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Conjunctive	normal	form	(CNF)
• Instance:	a	formula	Φ = (𝑉, 𝐶),	for	example

Φ = 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%
𝑉 = {𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%}: set	of	Boolean	variables; 𝐶:	set	of	clauses.

• SAT	solutions:	an	assignment	of	variables	in	𝑉 s.t.	𝚽 = true.
• Fundamental	computational	tasks	for	CNF	formula:

• Decision:	Does	SAT	solution	exist?		
NP-Complete problem	[Cook	1971,	Levin	1973].

• Counting:	How	many	SAT	solutions?	
#P-Complete problem	[Valiant	1979].

clause



𝑘, 𝑑 -CNF	formula	Φ = (𝑉, 𝐶)
• Each	clause	contains	𝑘 Boolean	variables.
• Each	variable	belongs	to	at	most	𝑑 clauses, e.g.max degree≤ 𝒅.
Example: (3,2)-CNF formula 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%

Suppose a (𝑘, 𝑑)-CNF formula satisfies 𝒌 ≳ 𝐥𝐨𝐠𝒅 (𝑘 ≥ log 𝑑 + log 𝑘 + 𝐶).

• Existence [Erdős, Lovász, 1975]	
If	each	variable	takes	a	value	in	{true,false} uniformly	and	independently

Pr all clauses are satis?ied ≥ 1 −
1

2𝑑𝑘

!"
> 0,

which implies the	𝑘-SAT solutionmust exist;

• Construction [Moser, Tardos, 2010]
a 𝑘-SAT solution can be constructed in expected time 𝑂 𝑛𝑑𝑘 .

Lovász	Local	Lemma (LLL)



Sampling & counting 𝑘-SAT solutions
• Input: a	 𝑘, 𝑑 -CNF	formulaΦ = (𝑉, 𝐶)with 𝑉 = 𝑛,	and	error	bound 𝜖 > 0.

• Almost uniform sampling: generate a random SAT solution 𝑋 ∈ true, false %

s.t. the	total	variation	distance is at most 𝜖,	

𝑑&% 𝑋, 𝜇 =
1
2 )

'∈ true,false #

Pr 𝑋 = 𝜎 − 𝜇(𝜎) ≤ 𝜖

𝜇:	the	uniform	distribution	of	all	𝑘-SAT	solutions.



Sampling & counting 𝑘-SAT solutions
• Input: a	 𝑘, 𝑑 -CNF	formulaΦ = (𝑉, 𝐶)with 𝑉 = 𝑛,	and	error	bound 𝜖 > 0.

• Almost uniform sampling: generate a 𝑘-SAT solution 𝑋 ∈ true, false % s.t.
the	total	variation	distance	𝑑&% 𝑋, 𝜇 ≤ 𝜖,

𝜇:	the	uniform	distribution	of	all	𝑘-SAT	solutions.

• Approximate counting: estimate the number of 𝑘-SAT solutions, e.g. output

1 − 𝜖 𝑍 ≤ 9𝒁 ≤ 1 + 𝜖 𝑍,
𝑍 = the number of 𝑘-SAT solutions.

Almost Uniform
Sampling

Approximate	
Counting

Self-reduction [Jerrum,	Valiant,	Vazirani	1986]

Simulated	annealing [Štefankovič et	al. 2009]



Work Regime Running		time/lower bound Technique

Hermon	et	al.’19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)

Guo et al.’17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2 [2]

𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 Partial	rejection	sampling

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛$%&'(!)) Linear	programming

Bezáková et	al.’15 𝑘 ≤ 2 log 𝑑 − 𝐶 NP-hard -

[1]Monotone CNF: all	variables	appear positively, e.g. 𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .
[2] s: two dependent clauses share at least 𝑠 variables.

Open Problem: Can we sample general 𝑘, 𝑑 -CNF solutions such that

• the threshold down to	𝑘 ≳ 2 log 𝑑;
• the running time poly(𝑑𝑘) 1𝑂(𝑛).

