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Monomer-dimer model

Simple graph 𝐺 = (𝑉, 𝐸) and edge weight 𝜆 > 0

∀mathing𝑀 ⊆ 𝐸, 𝜇 𝑀 ∝ 𝜆|𝑀|
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Jerrum-Sinclair chain (Metropolis chain)

Jerrum-Sinclair chain updates matching 𝑋𝑡 → 𝑋𝑡+1 by

• select an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 u.a.r.

• propose a candidate matching 𝑀 from 𝑋𝑡 by

1) down transition: if 𝑒 ∈ 𝑋𝑡, set 𝑀 ← 𝑋𝑡 − 𝑒

down

current matching candidate matching



Jerrum-Sinclair chain (Metropolis chain)

Jerrum-Sinclair chain updates matching 𝑋𝑡 → 𝑋𝑡+1 by

• select an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 u.a.r.

• propose a candidate matching 𝑀 for 𝑋𝑡+1 by

1) down transition: if 𝑒 ∈ 𝑋𝑡, set 𝑀 ← 𝑋𝑡 − 𝑒

2) up transition: if both 𝑢, 𝑣 are not saturated in 𝑋𝑡, set 𝑀 ← 𝑋𝑡 + 𝑒

up

current matching candidate matching



Jerrum-Sinclair chain (Metropolis chain)

Jerrum-Sinclair chain updates matching 𝑋𝑡 → 𝑋𝑡+1 by

• select an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 u.a.r.

• propose a candidate matching 𝑀 for 𝑋𝑡+1 by

1) down transition: if 𝑒 ∈ 𝑋𝑡, set 𝑀 ← 𝑋𝑡 − 𝑒

2) up transition: if both 𝑢, 𝑣 are not saturated in 𝑋𝑡, set 𝑀 ← 𝑋𝑡 + 𝑒

3) exchange transition: if one endpoint is saturated and the other is not, say

𝑢 is saturated by edge 𝑓 and 𝑣 is not, set 𝑀 ← 𝑋𝑡 + 𝑒 − 𝑓

exchange

current matching candidate matching



Jerrum-Sinclair chain (Metropolis chain)

Jerrum-Sinclair chain updates matching 𝑋𝑡 → 𝑋𝑡+1 by

• select an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 u.a.r.

• propose a candidate matching 𝑀 for 𝑋𝑡+1 by

1) down transition: if 𝑒 ∈ 𝑋𝑡, set 𝑀 ← 𝑋𝑡 − 𝑒

2) up transition: if both 𝑢, 𝑣 are not saturated in 𝑋𝑡, set 𝑀 ← 𝑋𝑡 + 𝑒

3) exchange transition: if one endpoint is saturated and the other is not, say

𝑢 is saturated by edge 𝑓 and 𝑣 is not, set 𝑀 ← 𝑋𝑡 + 𝑒 − 𝑓

4) otherwise (both 𝑢, 𝑣 are saturated and 𝑒 ∉ 𝑋𝑡): set 𝑀 ← 𝑋𝑡

do nothing

current matching candidate matching



Jerrum-Sinclair chain (Metropolis chain)

Jerrum-Sinclair chain 𝑃𝐽𝑆 updates matching 𝑋𝑡 → 𝑋𝑡+1 by

• select an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 u.a.r.

• propose a candidate matching 𝑀 for 𝑋𝑡+1 by

1) down transition: if 𝑒 ∈ 𝑋𝑡, set 𝑀 ← 𝑋𝑡 − 𝑒

2) up transition: if both 𝑢, 𝑣 are not saturated in 𝑋𝑡, set 𝑀 ← 𝑋𝑡 + 𝑒

3) exchange transition: if one endpoint is saturated and the other is not, say

𝑢 is saturated by edge 𝑓 and 𝑣 is not, set 𝑀 ← 𝑋𝑡 + 𝑒 − 𝑓

4) otherwise (both 𝑢, 𝑣 are saturated and 𝑒 ∉ 𝑋𝑡): set 𝑀 ← 𝑋𝑡

• with prob. min 1,
𝜇 𝑀

𝜇 𝑋𝑡
, accept 𝑀 and set 𝑋𝑡+1 ← 𝑀; otherwise, 𝑋𝑡+1 ← 𝑋𝑡

1/2-Lazy Jerrum-Sinclair chain: 𝑃𝐽𝑆_𝑧𝑧 =
1

2
(𝑃𝐽𝑆 + 𝐼)

(Metropolis filter)

