
Approximately counting knapsack solutions
in sub-quadratic time

Weiming Feng

(The University of Hong Kong)

Joint work with
Ce Jin
(MIT)

Pre-AAAC Theory Workshop at HKU
29 May 2025

#Knapsack Problem

Knapsack instance: 𝑛 items with weights 𝑊𝑖 𝑖=1
𝑛 and total capacity 𝑇 > 0

Knapsack solutions: Boolean vector 𝑥 ∈ {0,1}𝑛 such that σ1≤𝑖≤𝑛𝑊𝑖𝑥𝑖 ≤ 𝑇

𝑇

𝑊1 𝑊2 𝑊3 𝑊4 𝑊5

#Knapsack Problem

Knapsack instance: 𝑛 items with weights 𝑊𝑖 𝑖=1
𝑛 and total capacity 𝑇 > 0

Knapsack solutions: Boolean vector 𝑥 ∈ {0,1}𝑛 such that σ1≤𝑖≤𝑛𝑊𝑖𝑥𝑖 ≤ 𝑇

#Knapsack 𝑍 = |Ω| = 𝑥 ∈ 0,1 𝑛:෍

𝑖=1

𝑛

𝑊𝑖𝑥𝑖 ≤ 𝑇

#{Boolean cube points in a half space}

• Exact counting: #P-complete problem

• Approximate counting: given any 𝜖 > 0, in poly input size,
1

𝜖
time, output

• FPTAS: a number መ𝑍 s.t. 1 − 𝜖 𝑍 ≤ መ𝑍 ≤ 1 + 𝜖 𝑍

• FPRAS: a random number መ𝑍 s.t. Pr 1 − 𝜖 𝑍 ≤ መ𝑍 ≤ 1 + 𝜖 𝑍 ≥
2

3

Known results

Sampling: draw uniform random sample from Ω = 𝑥 ∈ 0,1 𝑛 σ1≤𝑖≤𝑛𝑊𝑖𝑥𝑖 ≤ 𝑇
Sampling

Approximate
Counting

Jerrum, Valiant,
Vazirani, 1986

Markov chain Monte Carlo sampling (MCMC) algorithm

• Dyer, Frieze, Kannan, Kapoor, Perkovic, and Vazirani 1993: 2𝑂 𝑛 log 𝑛 2.5

• Morris and Sinclair 1999/2004: 𝑂𝛿 𝑛4.5+𝛿 for any 𝛿 > 0

JVV86 reduction 𝑇count = 𝑇sample ⋅ 𝑂(𝑛
2/𝜖2)

Rounding + Dynamic Programming + Rejection Sampling [Dyer 2003]: counting in time ෨𝑂(𝑛2.5 + 𝑛2/𝜖2)

F
P
R
A
S

randomized

Dynamic Programming based counting algorithms

• Gopalan, Klivans, Meka, Štefankovič, Vempala, and Vigoda 2011: ෨𝑂(𝑛3/𝜖)

• Gawrychowski, Markin, and Weimann 2018: ෨𝑂(𝑛2.5/𝜖)

F
P
T
A
S

deterministic

Our Result

𝑂
𝑛1.5

𝜖2
polylog

𝑛

𝜖There is an FPRAS for #Knapsack in time

• Our algorithm works in standard word-RAM model with word length polylog
𝑛

𝜖
bits

• We assume all 𝑊𝑖 and 𝑇 has bit length polylog(𝑛);

otherwise the running time will be multiplied by 𝑂(log 𝑇) factor

• The dependency to 𝑛 is sub-quadratic, which is rare in approximate counting

most approximate counting algorithms take quadratic time (due to counting-to-sampling reduction)

but there some exceptions e.g. spanning trees, network unreliability, special spin systems