Table: previous results for sampling SAT solutions of 𝑘, 𝑑 -CNF formulas



Work Regime Running		time/lower bound Technique

Hermon	et	al.’19 Monotone	CNF
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 MCMC

Guo et al.’17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 Partial	rejection	sampling

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛$%&'(!)) Linear	programming

Bezáková et	al.’15 𝑘 ≤ 2 log 𝑑 − 𝐶 NP-hard -

This work 𝒌 ≳ 𝟐𝟎 𝐥𝐨𝐠𝒅 ;𝑶(𝒅𝟐𝒌𝟑𝒏𝟏.𝟎𝟎𝟎𝟎𝟎𝟏) MCMC

Table: results for sampling SAT solutions of 𝑘, 𝑑 -CNF formulas

Our	result



Main theorem (this work)

For any sufficiently small 𝜁 < 2EFG, any (𝑘, 𝑑)-CNF formula satisfying

𝑘 ≥ 20 log 𝑑 + 20 log 𝑘 + 3 log
1
𝜁
,

• sampling algorithm	(main	algorithm)
draw almost uniform random 𝑘-SAT solution in time D𝑂 𝑑F𝑘H𝑛IJK ;

• counting algorithm	(by	simulated	annealing		reduction)
count #𝑘-SAT solutions approximately in time D𝑂 𝑑H𝑘H𝑛FJK ;



Classic Glauber dynamics (Gibbs sampling)

𝑥!

𝑥"

𝑥#

𝑥'
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(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥' ∨ 𝑥%) ∧ (𝑥$ ∨ ¬𝑥% ∨ 𝑥&)

true

false

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 % ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌N ∼ (⋅∣ 𝑌%\N);
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T/F?



𝑥!

𝑥"

𝑥#

𝑥'

𝑥$

𝑥%

𝑥&

(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥' ∨ 𝑥%) ∧ (𝑥$ ∨ ¬𝑥% ∨ 𝑥&)

true

false

Classic Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 % ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌N ∼ 𝜇N(⋅∣ 𝑌%\N);

F!



Connectivity	barrier (toy example)
• (𝑘, 𝑑)-CNF formulaΦ = (𝑉, 𝐶)with	𝑉 = 𝑥I, 𝑥F, … 𝑥P :

Φ = 𝐶I ∧ 𝐶F ∧ ⋯∧ 𝐶P.
𝐶I = (¬𝑥I ∨ 𝑥F ∨ 𝑥H ∨ ⋯∨ 𝑥P) forbids	100…0

𝐶F = (𝑥I ∨ ¬𝑥F ∨ 𝑥H ∨ ⋯∨ 𝑥P) forbids	010…0

𝐶P = (𝑥I ∨ 𝑥F ∨ 𝑥H ∨ ⋯∨ ¬𝑥P) forbids	000…1

• Any	assignment	𝑋 ∈ 0,1 % with	 𝑋 I = 1 is	infeasible.

• All	false	solution	𝟎 is	disconnectedwith	others.

00…0

00…1

01…0

10…0

Other	Solutions



• Glauber dynamics: random walk over solution space via	local	update.
• Local Markov chain: one	of	the	most	fundamental approach for	sampling:

rapid mixing slow mixing not mixing

For sampling CNF solutions, theMCMC approachmeets the connectivity barrier.

“the solution space (and hence the natural Markov chain) is not connected”

Mathematics	and	Computation [Wigderson’19]

uniform	graph	coloring weighted	matching/independent	set

Ising/spin system bases of a matroid

We are here!