Mixing time: 𝑇mix 𝑃𝐽𝑆_𝑧𝑧 = max
𝑋0

min 𝑡 > 0 𝑋𝑡 − 𝜇 𝑇𝑉 ≤
1

4𝑒



Mixing time results

Jerrum-Sinclair (1989): Graph with 𝑛 vertices and 𝑚 edges; constant 𝜆 > 0,

𝑇mix 𝑃𝐽𝑆_𝑧𝑧 = ෨𝑂 𝑚𝑛2

Canonical Path: 𝑂 𝑛𝑚 -congestion with 𝑂(𝑛) path length spectral gap 𝛾 = Ω
1

𝑛𝑚

Mixing time: 𝑇mix 𝑃𝐽𝑆_𝑧𝑧 = 𝑂
1

𝛾
log

1

𝜇min
, 𝜇min = min

𝑀
𝜇(𝑀) and log

1

𝜇min
= ෨𝑂(𝑛)

Chen-Liu-Vigoda (2021): Graph with 𝑛 vertices, 𝑚 edges, and max degree Δ; constant 𝜆 > 0,

𝑇mix Glauber dynamics = 𝑂 ΔΔ
2
⋅ 𝑚 log 𝑛

Spectral independence (local-to-global in HDX) modified log-Sobolev const. 𝛼 = ΩΔ
1

𝑚

Our Result: 𝑇mix 𝑃𝐽𝑆_𝑧𝑧 = 𝑂 Δ𝑚 ⋅ min{𝑛, Δ log Δ log 𝑛} = ෨𝑂 𝑚Δ2

• Spectral gap: Ω
1

𝑚Δ

• Log-Sobolev const.: Ω
1

𝑚Δ2

Corollary: 𝑇mix Glauber dynamics = ෨𝑂 Δ3 ⋅ 𝑚



General results
• Distribution 𝜇 over Ω ⊆ 𝑞 𝐸 for finite domain 𝑞 = {1,2,… , 𝑞} and variable set 𝐸

• Random variable 𝐹 = 𝑓(𝑋) for a function 𝑓:Ω → ℝ and 𝑋 ∼ 𝜇

Variance: Var 𝐹 = Var𝜇 𝑓 = 𝔼 𝐹2 − 𝔼 𝐹 2 Entropy: Ent 𝐹 = Ent𝜇 𝑓 = 𝔼 𝐹 log 𝐹 − 𝔼 𝐹 log 𝔼[𝐹]

Dirichlet form: ℰ𝑄 𝑓, 𝑓 =
1

2
σ𝑥𝑦∈Ω𝜇 𝑥 𝑄 𝑥, 𝑦 𝑓 𝑥 − 𝑓 𝑦

2
for all 𝑓: Ω → ℝ

• Reversible Markov chain𝑄 for 𝜇: ∀𝑥, 𝑦, 𝜇 𝑥 𝑄 𝑥, 𝑦 = 𝜇 𝑦 𝑄(𝑦, 𝑥)

Poincáre Inequality (Spectral Gap)

𝛾 𝑄 ⋅ Var𝜇 𝑓 ≤ ℰ𝑄(𝑓, 𝑓)

𝑇mix

𝑄 + 𝐼

2
= 𝑂

1

𝛾(𝑄)
log

1

𝜇min

Log-Sobolev Inequality

𝜌 𝑄 ⋅ Ent𝜇 𝐹2 ≤ ℰ𝑄(𝑓, 𝑓)

𝑇mix 𝑄 = 𝑂
1

𝜌(𝑄)
log log

1

𝜇min



Family of Markov chains

o For a subset Λ ⊆ 𝐸, a pinning 𝜏 ∈ 𝑞 𝐸\Λ outside Λ, define conditional distribution

𝜇𝜏 = (distribution of 𝑋 ∼ 𝜇 conditional on 𝑋𝐸\Λ = 𝜏)

set of free
variables

Λ

pinning 𝜏
on 𝐸 ∖ Λ



Family of Markov chains

o For a subset Λ ⊆ 𝐸, a pinning 𝜏 ∈ 𝑞 𝐸\Λ outside Λ, define conditional distribution

𝜇𝜏 = (distribution of 𝑋 ∼ 𝜇 conditional on 𝑋𝐸\Λ = 𝜏)

o Markov chain 𝑄𝜏 is a reversible chain for 𝜇𝜏

Example: 𝒬 is a family of Glauber dynamics or a family of Metropolis chains.

a family of chains 𝒬 = 𝑄𝜏 𝜏 is a pinning

Concave Dirichlet forms: ∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏 satisfies
1

|Λ|


𝑒∈Λ

𝔼𝑐∼𝜇𝑒𝜏 ℰ𝑄𝜏∧ 𝑒←𝑐 (𝑓, 𝑓) ≤ ℰ𝑄𝜏 𝑓, 𝑓 .

