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Conjunctive	normal	form	(CNF)
• (𝒌, 𝒅)-CNF	formulas:
• each	clause	contains	𝑘 Boolean	variables.
• each	variable	belongs	to	at	most	𝑑 clauses, e.g.max degree≤ 𝒅.

Φ = 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%

• SAT	solutions:	an	assignment	of	variables	s.t.	𝚽 = true.

• Lovász	Local	Lemma (LLL):	SAT	solution	exists if	𝒌 ≳ 𝐥𝐨𝐠𝒅.

example:(3,2)-CNF	formula



Sampling & counting 𝑘-SAT solutions
• Input: a	 𝑘, 𝑑 -CNF	formulaΦ = (𝑉, 𝐶)with 𝑉 = 𝑛,	an	error	bound	𝜖 > 0.

• Almost uniform sampling: generate a 𝑘-SAT solution 𝑋 ∈ true, false & s.t.
the	total	variation	distance	𝑑'& 𝑋, 𝜇 ≤ 𝜖,

𝜇:	the	uniform	distribution	of	all	𝑘-SAT	solutions.

• Approximate counting: estimate the number of 𝑘-SAT solutions, e.g. output

1 − 𝜖 𝑍 ≤ 6𝒁 ≤ 1 + 𝜖 𝑍,
𝑍 = the number of 𝑘-SAT solutions.

Almost Uniform
Sampling

Approximate	
Counting

Self-reduction [Jerrum,	Valiant,	Vazirani	1986]

Simulated	annealing [Štefankovič et	al. 2009]



Work Regime Running		time/lower bound Class	of	 𝒌, 𝒅 -CNF	formulas

Hermon	et	al.’19 𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 monotone	CNF

Guo et al.’17 𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 heavy	intersection

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛!"#$(&') constant	𝑑, 𝑘

Bezáková et	al.’15 𝑘 ≤ 2 log 𝑑 − 𝐶 NP-hard --
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This	work 𝒌 ≳ 𝟐𝟎 𝒍𝒐𝒈𝒅 !𝑶 𝒅𝟐𝒌𝟑𝒏𝟏.𝟎𝟎𝟎𝟎𝟎𝟏 --

Main	theorem	[this	work]

We	give	a	Markov	chain based	sampling	algorithm	in	time	;𝑶 𝒅𝟐𝒌𝟑𝒏𝟏+𝜻 if	

𝑘 ≥ 20 log 𝑑 + 20 log 𝑘 + 3 log !
-

for arbitrary small 𝜁 < 2."/.



Classic Glauber dynamics (Gibbs sampling)
start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 !;

for each 𝑡 from 1 to 𝑇 do

• pick 𝑣 ∈ 𝑉 uniformly at random;

• resample	𝑌" from	conditional	distribution		𝜇(⋅∣ 𝑌!\");
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Our technique:	projection

Projecting from a	high dimension to a	lower dimension to improve connectivity

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png



Step	1:	Construct	a	good	subset of	variables	𝑀 ⊆ 𝑉

Step	2:	Run	Glauber	dynamics	on	the	projected	distribution 𝜇$ to	draw	sample	𝑋 ∼ 𝜇$
Step	3:	Draw	sample		𝑌 ∼ 𝜇!\$(⋅ |𝑋) from	the	conditional	distribution

We	are	required	to	prove	following:

• The good	subset	𝑀 ⊆ 𝑉 can	constructed	efficiently	(use	Morse-Tardos	algorithm);
• The	Glauber	dynamics	on	𝜇$ is	rapid	mixing (proved	via	path	coupling);
• The	Glauber	dynamics	and	step-3	can	be	implemented	efficiently	(via	rejection	sampling).



Open problems
• Sampling & counting 𝑘-SAT solutions when 𝑘 ≳ 2 log 𝑑.
• Extend the technique to more general distributions

e.g. hyper-graph 𝑞-coloring	 when 𝑞 ≳ 𝑑
)

*+,.

Summary
• A close to linear time algorithm for sampling 𝑘-SAT solutions in LLL regime.
• A close to quadratic time algorithm for counting 𝑘-SAT solutions in LLL regime.
• Projection + LLL technique to bypass the connectivity barrier of MCMCmethod.

Thank	you!