Work Regime Running		time Technique

Hermon	et	
al.’19

Monotone	CNF
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 MCMC

Guo,	Jerrum,	
Liu’17

𝑠 ≥ min log 𝑑𝑘 , 𝑘/2
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 Partial	rejection	

sampling

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛$%&'(!)) Linear	programming

monotone	CNF

Technique Motivation:
CanMCMC approach bypass the connectivity barrier?

heavy	intersection	

constant	𝒅 and	𝒌

Bypass the connectivity barrier

Non-MCMC	approach



Our technique:	projection

Projecting from a	high dimension to a	lower dimension to improve connectivity

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png



Construct	a	good	subset of	variables	𝑀 ⊆ 𝑉

Run	Glauber	dynamics	on	projected	distribution 𝜇+ to	draw	sample	𝑋 ∼ 𝜇+

Draw	sample		𝑌 ∼ 𝜇,\+(⋅ |𝑋) from	the	conditional	distribution

Start from a uniform	random 𝑋 ∈ true,false +;
For each 𝑡 from 1 to 𝑇

• Pick a variable 𝑣 ∈ 𝑀 uniformly at random;
• Resample 𝑋, ∼ 𝜇,(⋅ |𝑋+\,);

Return 𝑋 ∈ true,false +. T/F?

There	exists	an	efficiently	constructible	subset𝑀 ⊆ 𝑉 such	that:
• the	Glauber	dynamics	on	𝜇+ is	rapidly	mixing,
• the	Glauber	dynamics	on	𝜇+ can	be	implemented	efficiently (draw	𝑋. ∼ 𝜇.(⋅ |𝑋+\.)),
• sampling	assignment	for	𝑉\𝑀 can	be	implemented	efficiently	(draw	𝑌 ∼ 𝜇,\+(⋅ |𝑋)).

computing	exact	distr.	
can	be	#P-hard

𝒗



Construct	a	good	subset of	variables	𝑀 ⊆ 𝑉

Run	Glauber	dynamics	on	projected	distribution 𝜇+ to	draw	sample	𝑋 ∼ 𝜇+

Draw	sample		𝑌 ∼ 𝜇,\+(⋅ |𝑋) from	the	conditional	distribution

Our	Tasks:
• Construct	such	a	good	subset𝑀 ⊆ 𝑉.	
• Show	that	the	Glauber	dynamics	on	𝜇+ is	rapidly	mixing.
• Given	assignment	on𝑀,	draw	samples	efficiently from the	conditional	distribution.

Start from a uniform	random 𝑋 ∈ true,false +;
For each 𝑡 from 1 to 𝑇

• Pick a variable 𝑣 ∈ 𝑀 uniformly at random;
• Resample 𝑋, ∼ 𝜇,(⋅ |𝑋+\,);

Return 𝑋; T/F?

𝒗



Mark	a	set	of	variables	𝑀 ⊆ 𝑉 such	that
• each	clause	contains	at	least	𝛼𝑘 ≈ 0.11𝑘 marked	variables;
• each	clause	contains	at	least	𝛽𝑘 ≈ 0.51𝑘 unmarked	variables;

Lemma:	marking	(prove	via	LLL)

If 𝑘 ≥ 20 log 𝑑 + 20 log 𝑘 + 3 log .
/
, then

Pr Moser−Tardos alg constructs 𝑀 in time 𝑂 𝑛𝑑𝑘 log
1
𝜖

≥ 1 −
𝜖
3
.

Mark	variables	[Moitra’	17]

Mark each 𝑣 ∈ 𝑉 independently w.p. 𝑃 = !/012
"

to construct a random setℳ ⊆ 𝑉

by LLL, Pr ℳ satisWies above property > 0



The	rapid	mixing	of	Glauber	dynamics on 𝜇-
Start from a uniform	random 𝑋 ∈ true,false +;
For each 𝑡 from 1 to 𝑇

• Pick a marked variable 𝑣 ∈ 𝑀 u.a.r.;
• Resample 𝑋, ∼ 𝜇,(⋅ |𝑋+\,);

Return 𝑋; T/F?

Property:	local uniformity	(proved	via	LLL [Haeupler,	Saha,	Srinivasan’	11])

For	any	assignment	𝑋+\,,	the	distribution	𝜇,(⋅ |𝑋+\,) is	close	to	uniform:

∀𝑐 ∈ true,false , 𝜇,(c |𝑋+\,) =
1
2
±

1
poly(𝑑𝑘)

.