Λ pinning 𝜏 on
𝐸 ∖ Λ

𝑒 ← 𝑐



Family of Markov chains

o For a subset Λ ⊆ 𝐸, a pinning 𝜏 ∈ 𝑞 𝐸\Λ outside Λ, define conditional distribution

𝜇𝜏 = (distribution of 𝑋 ∼ 𝜇 conditional on 𝑋𝐸\Λ = 𝜏)

o Markov chain 𝑄𝜏 is a reversible chain for 𝜇𝜏

Example: 𝒬 is a family of Glauber dynamics or a family of Metropolis chains.

a family of chains 𝒬 = 𝑄𝜏 𝜏 is a pinning

Concave Dirichlet forms: ∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏 satisfies
1

|Λ|


𝑒∈Λ

𝔼𝑐∼𝜇𝑒𝜏 ℰ𝑄𝜏∧ 𝑒←𝑐 (𝑓, 𝑓) ≤ ℰ𝑄𝜏 𝑓, 𝑓 .

average of Dirichlet forms
Dirichlet forms of 𝑄𝜏 for 𝜇𝜏

Markov chain for conditional distributions
with one more pinned variable



Local functional inequalities

Distribution 𝜇 over Ω ⊆ 𝑞 𝐸 , random variables 𝐹 = 𝑓 𝑋 , where 𝑓:Ω → ℝ and 𝑋 ∼ 𝜇

𝛼-local Poincáre Inequality

𝛼 ⋅

𝑒∈𝐸

Var 𝔼 𝐹 𝑋𝑒 ≤ ℰ𝑄(𝑓, 𝑓)

sum over all
variables in 𝐸

a random variable in ℝ
support size at most 𝑞

𝛼-local log-Sobolev Inequality

𝛼 ⋅

𝑒∈𝐸

Ent 𝔼 𝐹2 𝑋𝑒 ≤ ℰ𝑄(𝑓, 𝑓)



(𝛼1, 𝛼2… , 𝛼|𝐸|)-local Poincáre Inequality

∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏

satisfies the 𝛼|Λ|-local Poincáre Inequality

Local functional inequalities for a family of Markov chains𝓠

set of 𝑘 = |Λ|
free variables

Λ

pinning 𝜏
on 𝐸 ∖ Λ



(𝛼1, 𝛼2… , 𝛼|𝐸|)-local Poincáre Inequality

∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏

satisfies the 𝛼|Λ|-local Poincáre Inequality

Local functional inequalities for a family of Markov chains𝓠

𝛼|Λ| ⋅ 

𝑒∈𝐸

Var 𝔼 𝐹 𝑋𝑒 ≤ ℰ𝑄𝜏 𝑓, 𝑓 ,

where 𝐹 = 𝑓(𝑋) and 𝑋 ∼ 𝜇𝜏



(𝛼1, 𝛼2… , 𝛼|𝐸|)-local Poincáre Inequality

∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏

satisfies the 𝛼|Λ|-local Poincáre inequality

Local functional inequalities for a family of Markov chains𝓠

(𝛼1, 𝛼2… , 𝛼|𝐸|)-local log-Sobolev Inequality

∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏

satisfies the 𝛼|Λ|-local log-Sobolev inequality



(𝛼1, 𝛼2… , 𝛼|𝐸|)-local Poincáre Inequality

∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏

satisfies the 𝛼|Λ|-local Poincáre inequality

Local functional inequalities for a family of Markov chains𝓠

(𝛼1, 𝛼2… , 𝛼|𝐸|)-local log-Sobolev Inequality

∀Λ ⊆ 𝐸, ∀𝜏 ∈ 𝑞 𝐸∖Λ, the Markov chain 𝑄𝜏 for 𝜇𝜏

satisfies the 𝛼|Λ|-local log-Sobolev inequality

Local-to-global theorem for functional inequalities

For a family of Markov chains 𝒬 with the concave Dirichlet forms

(𝛼1, 𝛼2… , 𝛼|𝐸|)-local Poincáre Inequality Poincáre constant 𝛾 𝑄 ≥ σ𝑘=1
𝐸 1

𝑘𝛼𝑘

−1

(𝛼1, 𝛼2… , 𝛼|𝐸|)-local log-Sobolev Inequality Log-Sobolev constant 𝜌 𝑄 ≥ σ𝑘=1
𝐸 1