• The dependency to
1

𝜖
is near-quadratic, which is common for Monte Carlo algorithms

Dyer’s algorithm

Assume 0 < 𝑊1 ≤ 𝑊2 ≤ ⋯ ≤ 𝑊𝑛 ≤ 𝑇

0

𝑊1 𝑊2 𝑊3 𝑊4 𝑊5 𝑊6 𝑊7 𝑊𝑛−1 𝑊𝑛

𝑇

Dyer’s algorithm

0

𝑊1 𝑊2 𝑊3 𝑊4 𝑊5 𝑊6 𝑊7 𝑊𝑛−1 𝑊𝑛

𝑇

0 ⋅ 𝑆 1 ⋅ 𝑆 2 ⋅ 𝑆 𝑈 ⋅ 𝑆3 ⋅ 𝑆 ……

• Set the scale parameter 𝑆 =
𝑇

2𝐾𝑛
, where 𝐾 = 𝑛 ⋅ polylog

𝑛

𝜖

• For each 𝑖 ∈ [𝑛], round 𝑊𝑖 to a random nearestmultiple𝑤𝑖 ∈
𝑊𝑖

𝑆
𝑆 ,

𝑊𝑖

𝑆
𝑆 of 𝑆 such that

𝔼 𝑤𝑖 = 𝑊𝑖

• Round capacity 𝑇 to a 𝑇′ = 𝑇 + 𝐾𝑆

0
𝑤1
𝑤3 𝑤2 𝑤4

𝑤5 𝑤6

𝑤7

𝑤𝑛−1 𝑤𝑛

0 ⋅ 𝑆 1 ⋅ 𝑆 2 ⋅ 𝑆 𝑈 ⋅ 𝑆3 ⋅ 𝑆 ……

𝑇′

Original solution space Ω

𝑋 ∈ 0,1 𝑛 s. t.𝑊 𝑋 =෍
𝑖=1

𝑛

𝑊𝑖𝑥𝑖 ≤ 𝑇

Rounded random solution space Ω′

𝑋 ∈ 0,1 𝑛 s. t. 𝑤 𝑋 =෍
𝑖=1

𝑛

𝑤𝑖𝑥𝑖 ≤ 𝑇′
Ω Ω′

• For any solution 𝑋 ∈ Ω, w.h.p., 𝑋 ∈ Ω′ Ω′ ∩ Ω ≈ Ω

• For any non-solution 𝑌 ∈ Ω𝑑 s.t. 𝑌 needs to throw 𝑑 heaviest items to make it in Ω, then

We can ignore 𝑌 ∈ Ω𝑑 for 𝑑 ≥ 2. The only missing part is 𝑌 ∈ Ω1 but Ω1 ≤ 𝑛 ⋅ |Ω|. Overall,

Ω′\Ω ≤ 𝑂 𝑛 ⋅ |Ω|

𝔼 𝑤 𝑋 = 𝑊 𝑋 ≤ 𝑇

𝑇′ = 𝑇 + 𝐾𝑆𝑇𝔼[𝑤(𝑋)]

𝔼 𝑤(𝑌) = 𝑊 𝑌 ≥ 𝑇 +
𝑑 − 1

𝑛
⋅ 𝑇

𝑇′ = 𝑇 + 𝐾𝑆𝑇 𝔼[𝑤(𝑌)]