Each	clause	has	≥ 𝛽𝑘 unmarked	variables,	by	LLL [Haeupler,	Saha,	Srinivasan’	11]:

• After	each	transition,	Pr 𝑋, = true ≈ .
0
> 0 and	Pr 𝑋, = false ≈ .

0
> 0.

• Local uniformity Glauber	dynamics	on	𝝁𝑴 is connected!

𝒗



The	rapid	mixing	of	Glauber	dynamics on 𝜇-
Start from a uniform	random 𝑋 ∈ true,false +;

For each 𝑡 from 1 to 𝑇 = 2𝑛 log 2"
3

• Pick a marked variable 𝑣 ∈ 𝑀 u.a.r.;
• Resample 𝑋, ∼ 𝜇,(⋅ |𝑋+\,);

Return 𝑋; T/F?

Lemma:	rapid	mixing

If	T	=	2𝑛 log 2"
3
,	then	the	returned	random	assignment	𝑋 satisfies

𝑑45 𝑋, 𝜇+ ≤
𝜖
3
.

• Use	path	coupling	[Bubley,	Dyer’97] to	bound	the	mixing	time.

• Use	“disagreement	coupling”	[Moitra’17,	Guo	et	al.’	18]	to	bound	the	discrepancy	of	path	coupling.

• Use	local	uniformity	property	(LLL)	to	show	the	small	discrepancy	of	“disagreement	coupling”.

𝒗



Implementation of the algorithm

Challenge:	computing the	exact conditional distributions can be #P-hard.

Transition	of	Glauber	dynamics
resample	𝑋, ∼ 𝜇,(⋅ |𝑋+\,)

T/F?

𝒗

Sample unmarked variable	in	last	step
sample	𝑌 ∼ 𝜇5\+(⋅ |𝑋)

T/F?

T/F?
T/F?

T/F?

T/F?

T/F?

T/F?
T/F?

T/F?T/F?

T/F?

T/F?T/F?

𝑍( = #{𝑌 ∈ 𝑇, 𝐹 )is a SAT solution ∣ 𝑌* = 𝑇, 𝑌+\* = 𝑋+\*}

𝑍- = #{𝑌 ∈ 𝑇, 𝐹 )is a SAT solution ∣ 𝑌* = 𝐹, 𝑌+\* = 𝑋+\*}

𝜇* 𝑇 𝑋+\* =
𝑍(

𝑍( + 𝑍-
𝜇* 𝐹 𝑋+\* =

𝑍-
𝑍( + 𝑍-



Key	Property:	 w.h.p., the graph is deconstructed into small components	of	size	𝑂 𝑑𝑘 log "
3

remove	satisfied	clauses
𝑥! ∨ 𝑥" ∨ ¬𝑥# ∨ ¬𝑥$
𝑥! = true or 𝑥$ = false

resample	𝑋, from	𝜇,(⋅ |𝑋+\,) 𝐶:	connected	component	containing	𝑣

at any time, any mark variable takes an almost uniform value.
each clause contains ≥ 𝛼𝑘 marked variables;

Pr[each clause is removed] ≳ 1 −
1
2

6)

𝒗 𝒗

Start from a uniform	random 𝑋 ∈ true,false +; ∀𝑢 ∈ 𝑀, Pr 𝑋7 = 𝑇 = .
0
, Pr 𝑋7 = 𝐹 = .

0
For each 𝑡 from 1 to 𝑇

• Pick a marked variable 𝑣 ∈ 𝑀 u.a.r.;

• Resample 𝑋* ∼ 𝜇*(⋅ |𝑋+\*);															by	local	uniformity				Pr 𝑋, = 𝑇 ≈ .
0
, Pr 𝑋, = 𝐹 ≈ .