𝑘𝛼𝑘

−1

𝑸: Markov chain for 𝝁 = 𝝁∅ without pinning



Transport Flow

Given a Markov chain 𝑄, a transport flow Γ from a distribution 𝜈 to a distribution 𝜋

is a distribution of paths such that 𝛾 = 𝑥0, 𝑥1, … , 𝑥ℓ ∼ Γ satisfies

• The starting point 𝑠 𝛾 = 𝑥0 ∼ 𝜈

• The endpoint 𝑡 𝛾 = 𝑥ℓ ∼ 𝜋

• Every pair of adjacent points (𝑥𝑖 , 𝑥𝑖+1) is a transition in 𝑄

𝑠 𝛾 , 𝑡 𝛾 forms a coupling of 𝜈 and 𝜋

How to establish local functional inequalities?

𝛼-local Poincáre Inequality

𝛼 ⋅

𝑒∈𝐸

Var 𝔼 𝐹 𝑋𝑒 ≤ ℰ𝑄(𝑓, 𝑓)

𝛼-local log-Sobolev Inequality

𝛼 ⋅

𝑒∈𝐸

Ent 𝔼 𝐹2 𝑋𝑒 ≤ ℰ𝑄(𝑓, 𝑓)



Ω ⊆ 𝑞 𝐸
𝑒 ← 1 𝑒 ← 2

𝑒 ← 3

For any variable 𝑒 ∈ 𝐸
• partition the space by the value of 𝒆
• routing between different parts

Ω(𝑒𝑎)

Ω(𝑒𝑎) = {𝑋 ∈ Ω ∣ 𝑋𝑒 = 𝑎}

Ω(𝑒𝑏)

Ω(𝑒𝑏) = {𝑋 ∈ Ω ∣ 𝑋𝑒 = 𝑎}

routing via
transitions in 𝑄

sending 𝜇𝑒 𝑎 𝜇𝑒 𝑏
units of flow in total



Ω ⊆ 𝑞 𝐸
𝑒 ← 1 𝑒 ← 2

𝑒 ← 3

For any variable 𝑒 ∈ 𝐸
• partition the space by the value of 𝒆
• routing between different parts

∀𝜎 ∈ Ω(𝑒𝑎) needs to send

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝜇𝑒←𝑎(𝜎) unit of flow

Ω(𝑒𝑎) = {𝑋 ∈ Ω ∣ 𝑋𝑒 = 𝑎}

∀𝜏 ∈ Ω(𝑒𝑏) needs to receive

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝜇𝑒←𝑏(𝜏) unit of flow

Ω(𝑒𝑏) = {𝑋 ∈ Ω ∣ 𝑋𝑒 = 𝑎}

routing via
transitions in 𝑄

sending 𝜇𝑒 𝑎 𝜇𝑒 𝑏
units of flow in total

Sending 𝜇𝑒 𝑎 𝜇𝑒 𝑏 units of flow via a random path

from the transport flow Γ𝑒
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏



Ω ⊆ 𝑞 𝐸
𝑒 ← 1 𝑒 ← 2

𝑒 ← 3

For any variable 𝑒 ∈ 𝐸
• partition the space by the value of 𝒆
• routing between different parts

∀𝜎 ∈ Ω(𝑒𝑎) needs to send

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝜇𝑒←𝑎(𝜎) unit of flow

Ω(𝑒𝑎) = {𝑋 ∈ Ω ∣ 𝑋𝑒 = 𝑎}

∀𝜏 ∈ Ω(𝑒𝑏) needs to receive

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝜇𝑒←𝑏(𝜏) unit of flow

Ω(𝑒𝑏) = {𝑋 ∈ Ω ∣ 𝑋𝑒 = 𝑎}

routing via
transitions in 𝑄

sending 𝜇𝑒 𝑎 𝜇𝑒 𝑏
units of flow in total

Every path 𝛾 = 𝑥0, 𝑥1, … , 𝑥ℓ

send 𝜇𝑒 𝑎 𝜇𝑒 𝑏 Pr
𝑋∼Γ𝑒

𝑎→𝑏
𝑋 = 𝛾 units of flow from 𝑥0 to 𝑥ℓ



Local Poincáre inequality via transport flow

If there exists a family of transport flow

Γ𝑒
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏 ∣ 𝑒 ∈ 𝐸, 𝑎, 𝑏 ∈ 𝑞

• (𝜅-expected congestion) For any transition (𝑥 → 𝑦) in 𝑄, and any 𝑎, 𝑏 ∈ 𝑞 ,


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ Pr
𝛾∼Γ𝑒

𝑎→𝑏
𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .



