Fast sampling and counting k-SAT solutions
in the local lemma regime

Weiming Feng
Nanjing University

Joint work with: Heng Guo (University of Edinburgh)
Yitong Yin (Nanjing University)
Chihao Zhang (Shanghai Jiao Tong University)

Online Seminar
Institute of Computing Technology, Chinese Academy of Sciences

Conjunctive normal form (CNF)

* Instance: a formula ® = (V, C), for example
O = (x1 \Y —1X9 \Y X3) N\ (x1 VvV X9 VvV X4) /\[(X3 \Y —1X4 \Y _Ixs)J] clause

V = {xq1,x,,x3,Xx4, x5 }: set of Boolean variables; C: set of clauses.
* SAT solutions: an assignment of variables in V s.t. ® = true.

* Fundamental computational tasks for CNF formula:

 Decision: Does SAT solution exist?
problem [Cook 1971, Levin 1973].

* Counting: How many SAT solutions?
problem [Valiant 1979].

(k,d)-CNF formula ® = (V, C)

 Each clause contains k Boolean variables.
* Each variable belongs to at most d clauses, e.g. max degree < d.

Example: (3,2)-CNF formula (xq V =35,V x3) A(x1 Vx5, Vxg) A (X3 V x4 V —X5)

Lovasz Local Lemma (LLL)

Suppose a (k, d)-CNF formula satisfies k = logd (k = logd + logk + C).

* Existence [Erdos, Lovasz, 1975]
If each variable takes a value in {true,false} uniformly and independently

dn

1
findl > (1 — =
Pr[all clauses are satisfied] > (1 > dk) > 0,

which implies the k-SAT solution must exist;

* Construction [Moser, Tardos, 2010]
a k-SAT solution can be constructed in expected time O (ndk).

Sampling & counting k-SAT solutions

 Input: a (k, d)-CNF formula ® = (V, C) with |V| = n, and error bound € > 0.

 Almost uniform sampling: generate a random SAT solution X € {true, false}”
s.t. the total variation distance is at most €,

1
AW =5) IPiX=0]-u0) <e

ae{true,false}V

u: the uniform distribution of all k-SAT solutions.

Sampling & counting k-SAT solutions

 Input: a (k, d)-CNF formula ® = (V, C) with |V| = n, and error bound € > 0.

 Almost uniform sampling: generate a k-SAT solution X € {true, false}" s.t.

the total variation distance dry (X, 1) < €,
w: the uniform distribution of all k-SAT solutions.

* Approximate counting: estimate the number of k-SAT solutions, e.g. output
(1-e)Z<Z<(1+¢eZ
Z = the number of k-SAT solutions.

Self-reduction [Jerrum, Valiant, Vazirani 1986]
Simulated annealing [Stefankovic et al. 2005]

Work Regime Running time/lower bound

Monotone CNF!1

Hermon et al.19 k= 2logd poly(dk)nlogn
: s = min(logdk, k/2) []
Guo etal’17 k= 2logd poly(dk)n
Moitra’17 k = 60logd npoly(dk)
Bezakova et al.’ 15 k <2logd—C NP-hard

Technique

Markov chain Monte Carlo
(MCMC)

Partial rejection sampling

Linear programming

Table: previous results for sampling SAT solutions of (k, d)-CNF formulas

[1] Monotone CNEF: all variables appear positively, e.g. ® = (x; Vx, Vx3) A(x; Vx4 Vxs) A (X3 V X4V Xg).

[2] s: two dependent clauses share at least s variables.

Open Problem: Can we sample general (k,d)-CNF solutions such that

* the threshold downto k = 2logd;
e the running time poly(dk)0(n).

Our result

Work Regime Running time/lower bound Technique
, Monotone CNF
Hermon et al.’19 k= 2logd poly(dk)nlogn MCMC
, s = min(logdk ,k/2) . L .
Guo etal’17 k= 2logd poly(dk)n Partial rejection sampling
Moitra’17 k = 60logd nPoly(dk) Linear programming
Bezakova et al.’ 15 k <2logd—C NP-hard -
This work k= 20logd 0(d?Kk3n1000001) MCMC

Table: results for sampling SAT solutions of (k, d)-CNF formulas

Main theorem (this work)

For any sufficiently small { < 2729, any (k, d)-CNF formula satisfying

1
k = 20logd + 20logk + 310g2)