0
Return 𝑋;



Key	Property:	 w.h.p., the graph is deconstructed into small components	of	size	𝑂 𝑑𝑘 log "
3

Our	solution:	 try	rejection	sampling	on	𝑣 and	other	unmarked	variables	in	component	𝐶

by 𝑳𝑳𝑳, if	𝑘 ≥ 20 log 𝑑 + 20 log 𝑘 + 3 log .
/
,	then

Pr all clauses in 𝐶 are satis?ied | #𝐶 = 𝑂 𝑑𝑘 log
𝑛
𝜖

≥
𝜖
𝑛

/
;

try	rejection	sampling	for	𝑅 = q𝑂 𝑛/𝜖 / times,	then	we	can	draw	𝑋, ∼ 𝜇,(⋅ |𝑋+\,)w.h.p.

remove	satisfied	clauses
𝑥! ∨ 𝑥" ∨ ¬𝑥# ∨ ¬𝑥$
𝑥! = true, 𝑥$ = false

resample	𝑋% from	𝜇%(⋅ |𝑋&\%) 𝐶:	connected	component	containing	𝑣

𝒗 𝒗

Pr rejection sampling draw 𝑋, ∼ 𝜇, ⋅ 𝑋+\, , namely t
|𝐶| = 𝑂 𝑑𝑘 log

𝑛
𝜖

one of 𝑅 tires succeeds
≥ 1 − 2

𝜖
𝑛

8



Key	Property:	 w.h.p., the graph is deconstructed into small components	of	size	𝑂 𝑑𝑘 log "
3

Our	solution:	 try	rejection	sampling	on	𝑣 and	other	unmarked	variables	in	component	𝐶

by 𝑳𝑳𝑳, if	𝑘 ≥ 20 log 𝑑 + 20 log 𝑘 + 3 log .
/
,	then

Pr all clauses in 𝐶 are satis?ied | #𝐶 = 𝑂 𝑑𝑘 log
𝑛
𝜖

≥
𝜖
𝑛

/
;

try	rejection	sampling	for	𝑅 = q𝑂 𝑛/𝜖 / times,	then	we	can	draw	𝑋, ∼ 𝜇,(⋅ |𝑋+\,)w.h.p.

Lemma:	Each	transition	step	of	the	Glauber	dynamics	and	the	last	step	(i.e.	sampling	unmarked	
variables) can	be	implemented	using	rejection	sampling

Pr all 𝑇 + 1 = 𝑂 𝑛 log
𝑛
𝜖

rejection samplings succeed ≥ 1 −
𝜖
3
.

remove	satisfied	clauses
𝑥! ∨ 𝑥" ∨ ¬𝑥# ∨ ¬𝑥$
𝑥! = true, 𝑥$ = false

resample	𝑋% from	𝜇%(⋅ |𝑋&\%) 𝐶:	connected	component	containing	𝑣

𝒗 𝒗



1. Run	Moser-Tardos algorithm	to	construct	a	set	of	marked	variables	𝑀 ⊆ 𝑉;

2. Run	Glauber	dynamics	on	projected	distribution	𝜇j for	𝑂 𝑛 log k
l
steps	to	

draw	approximate	sample	𝑋 ∼ 𝜇j; (implemented	using rejection sampling)

3. Run rejection sampling to draw	𝑌 ∼ 𝜇%\j(⋅∣ 𝑋);

4. Return	𝑋 ∪ 𝑌.

Input! a 𝑘-CNF formulaΦ = (𝑉, 𝐸)with maximum degree 𝑑, an error bound 𝜖 > 0.
Output: a random sample σ∈ true, false ! s.t. 𝑑"! 𝜎, 𝜇 ≤ 𝜖.



• Marking lemma: Pr MT−alg fails to ?ind 𝑀 in time 𝑂 𝑛𝑑𝑘 log .
3

≤ 3
8
.

• Rapid	mixing lemma: The	𝑋 returned	by	Glauber	dynamics	satisfies 𝑑45 𝑋, 𝜇+ ≤ 3
8
.

• Rej. Sampling lemma: Pr[one of the (T+1) rejection samplings fails] ≤ 3
8

Correctness of the algorithm: 𝑑&% output, 𝜇 ≤ 𝜖.