Local Poincáre inequality via transport flow

If there exists a family of transport flow

Γ𝑒
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏 ∣ 𝑒 ∈ 𝐸, 𝑎, 𝑏 ∈ 𝑞

• (𝜅-expected congestion) For any transition (𝑥 → 𝑦) in 𝑄, and any 𝑎, 𝑏 ∈ 𝑞 ,


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ Pr
𝛾∼Γ𝑒

𝑎→𝑏
𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .

Ω(𝑒1𝑎)

Ω(𝑒2𝑎)

Ω(𝑒3𝑎)

Ω(𝑒1𝑏)

Ω(𝑒2𝑏)

Ω(𝑒3𝑏)

𝑥 𝑦

𝑥 𝑦

𝑥 𝑦



Local Poincáre inequality via transport flow

If there exists a family of transport flow

Γ𝑒
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏 ∣ 𝑒 ∈ 𝐸, 𝑎, 𝑏 ∈ 𝑞

• (𝜅-expected congestion) For any transition (𝑥 → 𝑦) in 𝑄, and any 𝑎, 𝑏 ∈ 𝑞 ,


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ Pr
𝛾∼Γ𝑒

𝑎→𝑏
𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .

• (𝐿-expected length) For any 𝑒 ∈ 𝐸, any 𝑎, 𝑏 ∈ [𝑞],

𝔼𝛾∼Γ𝑒𝑎→𝑏 ℓ 𝛾 ≤ 𝑳

𝛼-local Poincáre Inequality

𝛼 ⋅

𝑒∈𝐸

Var 𝔼 𝐹 𝑋𝑒 ≤ ℰ𝑄 𝑓, 𝑓 with 𝛼 = Ω
1

𝑞2𝜅𝐿

Slightly different definitions
are used in the paper to
improve the application



Local Poincáre inequality via transport flow

local Poincáre Inequality

Family of transport flow

• low expected congestion

• low expected length

Construct transport flow Γe
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏 such that for 𝛾 = 𝑥0, 𝑥1, … , 𝑥ℓ ∼ Γ

• The starting point 𝑠 𝛾 = 𝑥0 ∼ 𝜇𝑒←𝑎

• The endpoint 𝑡 𝛾 = 𝑥ℓ ∼ 𝜇𝑒←𝑏

• Every pair of adjacent points (𝑥𝑖 , 𝑥𝑖+1) is a transition in 𝑄

𝑠 𝛾 , 𝑡 𝛾 forms a coupling of 𝜇𝑒←𝑎 and 𝜇𝑒←𝑎

Find a good coupling with small expected discrepancy between 𝜇𝑒←𝑎 and 𝜇𝑒←𝑏



Canonical path and multicommodity flow

The technique [Diaconis and Stroock 91] [Sinclair 92] is to bound global variance

𝛼 ⋅ Var 𝐹 ≤ ℰ𝑄(𝑓, 𝑓)

For any pair 𝑥, 𝑦 ∈ Ω

𝑥 𝑦

Send 𝜇 𝑥 𝜇(𝑦) units of flow

• Canonical path: sending flow through one path

• Multicommodity flow: sending flow through a distribution of paths

A transport flow from

Dirac distribution 𝜈 (with 𝜈 𝑥 = 1)

to

Dirac distribution 𝜋 (with 𝜋 𝑦 = 1)



Var 𝔼 𝐹 𝑋𝑒 =
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑎 − 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑏 2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝑋∼𝜇𝑒←𝑎 𝑓 𝑋 − 𝔼𝑌∼𝜇𝑒←𝑏 𝑓 𝑌
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 𝑓 𝑥0 − 𝑓(𝑥ℓ)
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

=
1

2


𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾∼Γ𝑒𝑎→𝑏 

𝑥→𝑦 ∈𝑄

𝑓 𝑥 − 𝑓 𝑦 𝟏 𝑥 → 𝑦 ∈ 𝛾

2

Proof outline: Local Poincáre inequality via transport flow

local variance amount of flow



Var 𝔼 𝐹 𝑋𝑒 =
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑎 − 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑏 2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝑋∼𝜇𝑒←𝑎 𝑓 𝑋 − 𝔼𝑌∼𝜇𝑒←𝑏 𝑓 𝑌
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 𝑓 𝑥0 − 𝑓(𝑥ℓ)
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