* sampling algorithm (main algorithm)
draw almost uniform random k-SAT solution in time 0(d?k3n'*¢);

* counting algorithm (by simulated annealing reduction)
count #k-SAT solutions approximately in time 0 (d3k3n?*<);

Classic Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T, F}V;

For eacht from1to T do ‘duD
)
‘ false

* Pickv € V uniformly at random;

* Resample Y, ~ (| ¥j,);

(x1V=x, Vxz)A(xo VX, Vxg) A(xgV—xs VXg)

Classic Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T,F}";
Foreachtfrom1toT do

* Pickv € V uniformly at random;

* Resample ¥, ~ (‘| ¥jn\,);

(x1V=x, VX)) A(x, VX VX)) A(XgV—Xs V Xg)

Classic Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T,F}"; ‘
I S true
Foreachtfrom1toT do , s ‘
® @ ©wn
* Pick v € V uniformly at random; | | ¥ ‘ ,5 ‘ false

* Resample Y, ~ p,(*| Yi\p);

(x1V=x, V) A(xo Vs Vxg) A(xyV—xs Vxg)

Classic Glauber dynamics (Gibbs sampling)

-

Start from an arbitrary solution Y € {T,F}"; ‘

Foreachtfrom1ltoT do

* Pickv € V uniformly at random;

* Resample Y, ~ p,(*| Yi\p);

(x1V =5, Vx3) A(x, VX VXs) A(xgV—xs VXg)

Connectivity barrier (toy example)

* (k,d)-CNF formula ® = (V,C) with VV = {xq, x5, ... x. }:
d=C,ANCy A+ ACy.
C; = (—xqyVx,Vx3V--Vxg)forbids 100 ...0
Co = (x4 V—x,Vx3V--Vxg)forbids 010 ...0
Cr = (xq1VXxyVx3V--V-=xp)forbids 000 ...1
* Any assignment X € {0,1}" with ||X]|; = 1 is infeasible.

e All false solution 0 is disconnected with others.

m- Other Solutions

* Glauber dynamics: random walk over solution space via local update.

* Local Markov chain: one of the most fundamental approach for sampling:

uniform graph coloring «/ weighted matching/independent set «,/
[sing/spin system «,/ bases of a matroid v/
: We are here!
rapid mixing slow mixing not mixing

For sampling CNF solutions, the MCMC approach meets the connectivity barrier.

HATHEMATICS
* conru

Coapiiros “the solution space (and hence the natural Markov chain) is not connected”

vz

A Mhpdensom

Mathematics and Computation [Wigderson'19]

Bypass the connectivity barrier

Work Regime Running time
Hermon et Monotone CNF
al’19 k= 2logd poly(dk)nlogn
Guo, Jerrum, s = min(logdk,k/2)
Liu'17 k= 2logd poly(dk)n
Moitra’'17 k = 60logd pPoly(dk)

Technique Motivation:

Can MCMC approach bypass the connectivity barrier?

Technique

MCMC monotone CNF

(Partial rejection
sampling

Linear programming constant d and k

Non-MCMC approach

_

heavy intersection

J

)

Our technique: projection

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png

Projecting from a high dimension to a lower dimension to improve connectivity

Construct a good subset of variables M € V

Run Glauber dynamics on projected distribution uy, to draw sample X ~ uy,

Start from a uniform random X € {true,false}";
Foreachtfrom1ltoT

* Pickavariable v € M uniformly at random;
* Resample X}, ~ p,,(* [Xpp\p);
Return X € {true,false}.

Draw sample Y ~ py\p (- |X) from the conditional distribution

There exists an efficiently constructible subset M < V such that:

computing exact distr.
the Glauber dynamics on u,, is rapidly mixing, can be #P-hard

the Glauber dynamics on p), can be implemented efficiently (draw X, ~ py, (- [Xpn\»)),
sampling assignment for V\M can be implemented efficiently (draw Y ~+ py\p (- [X)).

Construct a good subset of variables M € V

Run Glauber dynamics on projected distribution uy, to draw sample X ~ uy,

Start from a uniform random X € {true,false}™;
Foreachtfrom1ltoT

* Pickavariable v € M uniformly at random;
* Resample X}, ~ p,,(* [Xpp\p);
Return X;

Draw sample Y ~ py\p (- |X) from the conditional distribution

Our TasKks:

* Construct such a good subset M C V.

* Show that the Glauber dynamics on u,, is rapidly mixing.