• The running time is dominated by simulating Glauber dynamics for 𝑇 = 𝑂 𝑛 log "
3
steps;

• Each step is implemented using rejection sampling for 𝑅 = q𝑂 "
3

/
times.

Efficiency of the algorithm: running time = R𝑂 𝑑F𝑘H𝜖EK𝑛IJK .



Simulated annealing counting	[Štefankovič et	al. 2009]

Weighted CNF a CNF-formulaΦ = (𝑉, 𝐶) and parameter θ > 0.
• for any 𝑋 ∈ 𝑇, 𝐹 , , define theweight

𝑤; 𝑋 = exp −𝜃𝐹(𝑋) ,
where 𝐹(𝑋) is the number of clauses NOT satisfied by 𝑋.
• induced Gibbs distribution

∀𝑋 ∈ 𝑇, 𝐹 ,: 𝜇; 𝑋 =
𝑤; 𝑋
𝑍(𝜃) , 𝑍 𝜃 = f

<∈ >,@ .

𝑤; 𝑋 .

Randomized	approximate	counting

• Input:	a	 𝑘, 𝑑 −CNF	instance	Φ = (𝑉, 𝐸),	an	error	bound	𝜖 > 0.
• Output:	a	random	number	 i𝑍,	such	that	

Pr 1 − 𝜖 𝑍 ≤ i𝑍 ≤ 1 + 𝜖 𝑍 ≥
3
4

𝑍 = the	number	of	𝑘-SAT	solutions.



Lemma: counting (proved	by	LLL[Haeupler,	Saha,	Srinivasan’	11])
If 𝑘 ≥ log 𝑑 + 𝐶, it holds that

𝑍 𝜃 ∈ 1 ±
𝜖
2
𝑍, 𝑤ℎ𝑒𝑟𝑒 𝜃 = 𝑂 log

𝑛𝑑
𝜖

.

𝑍 𝜃 = f
<∈ >,@ .

𝑤; 𝑋 = f
<∈ >,@ .

exp(−𝜃𝐹(𝑋))

Properties:
• 𝜃 = 0:		𝑍 0 = 2A (easy	to	compute);

• 𝜃 → ∞: lim
;→C

𝑍 𝜃 = 𝑍 = #𝑘-SAT	solutions.		(target	of	counting)



• Non-adaptive	cooling	schedule:	define ℓ = 𝑂 𝑛𝑑 log &'
(

parameters

0 = 𝜃) < 𝜃! < ⋯ < 𝜃ℓ = 𝑂 log
𝑛𝑑
𝜖 ,

where the adjacent parameters satisfies 𝜃+ − 𝜃+,! =
!
'&
.

• Telescoping	product:	approximate 𝑍 = #𝑘-SAT solutions using

𝑍 ≈ 𝑍 𝜃ℓ =
𝑍 𝜃ℓ
𝑍 𝜃ℓ,!

×
𝑍 𝜃ℓ,!
𝑍 𝜃ℓ,"

×⋯×
𝑍 𝜃!
𝑍 𝜃)

×2&

• Estimate	ratios:	let 𝑋 ∼ 𝜇-DEF, define the random variable𝑊+ as

𝑊+ =
𝑤-D 𝑋
𝑤-DEF(𝑋)

, then 𝐸 𝑊+ =
𝑍 𝜃+
𝑍 𝜃+,!

.

draw samples from 𝜇-G, 𝜇-F, … , 𝜇-ℓEF to estimate each ratio.



Proof	of	the	rapid	mixing
Start from a uniform	random 𝑌 ∈ true,false +;

For each 𝑡 from 1 to 𝑇 = 2𝑛 log 2"
3

• Pick a marked variable 𝑣 ∈ 𝑀 u.a.r.;

• Resample 𝑌, ∼ 𝜇,(⋅ |𝑌+\,);

Return 𝑌;

Lemma:	mixing

The	𝑌 = 𝑌> returned	by	Glauber	dynamics	satisfies

𝑑>, 𝑌, 𝜇+ ≤
𝜖
3 .

