%, atleast 1 — o(1) fraction in Q"\Q are hit by H]

* By probabilistic method, 3H with size O (n/¥) that hits most ¥ € Q/\Q
 ForanyY hit by H, throw away arbitraryi € H makeY —1i € ()

[{Y € Q\Q' | Y hitby H}| _m 1Y ;.
Q] <lHl=0(;) =) Tap < @ +o()IH =0(%)

General case

e Partition items into groups according to the weight

"8 8 8 08 8 8 87 8 8 8

. : : T . : . LT : . . T
items with weight T ~ > items with weight >~ small items with weight 0 ~ P

ﬂ

* Merge all O(logn) groups together, which requires that their roots have the same scale S

« Compute £ = 0(n) s.t. for all roots, set the same scale ©(T /£)

General case

Partition items into groups according to the weight

"8 8 8 08 8 8 87 8 8 8

. . : T T
items with weight T ~ > items with weight >~

ﬂ

NN

. . . T
small items with weight 0 ~ P

* Merge all O(log n) groups together, which requires that their roots have the same scale S
* most X C [n] with Wy = ©(T) contains Q(£) items with weight O(T /)

« Compute £ = 0(n) s.t. for all roots, set the same scale ©(T /£) S

sample complexity O (n/¢)

~ ~ 2
* If there are many tiny items, then a sample X satisfies | X| = O(n). Running time O (n %) =0 (n—) can

be large. We reduce the running time to O (n'>) using
1.

?

Tiny items are typically rounded to weight 0. We maintain tiny items implicitly. In other words, we
draw partial samples containing only non-tiny items.

Each tiny item with rounded weight 0 should be included with Y% probability. (cannot implement)

Construct another #Knapsack instance to take care the contribution of tiny items.

Open problems

* A near-linear time counting algorithm?

* FPTAS (deterministic algorithm) with improved running time?
e Current best algorithm 0 (n?) [Gawrychowski, Markin, and Weimann 2018]

* Extensions and applications
* Integer #Knapsack and multi-dimensional #Knapsack
e Contingency table

* Apply ideas to other approximate counting problems

	Slide 1: Approximately counting knapsack solutions in sub-quadratic time
	Slide 2: #Knapsack Problem
	Slide 3: #Knapsack Problem
	Slide 5: Known results
	Slide 6: Our Result
	Slide 7: Dyer’s algorithm
	Slide 8: Dyer’s algorithm
	Slide 9
	Slide 10
	Slide 11: Bounded-ratio case
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Our algorithm: bounded-ratio case
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Hitting set: Improved sample complexity
	Slide 33: Hitting set: Improved sample complexity
	Slide 34: General case
	Slide 35: General case
	Slide 36: Open problems