for 𝑑 ≥ 2

Original solution space Ω

𝑋 ∈ 0,1 𝑛 s. t.𝑊 𝑋 =෍
𝑖=1

𝑛

𝑊𝑖𝑥𝑖 ≤ 𝑇

Rounded random solution space Ω′

𝑋 ∈ 0,1 𝑛 s. t. 𝑤 𝑋 =෍
𝑖=1

𝑛

𝑤𝑖𝑥𝑖 ≤ 𝑇′
Ω Ω′

• Ω′ ∩ Ω ≈ Ω
• Ω′\Ω ≤ 𝑂 𝑛 ⋅ |Ω|• We can approximately count Ω ∩ Ω′ ≈ Ω

• Exact count Ω′ by dynamic programming, because all 𝑤𝑖 is a multiple of 𝑆

• Draw𝑂
𝑛

𝜖2
uniform random sample 𝑋 from Ω′ and test whether 𝑋 ∈ Ω to approximate

|Ω∩Ω′|

|Ω′|
≈

Ω

Ω′ = Ω
1

𝑛

• Output: Ω ∩ Ω′ =
|Ω∩Ω′|

|Ω′|
⋅ |Ω′|

Running time: 𝑂 𝑛 ⋅
𝑇′

𝑆
= 𝑂 𝑛 ⋅

𝑇+𝐾𝑆

𝑇/(2𝐾𝑛)
= 𝑂 𝑛2𝐾 = ෨𝑂(𝑛2.5)

Running time: 𝑂
𝑛2

𝜖2

Bounded-ratio case

• Capacity 𝑇 and 𝑛 items with weights 𝑊𝑖 𝑖=1
𝑛 , where for any 𝑊𝑖 ∈

𝑇

ℓ
,
2𝑇

ℓ
and 2 ≤ ℓ ≤ 2𝑛

• Approximately count 𝑍 = Ω = 𝑥 ∈ {0,1}𝑛 ∣ σ𝑖=1
𝑛 𝑊𝑖𝑥𝑖 ≤ 𝑇 with error 𝜖. Assume 𝜖 = 10−5.

for simplicity

0
𝑤1
𝑤3 𝑤2 𝑤4

𝑤5 𝑤6

𝑤7

𝑤𝑛−1 𝑤𝑛

0 ⋅ 𝑆 1 ⋅ 𝑆 2 ⋅ 𝑆 𝑈 ⋅ 𝑆3 ⋅ 𝑆 ……

𝑇′

0

𝑊1 𝑊2 𝑊3 𝑊4 𝑊5 𝑊6 𝑊7 𝑊𝑛−1 𝑊𝑛

𝑇

0 ⋅ 𝑆 1 ⋅ 𝑆 2 ⋅ 𝑆 𝑈 ⋅ 𝑆3 ⋅ 𝑆 ……

Dyer’s rounding

Dyer’s rounding: the scale parameter is 𝑆 =
𝑇

2𝐾𝑛
and new capacity 𝑇′ = 𝑇 + 𝐾𝑆 for 𝐾 = ෩Θ 𝑛

Ω Ω′

• Ω′ ∩ Ω ≈ Ω
• Ω′\Ω ≤ 𝑂 𝑛 ⋅ |Ω|

𝑆 =
𝑇

2 ⋅ 𝐾 ⋅ 𝑛

Dyer’s rounding: the scale parameter is 𝑆 =
𝑇

2𝐾𝑛
and new capacity 𝑇′ = 𝑇 + 𝐾𝑆 for 𝐾 = ෩Θ 𝑛

• for any solution 𝑋 ∈ Ω, 𝑋 ≤ 𝑛,we require 𝑋 ∈ Ω′, the total rounding error is at most

Sum of ≤ 𝒏 independent random variables in range [−𝑆, 𝑆]

Rounding Error≤ ෍
𝑖∈𝑋

(𝑤𝑖 −𝑊𝑖) =whp 𝑆 ⋅ ෨𝑂 𝑛 ≤ 𝑇′ − 𝑇 = Capacity Slack

= 𝐾𝑆 = ෩Θ(𝑆 𝑛)

Dyer’s rounding: the scale parameter is 𝑆 =
𝑇

2𝐾𝑛
and new capacity 𝑇′ = 𝑇 + 𝐾𝑆 for 𝐾 = ෩Θ 𝑛

• for any solution 𝑋 ∈ Ω, 𝑋 ≤ 𝑛,we require 𝑋 ∈ Ω′, the total rounding error is at most

Sum of ≤ 𝒏 independent random variables in range [−𝑆, 𝑆]

Rounding Error≤ ෍
𝑖∈𝑋

(𝑤𝑖 −𝑊𝑖) =whp 𝑆 ⋅ ෨𝑂 𝑛 ≤ 𝑇′ − 𝑇 = Capacity Slack

= 𝐾𝑆 = ෩Θ(𝑆 𝑛)