T/F?



Path	coupling	[Bubley	and	Dyer’	97]
• Let	𝑋, 𝑌 ∈ true, false j be	two	
assignments	disagree	only	at	𝑣G.

• For	each	𝑢 ∈ 𝑀,	we	bound	the	
influence on	𝑢 from	𝑣G
𝐼m = 𝑑&% 𝜇m ⋅ 𝑋j\m , 𝜇m ⋅ 𝑌j\m .

• Path	Coupling:	if
)

m∈j\N9
𝐼m ≤

1
2 ,

then	Glauber	dynamics	is	rapid	mixing.

𝑣u

𝑢
Influence	may	percolate	very	far	
away	through	unmarked	variables



Disagreement percolation coupling [Moitra’17, Guo, et al.’18]

𝑣#

Couple unmarked variables and 𝒖 to generate 𝑋, 𝑌 ∈ 𝑇, 𝐹 5 s.t. 𝑋 ∼ 𝜇 ⋅ 𝑋+\7 , 𝑌 ∼ 𝜇 ⋅ 𝑌+\7
𝐼7 = 𝑑45 𝜇7 ⋅ 𝑋+\7 , 𝜇7 ⋅ 𝑌+\7 ≤ Pr

Coupling
𝑋7 ≠ 𝑌7 .

The	coupling	sketch
• Let 𝐷 be the set of disagreements, initially, 𝐷 = {𝑣:}.
• Coupling variables in a BFS order.
• For each𝑤, couple 𝑋 𝑤 and 𝑌 𝑤 optimally.

• If 𝑋 𝑤 = 𝑌(𝑤), then remove all clauses satisfied by 𝑤;
• If 𝑋 𝑤 ≠ 𝑌(𝑤), then add 𝑢 into 𝐷.

• Repeat until 𝐷 and ~𝐷 are disconnected.
𝑢



𝑣#

𝑢

Disagreement percolation coupling [Moitra’17, Guo, et al.’18]
Couple unmarked variables and 𝒖 to generate 𝑋, 𝑌 ∈ 𝑇, 𝐹 5 s.t. 𝑋 ∼ 𝜇 ⋅ 𝑋+\7 , 𝑌 ∼ 𝜇 ⋅ 𝑌+\7
𝐼7 = 𝑑45 𝜇7 ⋅ 𝑋+\7 , 𝜇7 ⋅ 𝑌+\7 ≤ Pr

Coupling
𝑋7 ≠ 𝑌7 .

The	coupling	sketch
• Let 𝐷 be the set of disagreements, initially, 𝐷 = {𝑣:}.
• Coupling variables in a BFS order.
• For each𝑤, couple 𝑋 𝑤 and 𝑌 𝑤 optimally.

• If 𝑋 𝑤 = 𝑌(𝑤), then remove all clauses satisfied by 𝑤;
• If 𝑋 𝑤 ≠ 𝑌(𝑤), then add 𝑢 into 𝐷.

• Repeat until 𝐷 and ~𝐷 are disconnected.



𝑣#

𝑢

Disagreement percolation coupling [Moitra’17, Guo, et al.’18]

The	coupling	sketch
• Let 𝐷 be the set of disagreements, initially, 𝐷 = {𝑣:}.
• Coupling variables in a BFS order.
• For each𝑤, couple 𝑋 𝑤 and 𝑌 𝑤 optimally.

• If 𝑋 𝑤 = 𝑌(𝑤), then remove all clauses satisfied by 𝑤;
• If 𝑋 𝑤 ≠ 𝑌(𝑤), then add 𝑢 into 𝐷.

• Repeat until 𝐷 and ~𝐷 are disconnected.

