Fast sampling and counting *k*-SAT solutions in the local lemma regime

Weiming Feng Nanjing University

Joint work with:

Heng Guo (University of Edinburgh) Yitong Yin (Nanjing University) Chihao Zhang (Shanghai Jiao Tong University)

Conjunctive normal form (CNF)

- (*k*, *d*)-CNF formulas:
 - each clause contains k Boolean variables.
 - each variable belongs to **at most** d clauses, e.g. **max degree** $\leq d$.

$$\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$$

example:(3,2)-CNF formula

- **SAT solutions**: an assignment of variables s.t. $\Phi =$ true.
- Lovász Local Lemma (LLL): SAT solution *exists* if $k \ge \log d$.

Sampling & counting *k*-SAT solutions

- **Input:** a (k, d)-CNF formula $\Phi = (V, C)$ with |V| = n, an error bound $\epsilon > 0$.
- Almost uniform sampling: generate a k-SAT solution $X \in {\text{true, false}}^V$ s.t. the *total variation distance* $d_{TV}(X, \mu) \le \epsilon$,

 μ : the uniform distribution of all *k*-SAT solutions.

• **Approximate counting:** estimate the number of *k*-SAT solutions, e.g. output

 $(1-\epsilon)Z \leq \widehat{\mathbf{Z}} \leq (1+\epsilon)Z,$

Z = the number of *k*-SAT solutions.

Self-reduction [Jerrum, Valiant, Vazirani 1986]

Simulated annealing [Štefankovič et al. 2009]

Work	Regime	Running time/lower bound	Class of (<i>k</i> , <i>d</i>)-CNF formulas
Hermon et al.'19	$k \gtrsim 2 \log d$	$poly(dk)n \log n$	monotone CNF
Guo et al.'17	$k \gtrsim 2 \log d$	poly(<i>dk</i>) <i>n</i>	heavy intersection
Moitra'17	$k \gtrsim 60 \log d$	$n^{\mathrm{poly}(dk)}$	constant <i>d</i> , <i>k</i>
Bezáková et al.'15	$k \le 2\log d - C$	NP-hard	

Work	Regime	Running time/lower bound	Class of (k, d) -CNF formulas
Hermon et al.'19	$k \gtrsim 2 \log d$	$poly(dk)n \log n$	monotone CNF
Guo et al.'17	$k \gtrsim 2 \log d$	poly(<i>dk</i>) <i>n</i>	heavy intersection
Moitra'17	$k \gtrsim 60 \log d$	$n^{\operatorname{poly}(dk)}$	constant <i>d</i> , <i>k</i>
Bezáková et al.'15	$k \le 2\log d - C$	NP-hard	
This work	$k \gtrsim 20 \log d$	$\widetilde{O}(d^2k^3n^{1.000001})$	

Main theorem [this work]

We give a *Markov chain* based sampling algorithm in time $\tilde{O}(d^2k^3n^{1+\zeta})$ if

$$k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{\zeta}$$

for *arbitrary* small $\zeta < 2^{-20}$.

Classic Glauber dynamics (Gibbs sampling)

start from an arbitrary solution $Y \in \{T, F\}^V$;

for each t from 1 to T do

- pick $v \in V$ uniformly at random;
- resample Y_{v} from conditional distribution $\mu(\cdot | Y_{V \setminus v})$;

For sampling CNF solutions, Glauber dynamics meets connectivity barrier

Our technique: projection

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png

Projecting from a high dimension to a lower dimension to improve connectivity

We are required to prove following:

- The good subset $M \subseteq V$ can *constructed efficiently* (use Morse-Tardos algorithm);
- The Glauber dynamics on μ_M is *rapid mixing* (proved via path coupling);
- The Glauber dynamics and step-3 can be *implemented efficiently* (via rejection sampling).

Summary

- A close to **linear time** algorithm for sampling *k*-SAT solutions in LLL regime.
- A close to **quadratic time** algorithm for counting *k*-SAT solutions in LLL regime.
- Projection + LLL technique to bypass the connectivity barrier of MCMC method.

Open problems

- Sampling & counting k-SAT solutions when $k \gtrsim 2 \log d$.
- Extend the technique to more general distributions

e.g. hyper-graph *q*-coloring when $q \gtrsim d^{\frac{C}{k-1}}$.

Thank you!