Dyer’s rounding: the scale parameter is 𝑆 =
𝑇

2𝐾𝑛
and new capacity 𝑇′ = 𝑇 + 𝐾𝑆 for 𝐾 = ෩Θ 𝑛

• for any solution 𝑋 ∈ Ω, 𝑋 ≤ 𝑛, we require 𝑋 ∈ Ω′, the total rounding error is at most

Sum of ≤ 𝒏 independent random variables in range [−𝑆, 𝑆]

Rounding Error≤ ෍
𝑖∈𝑋

(𝑤𝑖 −𝑊𝑖) =whp 𝑆 ⋅ ෨𝑂 𝑛 ≤ 𝑇′ − 𝑇 = Slack of Capacity

In the bounded ratio case, one can round more aggressively by setting a larger scale

Such simple improvement does not help if ℓ = Θ(𝑛)

Bounded ratio case: 𝑊𝑖 ∈
𝑇

ℓ
,
2𝑇

ℓ
for any solution 𝑋 ∈ Ω, 𝑋 ≤ ℓ

= 𝐾𝑆 = ෩Θ(𝑆 𝑛)

𝑆 ≈
𝑇

𝑛 𝑛
𝑆 ≈

𝑇

ℓ ℓ

Our algorithm: bounded-ratio case

Step-I: Balls-into-Bins Hashing [Bringmann 2017]

ℓ bins: 𝐵1, 𝐵2, … , 𝐵ℓ

𝑛 items (balls) For each item 𝑖 ∈ [𝑛], sample a bin 𝑗 ∈ [ℓ] u.a.r., and throw 𝑖 to 𝐵𝑗

For any solution 𝑋 ∈ Ω, w.h.p. 𝑋 ∩ 𝐵𝑖 ≤ 𝐵 = 𝑂
log 𝑛

log log 𝑛

Define collection of good subsets ෡Ω = {𝑋 ⊆ 𝑛 ∣ ∀𝑏 ∈ ℓ , 𝐵𝑏 ∩ 𝑋 ≤ 𝐵}

Ω ≈ ෡Ω ∩ Ω Approximately Count

Bounded ratio case: 𝑊𝑖 ∈
𝑇

ℓ
,
2𝑇

ℓ
for any solution 𝑋 ∈ Ω, 𝑋 ≤ ℓ

Step-II: partition-and-convolve with multi-level rounding

For every node 𝑢 at level ℎ, define 𝐵𝑢 =∪𝑘 𝐵𝑘 for leaves 𝑘 in subtree rooted at 𝑢

The node 𝑢 (implicitly) defines a random weight 𝑤𝑢: ෡Ω ∩ 2𝐵𝑢 → ℝ≥0 such that ∀ 𝑋 ∈ ෡Ω ∩ 2𝐵𝑢,

• 𝑤𝑢(𝑋) is a multiple of the scale 𝑆ℎ ≈
𝑇

ℓ⋅2ℎ/2
such that 0 ≤ 𝑤𝑢 𝑋 ≤ 𝐿ℎ𝑆ℎ

• 𝔼 𝑤𝑢 𝑋 = 𝑊 𝑋 = σ𝑖∈𝑋𝑊𝑖 and 𝑤𝑢(𝑋) is concentrated around its mean

The node 𝑢 explicitly maintains 𝑓𝑢: 0𝑆ℎ , 1𝑆ℎ , 2𝑆ℎ , … 𝐿ℎ𝑆ℎ → ℝ≥0 such that ∀ 0 ≤ 𝑖 ≤ 𝐿ℎ,