* Given assignment on M, draw samples efficiently from the conditional distribution.

Mark variables |[Moitra’ 17]

Mark a set of variables M € V such that
e each clause contains at least ak ~ 0.11k marked variables;
* each clause contains at least Sk ~ 0.51k unmarked variables;

Mark each v € I/ independently w.p. P = 1+Z_ﬁ to construct a random set M € V

by LLL, Pr|M satisfies above property] > 0

Lemma: marking (prove via LLL)

Ifk > 20logd + 20logk + SIOg% , then

€

1
Pr [Moser—Tardos alg constructs M in time 0O (ndk log E)] >1-— 3

The rapid mixing of Glauber dynamics on uy,

Start from a uniform random X € {true,false}";
Foreachtfrom1toT

 Pick a marked variable v € M u.a.r;

+ Resample X, ~ 11,(- |Xp\);
Return X;

Each clause has = [k unmarked variables, by LLL [Haeupler, Saha, Srinivasan’ 11]:

Property: local uniformity (proved via LLL [Haeupler, Saha, Srinivasan’ 11])

For any assignment X\, the distribution u, (- |Xp\y) is close to uniform:
1

1
Vc € {true,false}, ty (¢ [Xpnw) = > +

poly(dk)
 After each transition, Pr[X, = true| = % > 0 and Pr|X, = false] = % > 0. >

* Local uniformity ‘ Glauber dynamics on u,; is connected!

The rapid mixing of Glauber dynamics on u,,

Start from a uniform random X € {true,false}";

Foreachtfrom1toT = 2n log%n
 Pick a marked variable v € M u.a.r;
* Resample X, ~ up, (- [Xon\p);
Return X;

Lemma: rapid mixing

4 : -
If 7T=2nlog ?n, then the returned random assignment X satisfies

€
dry (X, uy) < 3

* Use path coupling [Bubley, Dyer’97] to bound the mixing time.
» Use “disagreement coupling” [Moitra’'17, Guo et al.’ 18] to bound the discrepancy of path coupling.

» Use local uniformity property (LLL) to show the small discrepancy of “disagreement coupling”.

Implementation of the algorithm

Transition of Glauber dynamics Sample unmarked variable in last step
resample Xy, ~ 1, (- | Xp\p) sample Y ~ puy\p (- |X)

Zp = #{Y € {T, F}"is a SAT solution | ¥, = T, Yy, = Xy} o (T |Xpaw) = 7o+ 2,

Zp = #{Y € {T, F}is a SAT solution | Y, = F, Yy, = Xppo) wo(F|Xon0) =

remove satisfied clauses

(x1 V X9 VvV —1X3 VvV _IX4)
X, = trueor x, = false\/

resample X, from p,, (- [Xpp\p) C: connected component containing v
n
€

Key Property: w.h.p,, the graph is deconstructed into small components of size O (dk log)

1
Start from a uniform random X € {true,false}"; YVu€eM, Pr|X, =T] = %, Pr[X, =F] = .

Foreachtfrom1ltoT
* Pick a marked variable v € M u.a.r;

2

* Resample X, ~ 11, (- | Xap\p); by local uniformity Pr(X, =T] = %, Pr|X, = F] %

Return X;

ak
at any time, any mark variable takes an almost uniform value.~ _ 1
. . __—= Prl[each clause is removed] = 1 — >

each clause contains = ak marked variables;

X, = true, x, = false

>

—/

resample X, from pu, (- [Xpnp

Key Property: w.h.p,, the graph is deconstructed into small components of size O (dk log)

remove satisfied clauses
(xl V X9 VvV —1X3 VvV _IX4) V

C: connected component containing v

n
€

Our solution: try rejection sampling on v and other unmarked variables in component C

by LLL, ifk > 20logd + 20logk + 3 log%, then

Pr ’all clauses in C are satisfied | #C = O (dk logg)] = (E)Z;

n

try rejection sampling for R = O ((n/e)q) times, then we can draw X, ~ p,, (- [Xpn) W.h.p.

