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Conjunctive normal form (CNF)

* (k,d)-CNF formulas:
e each clause contains k Boolean variables.

 each variable belongs to at most d clauses, e.g. max degree < d.
b = (x1 VvV _IXZ Vx3) N (x1 VvV XZ VvV x4_) N (x3 VvV _Ix4_ VvV _Ixs)

example:(3,2)-CNF formula
* SAT solutions: an assignment of variables s.t. ® = true.

 Lovasz Local Lemma (LLL): SAT solution exists if k = log d.



Sampling & counting k-SAT solutions

 Input: a (k, d)-CNF formula ® = (V, C) with |[V| = n, an error bound € > 0.

 Almost uniform sampling: generate a k-SAT solution X € {true, false} s.t.

the total variation distance dry (X, u) < €,
p: the uniform distribution of all k-SAT solutions.

* Approximate counting: estimate the number of k-SAT solutions, e.g. output
(1-e)Z<Z<(1+¢€Z
Z = the number of k-SAT solutions.

Self-reduction [Jerrum, Valiant, Vazirani 1986]
Simulated annealing [Stefankovic et al. 2009]
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Work Regime Running time/lower bound  Class of (k, d)-CNF formulas

Hermon et al’19 k = 2logd poly(dk)nlogn monotone CNF
Guo et al’17 k= 2logd poly(dk)n heavy intersection
Moitra’17 k = 60logd nPoly(dk) constant d, k
Bezakova et al’15 k<2logd—-C NP-hard --
This work k=20logd 5(d2k3n1'000001) ==

Main theorem [this work]

We give a Markov chain based sampling algorithm in time O(d*k3n'*$) if

k > 20logd + 20logk + 3log§

for arbitrary small { < 2729,



Classic Glauber dynamics (Gibbs sampling)

start from an arbitrary solution Y € {T, F}";

foreachtfrom1toT do
) True /False?

* pick v € VV uniformly at random;

* resample Y, from conditional distribution u(:| ¥;n,);

For sampling CNF solutions,
Glauber dynamics
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Our technique: projection

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png

Projecting from a high dimension to a lower dimension to improve connectivity



Step 1: Construct a good subset of variables M € V
Step 2: Run Glauber dynamics on the projected distribution u,; to draw sample X ~ uy,

Step 3: Draw sample Y ~ py\ i (- |X) from the conditional distribution

We are required to prove following:

* The good subset M € V can constructed efficiently (use Morse-Tardos algorithm);
* The Glauber dynamics on u,, is rapid mixing (proved via path coupling);
* The Glauber dynamics and step-3 can be implemented efficiently (via rejection sampling).




Summary

A close to linear time algorithm for sampling k-SAT solutions in LLL regime.
A close to quadratic time algorithm for counting k-SAT solutions in LLL regime.

Projection + LLL technique to bypass the connectivity barrier of MCMC method.

Open problems

Sampling & counting k-SAT solutions when k = 2 logd.

Extend the technique to more general distributions

C
e.g. hyper-graph g-coloring when g = dx-1.

Thank you!