෍
𝑗≤𝑖
𝑓𝑢(𝑗𝑆ℎ) ≈ 𝑋 ∈ ෡Ω ∩ 2𝐵𝑢 ∣ 𝑤𝑢 𝑋 ≤ 𝑖𝑆ℎ

Prefix Sum to 𝒊

level ℎ = log ℓ

……

level ℎ = 0

level ℎ = 1

scale 𝑆log ℓ

scale 𝑆1

scale 𝑆0

……

Base Case: Rounding at leaf nodes 𝒖

For leaf node, set the scale 𝑆𝐻 ≈
𝑇

ℓ ℓ
, where 𝐻 = log ℓ

For each item 𝑖 ∈ 𝐵𝑢, round 𝑊𝑖 to 𝑤𝑢 𝑖 = 𝑆𝐻
𝑊𝑖

𝑆𝐻
, 𝑆𝐻

𝑊𝑖

𝑆𝐻
such that 𝔼 𝑤𝑢 𝑖 = 𝑊𝑖

∀ good subset 𝑋 ∈ ෡Ω ∩ 2𝐵𝑢 , 𝑤𝑢 𝑋 =෍
𝑖∈𝑋

𝑤𝑢(𝑖)

……
0

𝑆𝐻

Compute the function 𝑓𝑢: {0, 𝑆𝐻 , 2𝑆𝐻 , … , 𝐿𝐻𝑆𝐻} → ℝ≥0, via dynamic programming,

𝑀(𝑖, 𝑗, 𝑘): how many subsets 𝑋 of first 𝑖 items with 𝑋 = 𝑗 and total weight 𝑘 ⋅ 𝑆𝐻

𝑖 ≤ 𝐵𝑢

𝑗 = 𝑂
log 𝑛

log log 𝑛

𝑘 ≤
2𝑇

ℓ𝑆𝐻
⋅ 𝐵 = ෨𝑂 ℓ

Base Case: Rounding at leaf nodes 𝒖

For leaf node, set the scale 𝑆𝐻 ≈
𝑇

ℓ ℓ
, where 𝐻 = log ℓ

For each item 𝑖 ∈ 𝐵𝑢, round 𝑊𝑖 to 𝑤𝑢 𝑖 = 𝑆𝐻
𝑊𝑖

𝑆𝐻
, 𝑆𝐻

𝑊𝑖

𝑆𝐻
such that 𝔼 𝑤𝑢 𝑖 = 𝑊𝑖

∀ good subset 𝑋 ∈ ෡Ω ∩ 2𝐵𝑢 , 𝑤𝑢 𝑋 =෍
𝑖∈𝑋

𝑤𝑢(𝑖)

……
0

𝑆𝐻

Compute the function 𝑓𝑢: {0, 𝑆𝐻 , 2𝑆𝐻 , … , 𝐿𝐻𝑆𝐻} → ℝ≥0, via dynamic programming, in time

𝑂 𝐵𝑢 ⋅ 𝐵 ⋅
𝑇

ℓ⋅𝑆𝐻
= ෨𝑂(𝐵𝑢 ⋅ ℓ)

The total complexity contributed by all leaf nodes is

෍
𝑢

෨𝑂 𝐵𝑢 ⋅ ℓ = ෨𝑂 𝑛 ℓ = ෨𝑂(𝑛1.5)