=
1

2


𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾∼Γ𝑒𝑎→𝑏 

𝑥→𝑦 ∈𝑄

𝑓 𝑥 − 𝑓 𝑦 𝟏 𝑥 → 𝑦 ∈ 𝛾

2

By definition 𝐹 = 𝑓(𝑥)

Proof outline: Local Poincáre inequality via transport flow

beginning of the
transport flow

ending of the
transport flow



Var 𝔼 𝐹 𝑋𝑒 =
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑎 − 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑏 2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝑋∼𝜇𝑒←𝑎 𝑓 𝑋 − 𝔼𝑌∼𝜇𝑒←𝑏 𝑓 𝑌
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 𝑓 𝑥0 − 𝑓(𝑥ℓ)
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

=
1

2


𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾∼Γ𝑒𝑎→𝑏 

𝑥→𝑦 ∈𝑄

𝑓 𝑥 − 𝑓 𝑦 𝟏 𝑥 → 𝑦 ∈ 𝛾

2

By definition 𝐹 = 𝑓(𝑥)

Coupling : 𝑥0, 𝑥ℓ ∼ 𝜇𝑒←𝑎 , 𝜇𝑒←𝑏

Proof outline: Local Poincáre inequality via transport flow

sample a random path from the flow



Var 𝔼 𝐹 𝑋𝑒 =
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑎 − 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑏 2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝑋∼𝜇𝑒←𝑎 𝑓 𝑋 − 𝔼𝑌∼𝜇𝑒←𝑏 𝑓 𝑌
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 𝑓 𝑥0 − 𝑓(𝑥ℓ)
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

=
1

2


𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾∼Γ𝑒𝑎→𝑏 

𝑥→𝑦 ∈𝑄

𝑓 𝑥 − 𝑓 𝑦 𝟏 𝑥 → 𝑦 ∈ 𝛾

2

By definition 𝐹 = 𝑓(𝑥)

Coupling : 𝑥0, 𝑥ℓ ∼ 𝜇𝑒←𝑎 , 𝜇𝑒←𝑏

Telescoping sum along the path

Proof outline: Local Poincáre inequality via transport flow



Var 𝔼 𝐹 𝑋𝑒 =
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑎 − 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑏 2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝑋∼𝜇𝑒←𝑎 𝑓 𝑋 − 𝔼𝑌∼𝜇𝑒←𝑏 𝑓 𝑌
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 𝑓 𝑥0 − 𝑓(𝑥ℓ)
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

=
1

2


𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾∼Γ𝑒𝑎→𝑏 

𝑥→𝑦 ∈𝑄

𝑓 𝑥 − 𝑓 𝑦 𝟏 𝑥 → 𝑦 ∈ 𝛾

2

By definition 𝐹 = 𝑓(𝑥)

Coupling : 𝑥0, 𝑥ℓ ∼ 𝜇𝑒←𝑎 , 𝜇𝑒←𝑏

Telescoping sum along the path

Summing by
enumerating transitions

Proof outline: Local Poincáre inequality via transport flow



Var 𝔼 𝐹 𝑋𝑒 =
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑎 − 𝔼 𝐹 ∣ 𝑋𝑒 = 𝑏 2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝑋∼𝜇𝑒←𝑎 𝑓 𝑋 − 𝔼𝑌∼𝜇𝑒←𝑏 𝑓 𝑌
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 𝑓 𝑥0 − 𝑓(𝑥ℓ)
2

=
1

2


𝑎,𝑏∈[𝑞]

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾=(𝑥0,𝑥1,…𝑥ℓ)∼Γ𝑒𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

=
1

2


𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 𝔼𝛾∼Γ𝑒𝑎→𝑏 

𝑥→𝑦 ∈𝑄

𝑓 𝑥 − 𝑓 𝑦 𝟏 𝑥 → 𝑦 ∈ 𝛾

2

By definition 𝐹 = 𝑓(𝑥)

Coupling : 𝑥0, 𝑥ℓ ∼ 𝜇𝑒←𝑎 , 𝜇𝑒←𝑏

Telescoping sum along the path

Summing by
enumerating transitions

Proof outline: Local Poincáre inequality via transport flow

• using Cauchy–Schwarz inequality on the term

• the rest of the proof follows from the standard analysis in [Sinclair 92]



Local log-Sobolev inequality via transport flow

If there exists a family of transport flow

Γ𝑒
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏 ∣ 𝑒 ∈ 𝐸, 𝑎, 𝑏 ∈ 𝑞

• (𝜅- strong expected congestion) For any transition (𝑥 → 𝑦) in 𝑄, and any 𝑎, 𝑏 ∈ 𝑞 ,