Couple unmarked variables and 𝒖 to generate 𝑋, 𝑌 ∈ 𝑇, 𝐹 5 s.t. 𝑋 ∼ 𝜇 ⋅ 𝑋+\7 , 𝑌 ∼ 𝜇 ⋅ 𝑌+\7
𝐼7 = 𝑑45 𝜇7 ⋅ 𝑋+\7 , 𝜇7 ⋅ 𝑌+\7 ≤ Pr

Coupling
𝑋7 ≠ 𝑌7 .



𝑣#

𝑢

Pr 𝑋 𝑤 = true =
1
2 ±

1
poly(𝑑𝑘)

Pr 𝑌 𝑤 = true =
1
2 ±

1
poly(𝑑𝑘)

𝑋 𝑤 = 𝑌(𝑤)w.p.

1 − .
poly(!))

LLL

local uniformity coupling succeeds w.h.p.

each clause contains
sufficiently many free
variables
adaptive disagreement
percolation	coupling

Disagreement percolation coupling [Moitra’17, Guo, et al.’18]

The	coupling	sketch
• Let 𝐷 be the set of disagreements, initially, 𝐷 = {𝑣:}.
• Coupling variables in a BFS order.
• For each𝑤, couple 𝑋 𝑤 and 𝑌 𝑤 optimally.

• If 𝑋 𝑤 = 𝑌(𝑤), then remove all clauses satisfied by 𝑤;
• If 𝑋 𝑤 ≠ 𝑌(𝑤), then add 𝑢 into 𝐷.

• Repeat until 𝐷 and ~𝐷 are disconnected.

Couple unmarked variables and 𝒖 to generate 𝑋, 𝑌 ∈ 𝑇, 𝐹 5 s.t. 𝑋 ∼ 𝜇 ⋅ 𝑋+\7 , 𝑌 ∼ 𝜇 ⋅ 𝑌+\7
𝐼7 = 𝑑45 𝜇7 ⋅ 𝑋+\7 , 𝜇7 ⋅ 𝑌+\7 ≤ Pr

Coupling
𝑋7 ≠ 𝑌7 .



with high probability, size of the disagreement set 𝐷 is small

𝐼7 ≤ Pr
Couling

𝑋7 ≠ 𝑌7 ≤ Pr
Coupling

[𝑢 ∉ 𝐷] ≲
1

poly 𝑑𝑘

!()*(,+,7) f
I∈+\./

𝐼I ≤
1
2

𝑣:

𝑢

𝐷

A path in power graph

Disagreement percolation coupling [Moitra’17, Guo, et al.’18]

The	coupling	sketch
• Let 𝐷 be the set of disagreements, initially, 𝐷 = {𝑣:}.
• Coupling variables in a BFS order.
• For each𝑤, couple 𝑋 𝑤 and 𝑌 𝑤 optimally.

• If 𝑋 𝑤 = 𝑌(𝑤), then remove all clauses satisfied by 𝑤;
• If 𝑋 𝑤 ≠ 𝑌(𝑤), then add 𝑢 into 𝐷.

• Repeat until 𝐷 and ~𝐷 are disconnected.

Couple unmarked variables and 𝒖 to generate 𝑋, 𝑌 ∈ 𝑇, 𝐹 5 s.t. 𝑋 ∼ 𝜇 ⋅ 𝑋+\7 , 𝑌 ∼ 𝜇 ⋅ 𝑌+\7
𝐼7 = 𝑑45 𝜇7 ⋅ 𝑋+\7 , 𝜇7 ⋅ 𝑌+\7 ≤ Pr

Coupling
𝑋7 ≠ 𝑌7 .
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Open problems
• Sampling & counting 𝑘-SAT solutions when 𝑘 ≳ 2 log 𝑑.
• Extend the technique to more general distributions, e.g. hyper-graph coloring.

Summary
• A close to linear time algorithm for sampling 𝑘-SAT solutions in LLL regime.
• A close to quadratic time algorithm for counting 𝑘-SAT solutions in LLL regime.
• Projection + LLL technique to bypass the connectivity barrier of MCMCmethod.

Thank	you!