Induction Step: convolution and rounding

𝑙 𝑟

𝑢

scale 𝑆ℎ+1

Two functions 𝑓𝑙 , 𝑓𝑟: 0, 𝑆ℎ+1, 2𝑆ℎ+1, … , 𝐿ℎ+1𝑆ℎ+1 → ℝ at nodes 𝑙 and 𝑟

𝑓ℓ achieves prefix-sum approximation such that for any 𝑖

σ𝑗≤𝑖 𝑓𝑢(𝑗𝑆ℎ+1) ≈ 𝑋 ∈ ෡Ω ∩ 2𝐵ℓ ∣ 𝑤ℓ 𝑋 ≤ 𝑖𝑆ℎ+1

approximate the number of subsets with weight ≤ 𝑖𝑆ℎ+1

scale 𝑆ℎ

Induction Step: convolution and rounding

𝑙 𝑟

𝑢

scale 𝑆ℎ+1

Two functions 𝑓𝑙 , 𝑓𝑟: 0, 𝑆ℎ+1, 2𝑆ℎ+1, … , 𝐿ℎ+1𝑆ℎ+1 → ℝ at nodes 𝑙 and 𝑟

Intuitively, one may think that

𝑓ℓ 𝑗𝑆ℎ+1 ≈ 𝑋 ∈ ෡Ω ∩ 2𝐵ℓ ∣ 𝑤ℓ 𝑋 = 𝑗𝑆ℎ+1

scale 𝑆ℎ

for the approximation measured by the prefix-sum

෡𝑓𝑢 = 𝑓𝑙 ∗ 𝑓𝑟 is a convolution

𝑓𝑢 𝑥𝑆ℎ+1 = ෍

0≤𝑖≤𝑥

𝑓𝑙 𝑖𝑆ℎ+1 𝑓𝑟 𝑥 − 𝑖 𝑆ℎ+1

• We only require 𝑓ℓ ∗ 𝑓𝑟 achieve prefix-sum approximation

• The values in 𝑓ℓ and 𝑓𝑟 are at most 𝑛𝑂(2
𝐻−ℎlog 𝑛) = 2𝑀

The approximate convolution ෡𝑓𝑢 takes time ෨𝑂 𝐿ℎ+1 𝑀

෡𝑓𝑢(0) ෡𝑓𝑢 𝑆ℎ+1

𝑆ℎ−1

෡𝑓𝑢 2𝑆ℎ+1 ෡𝑓𝑢 3𝑆ℎ+1
෡𝑓𝑢 2𝐿ℎ+1𝑆ℎ+1

𝑆ℎ

σ
𝑓𝑢(𝑖𝑆ℎ) =෍

𝑗

෡𝑓𝑢 𝑗𝑆ℎ+1

Rounding

𝑤𝑢 𝑋 = round(𝑤𝑟 𝑋 ∩ 𝐵𝑙 + 𝑤𝑟(𝑋 ∩ 𝐵𝑟))

level ℎ = log ℓ

……

level ℎ = 0

scale 𝑆log ℓ

scale 𝑆1

scale 𝑆0

level ℎ = 1

……

root

• Compute the function 𝑓𝑢 for each node from bottom to up

• The total computational complexity is ෨𝑂 𝑛1.5

• Root defines a random weight function

∀𝑋 ∈ ෡Ω, 𝔼 𝑤root 𝑋 = 𝑊 𝑋 and w. h. p. 𝑤root 𝑋 ≈ 𝑊 𝑋 ±
𝑇

ℓ

• The set of solutions at the root

Ω′ = 𝑋 ∈ ෡Ω 𝑤root 𝑋 ≤ 𝑇 + ෨𝑂
𝑇
ℓ

Ω
solutions

all subsets 2[𝑛]

Ω
solutions

all subsets 2[𝑛]