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾∼Γ𝑒𝑎→𝑏 ℓ 𝛾 ⋅ 𝟏 𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .

add the length of the path into the expectation



Local log-Sobolev inequality via transport flow

If there exists a family of transport flow

Γ𝑒
𝑎→𝑏 from 𝜇𝑒←𝑎 to 𝜇𝑒←𝑏 ∣ 𝑒 ∈ 𝐸, 𝑎, 𝑏 ∈ 𝑞

• (𝜅- strong expected congestion) For any transition (𝑥 → 𝑦) in 𝑄, and any 𝑎, 𝑏 ∈ 𝑞 ,


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾∼Γ𝑒𝑎→𝑏 ℓ 𝛾 ⋅ 𝟏 𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .

𝜙 = min{𝜇𝑒 𝑐 ∣ 𝑒 ∈ 𝐸, 𝑐 ∈ [𝑞]} is the marginal lower bound

𝛼-local log-Sobolev Inequality

𝛼 ⋅

𝑒∈𝐸

Ent 𝔼 𝐹2 𝑋𝑒 ≤ ℰ𝑄 𝑓, 𝑓 with 𝛼 = Ω
1

𝑞2𝜅 log
1
𝜙



Using Cauchy–Schwarz inequality on the term

Proof outline: log-Sobolev inequality via transport flow

marginal
lower bound

of 𝑋𝑒

marginal
lower bound
of 𝔼[𝐹2 ∣ 𝑋𝑒]

Ent 𝔼 𝐹2 𝑋𝑒 ≤
log

1
𝜙 − 1

1 − 2𝜙
Var 𝔼 𝐹2 𝑋𝑒

Var 𝔼 𝐹2 𝑋𝑒 ≤ 

𝑎,𝑏∈ 𝑞

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾= 𝑥0,…,𝑥ℓ ∼Γ𝑒
𝑎→𝑏 

1≤𝑖≤ℓ

𝑓 𝑥𝑖 − 𝑓 𝑥𝑖−1

2

by convexity of ℎ 𝑥, 𝑦 = 𝑥 − 𝑦
2



Application to Jerrum-Sinclair chain

Transport flow for JS-chain family

• low expected congestion

• low expected length

local

functional

inequalities

• Poincáre inequality

• log-Sobolev inequality

mixing

For 𝜇𝜏 with pinnings 𝜏 ∈ 0,1 𝐸−Λ, free variables in Λ, the Jerrum-Sinclair chain 𝑄𝜏: 𝑋𝑡 → 𝑋𝑡+1

• Pick an edge 𝑒 ∈ Λ uniformly at random

• Construct a candidate matching 𝑀 from 𝑋𝑡

• Accept or reject 𝑀 via Metropolis filter w.r.t. 𝜇𝜏

The family of Jerrum-Sinclair chains 𝒬 = 𝑄𝜏 𝜏 satisfies

• 𝛼1, 𝛼2, … , 𝛼 𝐸 -local Poincáre inequality with 𝛼𝑘 = Ω𝜆
1

𝑘𝛥

• 𝛼1, 𝛼2, … , 𝛼 𝐸 -log Sobolev inequality with 𝛼𝑘 = Ω𝜆
1

𝑘Δ2 log Δ

Proved by transport flow



Fix an edge 𝑒 ∈ 𝐸, construct transport flow from 𝜇𝑒←unmatched to 𝜇𝑒←matched

• Sample 𝑋, 𝑌 from the local-flipping coupling of 𝜇𝑒←unmatched to 𝜇𝑒←matched

• Construct canonical path from 𝑋 to 𝑌 using Jerrum and Sinclair’s construction

Local flipping
coupling

Low discrepancy
between 𝑋 and 𝑌

Low congestion
and

low path length



Local Flipping Coupling

• Sample 𝑋 ∼ 𝜇𝑒←unmatched and 𝑍 ∼ 𝜇𝑒←matched independently

• The difference between 𝑋 and 𝑌 are paths and cycles, find the unique one 𝐵 containing 𝑒

• Let 𝑌 = 𝑍𝐵 ∪ 𝑋𝐸−𝐵 (flipping 𝐵 in 𝑋 to obtain 𝑌)

𝑒

𝑋 𝑍

𝑒



Local Flipping Coupling

• Sample 𝑋 ∼ 𝜇𝑒←unmatched and 𝑍 ∼ 𝜇𝑒←matched independently

• The difference between 𝑋 and 𝑍 are paths and cycles, find the unique one 𝐵 containing 𝑒