Pr |rejection sampling draw X,, ~ ,uv(- |X M\v), namely

C| = O(dklogg)

one of R tires succeeds

remove satisfied clauses

(Xl V X9 VvV —1X3 VvV _IX4)
X, = true, x, = false v

>

resample X, from pu, (- [Xpnp

—/

C: connected component containing v

n
€

Key Property: w.h.p,, the graph is deconstructed into small components of size O (dk log)

Our solution: try rejection sampling on v and other unmarked variables in component C

by LLL, ifk > 20logd + 20logk + 3 log%, then

Pr ’all clauses in C are satisfied | #C = O (dk logg)] = (%)Z;

try rejection sampling for R = O ((n/e)q) times, then we can draw X, ~ p,, (- [Xpn) W.h.p.

Lemma: Each transition step of the Glauber dynamics and the last step (i.e. sampling unmarked
variables) can be implemented using rejection sampling

n €
Pr [all T+1=0 (n logg) rejection samplings succeed] =1- 3

Input: ak-CNF formula ® = (V, E) with maximum degree d, an error bound € > 0.

Output: a random sample o€ {true, false}V s.t. dry (o, u) < €.

1. Run Moser-Tardos algorithm to construct a set of marked variables M C V;

2. Run Glauber dynamics on projected distribution u,, for O (n log g) steps to

draw approximate sample X ~ u,,; (implemented using rejection sampling)

3. Run rejection sampling to draw Y ~ py\ (] X);

4. Return X UY.

* Marking lemma: Pr [MT alg fails to find M in time O (ndk log)]

wlm

* Rapid mixing lemma: The X returned by Glauber dynamics satisfies d (X, tp;) <

w | m

* Rej. Sampling lemma: Pr[one of the (7+7) rejection samplings fails] < g

Correctness of the algorithm: d;,(output,u) < €.

e The running time is dominated by simulating Glauber dynamics for T = O (n log g) steps;
~ g
* Each step is implemented using rejection sampling for R = O ((g)) times.

Efficiency of the algorithm: running time = 0(d?k3e~$nl*¢).

Simulated annealing counting [Stefankovi¢ et al. 2009]

Randomized approximate counting

* Input: a (k,d) —CNF instance ® = (V, E), an error bound € > 0.

 Output: a random number Z, such that

Prll—e)Z<Z < (1+¢€)Z] 2%

Z = the number of k-SAT solutions.

Weighted CNF a CNF-formula ® = (V, C) and parameter 6 > 0.
 forany X € {T, F}¥, define the weight
wg(X) = exp(—60F (X)),
where F(X) is the number of clauses NOT satisfied by X.

* induced Gibbs distribution
wg (X)

VX €{T,F}: pp(X) = 200)

7(0) = 2 we (X).

Xe{T F}V

20)=) we(0=) exp(—0F(X)

Xe{T,F}V Xe{T F}V
Properties:

« 0 =0: Z(0) = 2™ (easy to compute);

« 0 — co: 61)im Z(0) = Z = #k-SAT solutions. (target of counting)

Lemma: counting (proved by LLL[Haeupler, Saha, Srinivasan’ 11])
If k =logd + C, it holds that

€
Z(0) € (1 + E) Z, where 6 = 0O (log—).

Non-adaptive cooling schedule: define £ = 0 (nd log n—Ed) parameters

nd
0=90<81<<6g=0(10g?),

1

where the adjacent parameters satisfies 8; — 0;_; = —.

Telescoping product: approximate Z = #k-SAT solutions using

Z(6,) Z(9£—1)X --xZ(Hl)

76, 706, 7y <

Z = 7(0,) =

Estimate ratios: let X ~ pg. , define the random variable W; as
wg. (X) Z(0;
A then E[W;] = 0)
Wo,_, (X) Z(Hi—l)
draw samples from ug , tg,, ..., Hg,_, to estimate each ratio.

Wi=

Proof of the rapid mixing

Start from a uniform random Y € {true,false}";

Foreachtfrom1ltoT = 2n log%n

 Pick a marked variable v € M u.a.r;

* Resample Y, ~ p,, (- [Vapw);

ReturnY;

Lemma: mixing

The Y = Y; returned by Glauber dynamics satisfies

€
dry (Y, uy) < 3

Path coupling |Bubley and Dyer 97|

» Let X,Y € {true, false} be two
assignments disagree only at v,.