good subset ෡Ω

Ω ∩ ෡Ω ≈ Ω by balls into bins

• Root defines a random weight function

∀𝑋 ∈ ෡Ω, 𝔼 𝑤root 𝑋 = 𝑊 𝑋 and w. h. p. 𝑤root 𝑋 ≈ 𝑊 𝑋 ±
𝑇

ℓ

• The set of solutions at the root

Ω′ = 𝑋 ∈ ෡Ω 𝑤root 𝑋 ≤ 𝑇 + ෨𝑂
𝑇
ℓ

Ω ∩ ෡Ω

• Root defines a random weight function

∀𝑋 ∈ ෡Ω, 𝔼 𝑤root 𝑋 = 𝑊 𝑋 and w. h. p. 𝑤root 𝑋 ≈ 𝑊 𝑋 ±
𝑇

ℓ

• The set of solutions at the root

Ω′ = 𝑋 ∈ ෡Ω 𝑤root 𝑋 ≤ 𝑇 + ෨𝑂
𝑇
ℓ

good subset ෡Ω

Ω ∩ ෡Ω
෡Ω

Ω′

• Root defines a random weight function

∀𝑋 ∈ ෡Ω, 𝔼 𝑤root 𝑋 = 𝑊 𝑋 and w. h. p. 𝑤root 𝑋 ≈ 𝑊 𝑋 ±
𝑇

ℓ

• The set of solutions at the root

Ω′ = 𝑋 ∈ ෡Ω 𝑤root 𝑋 ≤ 𝑇 + ෨𝑂
𝑇
ℓ

Ω ∩ Ω′Ω′

• W.h.p., if 𝑋 ∈ Ω then 𝑋 ∈ Ω′. Ω ∩ Ω′ ≈ Ω.

• W.h.p., for most 𝑋 ∈ Ω′ \Ω, it holds that 𝑇 < 𝑊 𝑋 ≤ 𝑇 +
𝑇

ℓ
Ω′\Ω is not too large

Since 𝑾𝒊 ∈
𝑻

ℓ
,
𝟐𝑻

ℓ
, 𝑿 becomes a solution by throwing an arbitrary item

• Root defines a random weight function

∀𝑋 ∈ ෡Ω, 𝔼 𝑤root 𝑋 = 𝑊 𝑋 and w. h. p. 𝑤root 𝑋 ≈ 𝑊 𝑋 ±
𝑇

ℓ

• The set of solutions at the root

Ω′ = 𝑋 ∈ ෡Ω 𝑤root 𝑋 ≤ 𝑇 + ෨𝑂
𝑇
ℓ

• Using the function 𝑓root to approximate the size of Ω
′

Ω′ ≈ ෍

𝑗𝑆0≤𝑇
′

𝑓root(𝑗𝑆0)

• Draw uniform random samples 𝑋 ∈ Ω′ and test whether 𝑋 ∈ Ω ∩ Ω′ to estimate
|Ω ∩ Ω′|

|Ω′|

Ω ∩ Ω′Ω′

• Draw samples using a top-down process

• Each sample takes time ෨𝑂(ℓ1.5)

Sample Complexity

#samples = 𝑂
|Ω′|

|Ω ∩ Ω′|

• Using the function 𝑓root to approximate the size of Ω′

Ω′ ≈ ෍

𝑗𝑆0≤𝑇
′

𝑓root(𝑗𝑆0)

• Draw uniform random samples 𝑋 ∈ Ω′ and test whether 𝑋 ∈ Ω ∩ Ω′ to estimate
|Ω ∩ Ω′|

|Ω′|

Ω ∩ Ω′Ω′

• Draw samples using a top-down process

• Each sample takes time ෨𝑂(ℓ1.5)

Sample Complexity

#samples = 𝑂
Ω′

Ω ∩ Ω′
= ෨𝑂

𝑛

ℓ
hitting set

Complexity in sampling step: ෨𝑂 𝑛 ℓ = ෨𝑂(𝑛1.5)

Hitting set: Improved sample complexity

Ω ∩ Ω′Ω′ ≈ Ω

𝑊 𝑋 =෍
𝑖∈𝑋

𝑊𝑖 ≤ 𝑇

Ω′

𝑇 < 𝑊 𝑌 =෍
𝑖∈𝑌

𝑊𝑖 ≤ 𝑇 +
𝑇

ℓ

Hitting set: Improved sample complexity

Ω𝑊 𝑋 =෍
𝑖∈𝑋

𝑊𝑖 ≤ 𝑇
Ω′

𝑇 < 𝑊 𝑌 =෍
𝑖∈𝑌

𝑊𝑖 ≤ 𝑇 +
𝑇

ℓ

• Construct a random 𝐻 ⊆ [𝑛] by selecting each 𝑖 ∈ [𝑛] with probability
1

ℓ
⋅ polylog 𝑛

with prob.≥ 99%, 𝐻 ≤ ෨𝑂(𝑛/ℓ)

• For any 𝑌 ∈ Ω′\Ω, we say 𝑌 is hit by 𝐻 if 𝐻 ∩ 𝑌 ≠ ∅.