• Let 𝑌 = 𝑍𝐵 ∪ 𝑋𝐸−𝐵 (flipping 𝐵 in 𝑋 to obtain 𝑌)

𝑒

𝑋

𝑒

𝑍

𝐵



Local Flipping Coupling

• Sample 𝑋 ∼ 𝜇𝑒←unmatched and 𝑍 ∼ 𝜇𝑒←matched independently

• The difference between 𝑋 and 𝑍 are paths and cycles, find the unique one 𝐵 containing 𝑒

• Let 𝑌 = 𝑍𝐵 ∪ 𝑋𝐸−𝐵 (flipping 𝐵 in 𝑋 to obtain 𝑌)

𝑒

𝑋

𝐵



Local Flipping Coupling

• Sample 𝑋 ∼ 𝜇𝑒←unmatched and 𝑍 ∼ 𝜇𝑒←matched independently

• The difference between 𝑋 and 𝑍 are paths and cycles, find the unique one 𝐵 containing 𝑒

• Let 𝑌 = 𝑍𝐵 ∪ 𝑋𝐸−𝐵 (flipping 𝐵 in 𝑋 to obtain 𝑌)

𝑒

𝑋

𝑒

𝑋

Copy 𝐵



Local Flipping Coupling

• Sample 𝑋 ∼ 𝜇𝑒←unmatched and 𝑍 ∼ 𝜇𝑒←matched independently

• The difference between 𝑋 and 𝑍 are paths and cycles, find the unique one 𝐵 containing 𝑒

• Let 𝑌 = 𝑍𝐵 ∪ 𝑋𝐸−𝐵 (flipping 𝐵 in 𝑋 to obtain 𝑌)

𝑒

𝑋

𝑒

𝑌

Flip 𝐵



Transport Flow

• Sample 𝑋, 𝑌 from the local-flipping coupling of 𝜇𝑒←unmatched to 𝜇𝑒←matched

• Construct canonical path from 𝑋 to 𝑌 using Jerrum and Sinclair’s construction



Proof overview of expected length and congestion

• Analyze coupling via local
reviewing process

• Disagreement percolation

For 𝑋, 𝑌 ∼ 𝒞𝑒 from local flipping coupling

• Length bound 𝔼 𝑋 ⊕ 𝑌 ≤ 𝑂𝜆( Δ)

• One sided bound 𝔼 𝑋 ⊕ 𝑌 ∣ 𝑋 = 𝑥 ≤ 𝑂𝜆(Δ)

𝛾 ∼ Γ𝑒
• Sample starting and ending points from coupling

• Construct the path deterministically

The randomness is only from locally flipping coupling

sum of |𝐸| different couplings

Expected congestion and strong congestion analysis


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾∼Γ𝑒 𝟏 𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾∼Γ𝑒 ℓ 𝛾 ⋅ 𝟏 𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .



Proof overview of expected length and congestion

• Analyze coupling via local
reviewing process

• Disagreement percolation

For 𝑋, 𝑌 ∼ 𝒞𝑒 from local flipping coupling

• Length bound 𝔼 𝑋 ⊕ 𝑌 ≤ 𝑂𝜆( Δ)

• One sided bound 𝔼 𝑋 ⊕ 𝑌 ∣ 𝑋 = 𝑥 ≤ 𝑂𝜆(Δ)

Expected congestion and strong congestion analysis


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾∼Γ𝑒 𝟏 𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .


𝑒∈𝐸

𝜇𝑒 𝑎 𝜇𝑒 𝑏 ⋅ 𝔼𝛾∼Γ𝑒 ℓ 𝛾 ⋅ 𝟏 𝑥 → 𝑦 ∈ 𝛾 ≤ 𝜿 ⋅ 𝜇 𝑥 𝑄 𝑥, 𝑦 .

sum of |𝐸| different couplings

decoupling lemma

analyze one coupling with a different

function inside the expectation

bound congestion by constructing injection

(guided by Jerrum-Sinclair’s analysis)



Open problems

• Lower discrepancy coupling of 𝜇𝑒←𝑎 and 𝜇𝑒←𝑏

• Construction of canonical paths

• Poincáre inequality

• log-Sobolev inequality

• Sharp bound for Jerrum-Sinclair chain: ෨𝑂(𝑚 Δ) mixing?

• More applications?

 Improving the mixing bound for e.g. the permanent, the Ising model,

the switch/flip chain for sampling regular graphs…
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