 For each u € M, we bound the
influence on u from v,

L, =dgy (.Uu(| Xmu)».Uu(' |YM\u))-

* Path Coupling: if

5
UEM\UOu_Z,

.. _ o Influence may percolate very far
then Glauber dynamics is rapid mixing. away through unmarked variables

Disagreement percolation coupling |[Moitra’17, Guo, et al. 18]

Couple unmarked variables and u to generate X,Y € {T, F}V s.t. X ~ u(-| Xpp), Y ~ (| Yonnw)

I, =dgy (.uu(| XM\u)r .uu(' |YM\u)) < Cou%riing[xu + Yu]-

The coupling sketch

* Let D be the set of disagreements, initially, D = {v,}.

e Coupling variables in a BFS order.

* For each w, couple X(w) and Y (w) optimally.
« If X(w) =Y (w), then remove all clauses satisfied by w;
 IfX(w) # Y(w), then add u into D.

« Repeatuntil D and D are disconnected.

Disagreement percolation coupling |[Moitra’17, Guo, et al. 18]

Couple unmarked variables and u to generate X,Y € {T, F}V s.t. X ~ u(-| Xpp), Y ~ (| Yonnw)

I, =dgy (.uu(| XM\u)r .uu(' |YM\u)) < Cou%riing[xu + Yu]-

The coupling sketch

* Let D be the set of disagreements, initially, D = {v,}.

* Coupling variables in a BFS order.

* For each w, couple X(w) and Y (w) optimally.
« If X(w) =Y (w), then remove all clauses satisfied by w;
 IfX(w) # Y(w), then add u into D.

« Repeatuntil D and D are disconnected.

Disagreement percolation coupling |[Moitra’17, Guo, et al. 18]

Couple unmarked variables and u to generate X,Y € {T, F}V s.t. X ~ u(-| Xppe), Y ~ (| Yonnw)

I, =dgy (.uu(| XM\u)r .uu(' |YM\u)) < Cou%riing[xu + Yu]-

The coupling sketch

* Let D be the set of disagreements, initially, D = {v,}.

* Coupling variables in a BFS order.

* For each w, couple X(w) and Y (w) optimally.
« If X(w) =Y (w), then remove all clauses satisfied by w;
 IfX(w) # Y(w), then add u into D.

« Repeatuntil D and D are disconnected.

Disagreement percolation coupling |[Moitra’17, Guo, et al. 18]

Couple unmarked variables and u to generate X,Y € {T, F}V s.t. X ~ u(-| Xppe), Y ~ (| Yonnw)

I, =dgy (.uu(| XM\u),,Llu(' |YM\u)) < Coufijriing[xu + Yu]-

The coupling sketch

* Let D be the set of disagreements, initially, D = {v,}.

* Coupling variables in a BFS order.

* For each w, couple X(w) and Y (w) optimally.
« If X(w) =Y (w), then remove all clauses satisfied by w;
 IfX(w) # Y(w), then add u into D.

« Repeatuntil D and D are disconnected.

1
each clause contains Pr[X(w) = true] = = +
. 2~ pol
sufficiently many free % 1 poly(dk)
variables Pri¥(w) = true| =5 & @0 1~ polyao
adaptive disagreement local uniformity coupling succeeds w.h.p.

percolation coupling

Disagreement percolation coupling |[Moitra’17, Guo, et al. 18]

Couple unmarked variables and u to generate X,Y € {T, F}V s.t. X ~ u(-| Xppe), Y ~ (| Yonnw)

I, =dgy (.uu(| XM\u)r .uu(' |YM\u)) < CouI;)rling[Xu + Yu]-

The coupling sketch
* Let D be the set of disagreements, initially, D = {v,}.
1

* Coupling variables in a BFS order.

N\
* For each w, couple X(w) and Y (w) optimally. gl \‘
« If X(w) = Y(w), then remove all clauses satisfied by w; N
« IfX(w) # Y(w), then add u into D. A path in power graph U

« Repeatuntil D and D are disconnected.

with high probability, size of the disagreement set D is small

dpow (Vo,U) ‘ z Iu < l
) uEM\vO 2

I, < Pr (X,#Y,)< Pr [u%D]S(

Couling Coupling poly(dk)

LLL

Projection

path

—

coupling

-%-

non-adaptive simulated annealing

LLL

Summary

A close to linear time algorithm for sampling k-SAT solutions in LLL regime.
A close to quadratic time algorithm for counting k-SAT solutions in LLL regime.

Projection + LLL technique to bypass the connectivity barrier of MCMC method.

Open problems

Sampling & counting k-SAT solutions when k = 2 logd.

Extend the technique to more general distributions, e.g. hyper-graph coloring.

Thank you!