• By probabilistic method, ∃𝐻 with size ෨𝑂(𝑛/ℓ) that hits most 𝑌 ∈ Ω′\Ω

• For any 𝑌 hit by 𝐻, throw away arbitrary 𝑖 ∈ 𝐻 make 𝑌 − 𝑖 ∈ Ω

𝑌 > Ω(ℓ) w.h.p. 𝑌 is hit by𝐻 w.p. ≥ 99%, at least 1 − 𝑜(1) fraction in Ω′\Ω are hit by𝐻

| 𝑌 ∈ Ω\Ω′ ∣ 𝑌 hit by 𝐻 |

|Ω|
≤ 𝐻 = ෨𝑂

𝑛

ℓ

|Ω′|

|Ω|
≤ (1 + 𝑜(1)) 𝐻 = ෨𝑂

𝑛

ℓ

General case
• Partition items into groups according to the weight

items with weight 𝑇 ∼
𝑇

2
items with weight

𝑇

2
∼

𝑇

4

……

• Merge all 𝑂(log 𝑛) groups together, which requires that their roots have the same scale 𝑆

• ∃ℓ = 𝑂(𝑛) s.t. most 𝑋 ⊆ [𝑛] with𝑊𝑋 = Θ(𝑇) contains ෩Ω(ℓ) items with weight ෩Θ(𝑇/ℓ)

• Compute ℓ = 𝑂(𝑛) s.t. for all roots, set the same scale ෩Θ(𝑇/ℓ)

small items with weight 0 ∼
𝑇

2𝑛

General case
• Partition items into groups according to the weight

• Merge all 𝑂(log 𝑛) groups together, which requires that their roots have the same scale 𝑆

• most 𝑋 ⊆ [𝑛] with𝑊𝑋 = Θ(𝑇) contains ෩Ω(ℓ) items with weight ෩Θ(𝑇/ℓ)

• Compute ℓ = 𝑂(𝑛) s.t. for all roots, set the same scale ෩Θ(𝑇/ℓ) sample complexity ෨𝑂(𝑛/ℓ)

• If there are many tiny items, then a sample 𝑋 satisfies 𝑋 = 𝑂(𝑛). Running time ෨𝑂 𝑛 ⋅
𝑛

ℓ
= ෨𝑂

𝑛2

ℓ
can

be large. We reduce the running time to ෨𝑂(𝑛1.5) using

1. Tiny items are typically rounded to weight 0. We maintain tiny items implicitly. In other words, we
draw partial samples containing only non-tiny items.

2. Each tiny item with rounded weight 0 should be included with ½ probability. (cannot implement)

3. Construct another #Knapsack instance to take care the contribution of tiny items.

items with weight 𝑇 ∼
𝑇

2
items with weight

𝑇

2
∼

𝑇

4

……

small items with weight 0 ∼
𝑇

2𝑛

Open problems

• A near-linear time counting algorithm?

• FPTAS (deterministic algorithm) with improved running time?

• Current best algorithm ෨𝑂 𝑛2.5 [Gawrychowski, Markin, and Weimann 2018]

• Extensions and applications

• Integer #Knapsack and multi-dimensional #Knapsack

• Contingency table

• Apply ideas to other approximate counting problems

	Slide 1: Approximately counting knapsack solutions in sub-quadratic time
	Slide 2: #Knapsack Problem
	Slide 3: #Knapsack Problem
	Slide 5: Known results
	Slide 6: Our Result
	Slide 7: Dyer’s algorithm
	Slide 8: Dyer’s algorithm
	Slide 9
	Slide 10
	Slide 11: Bounded-ratio case
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Our algorithm: bounded-ratio case
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Hitting set: Improved sample complexity
	Slide 33: Hitting set: Improved sample complexity
	Slide 34: General case
	Slide 35: General case
	Slide 36: Open problems

