A Markov chain approach to the sampling Lovasz local lemma

Weiming Feng
University of Edinburgh

Base on joint works with:

- 3
-

'

P

| a \(l(\ Ji ‘%l

Heng Guo Ku He Chunyang Wang Jiaheng Wang Yitong Yin = Chihao Zhang
Edin ICT NJU Edin NJU SJTU

BARC Talk, University of Copenhagen, Denmark
9th May 2023

Conjunctive normal form (CNF)

* Instance: a formula ® = (V, C), for example
D= (x;Vax, Vi) A(x; Vxy,Vixy,) /\[(xg V —x, V —|x5)] clause

V = {xq1, x5, x3, x4, xs5}: set of Boolean variables; C: set of clauses.
* SAT solutions: an assignment of variables in V s.t. ® = true.

 Computational tasks:

* Decision: Does SAT solution exist?
problem [Cook 1971, Levin 1973]

* Counting: How many SAT solutions?
problem [Valiant 1979].

(k, d)-CNF formula ® = (V, C)

b = (x1 V —1X9 ng) N (xl sz Vx4) N (x3 V —1X4 V _Ix5)

~. —

variable degree d clause size k

Lovasz local lemma (LLL) [Erdds and Lovasz, 1975]
SAT solution exists if k = logd (k = logd + logk + ()
Algorithmic Lovasz local lemma (ALLL) [Moser and Tardos, 2009]
Find a SAT solution when k = logd

Sampling Lovasz local lemma (SLLL)
Sample a SAT solution uniformly at random if k = Q(logd)
Counting Lovasz local lemma (CLLL)

Approximately count number of SAT solutions if k = Q(logd)

Sampling & counting k-SAT solutions
 Input: a (k, d)-CNF formula ® = (V, C) with |[V| = n, an error bound € > 0.

 Almost uniform sampling: random solution X € {true, false}" s.t.
the total variation distance d;, (X, u) < €,
u: the uniform distribution of all SAT solutions

* Approximate counting: estimate the number of SAT solutions, output
(1-e)Z<Z<(1+¢eZ,
Z = the number of SAT solutions

(") self-reduction
almost uniform [Jerrum, Valiant, Vazirani 1986] approximate

sampling S counting

Running time
Work Regime or Technique
lower bound

Markov chain Monte Carlo
(MCMC)

Monotone CNFI1]
HSZ19 k= 2logd poly(dk)nlogn

[1] Monotone CNF: all variables appear positively @ = (x; Vx, Vx3) A(xo Vx4V x5) A (X3 V X4 V Xg).

Running time
Work Regime or Technique
lower bound

Monotone CNFI1] Markov chain Monte Carlo

HSZ19 k= 2logd poly(dk)nlogn (MCMC)
i [2]
GJL17 5= rm]?gog i) kg;/ 2) poly(dk)n partial rejection sampling

[1] Monotone CNF: all variables appear positively @ = (x; Vx, Vx3) A(xo Vx4V x5) A (X3 V X4 V Xg).
[2] s: two dependent clauses share at least s variables.

Running time
Work Regime or
lower bound

Technique

Monotone CNFI1l

HSZ19 k= 2logd poly(dk)nlogn
> min(logdk , k/2) [2]
GJL17 S mf;"glog d/) poly(di)n
Moitra’l7 k = 60logd npoly(dk)

Markov chain Monte Carlo
(MCMC)

partial rejection sampling

linear programming

[1] Monotone CNF: all variables appear positively @ = (x; Vx, Vx3) A(xo Vx4V x5) A (X3 V X4 V Xg).

[2] s: two dependent clauses share at least s variables.

Running time
Work Regime or Technique
lower bound

Monotone CNFI1] Markov chain Monte Carlo

HSZ19 k= 2logd poly(dk)nlogn (MCMC)

GJL17 5= mi]?(zlozg ﬁ) kg;/ 2) 4 poly(dk)n partial rejection sampling
Moitra’17 k = 60logd nPoly(dk) linear programming
BGGGS15 k <2logd—C No poly-time algorithm unless NP=RP

[1] Monotone CNF: all variables appear positively @ = (x; Vx, Vx3) A(xo Vx4V x5) A (X3 V X4 V Xg).
[2] s: two dependent clauses share at least s variables.

Open Problem
fast sampling algorithm when k = 2logd

Our Results [F, Guo, Yin and Zhang, 2020 & F,, He and Yin, 2021]
For any (k, d)-CNF formula satisfying k < 13logd,

* sampling algorithm (main algorithm)
draw almost uniform random SAT solution in time 0 (d?k3n*°°1);

* counting algorithm (by reduction)
count SAT solutions approximately in time O (d3k3n?°°1).

Further Improvements on our algorithm
 Better analysis [Jain, Pham and Vuong, 2021]: improve to k = 5.741 logd.
* Better accuracy [He, Sun and Wu, 2021]: perfect sampling via CTFP

State-of-the-art [He, Wang and Yin, 2022]
« k = 5logd (non-MCMC sampling algorithm)

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T, F}V;

Foreachtfrom1toT do ‘(]nD
)
‘ false

* Pickv € V uniformly at random;

* Resample ¥, ~ (‘| Yjn\»);

(x1V=x, Vxz)A(xo VX Vxg) A(xgV—xs VXg)

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T,F}";
Foreachtfrom1toT do

* Pick v € V uniformly at random;

* Resample ¥, ~ (‘| ¥jn\,);

(x1V=x, VX)) A(x, VX VX)) A(Xg VXV Xg)

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T,F}"; ‘

Foreacht from1toT do / . ‘ rue
\ ‘ i @,;'T/F?

* Pick v € VV uniformly at random; T false

* Resample Y, ~ p,(*| Yi\p);

(x1V=x, V) A(xo Vo Vxg) A(xyV—xs Vxg)

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution Y € {T,F}";
Foreachtfrom1toT do

* Pickv € V uniformly at random;

* Resample Y, ~ p,(*| Yi\p);

(x1V =x, Vx3) A(xp Vs VXs) A(xgV—xs VXg)

Glauber dynamics: random walk over solution space via local update.

TS

N

Y

W

w

w

w

w

w

w

w

w

w

¢ are here !

|v
AI\
L
L
L

L vlv

L L

L L

1l w

I

m

rapid mixing slow mixing *. not mixing

Connectivity barrier (toy example)

* (k,d)-CNF formula ® = (V,C) with VV = {xq, x5, ... x. }:
d=C,ANCy A ACy.
C; = (—xqyVx,Vx3V--Vxg)forbids 100 ...0
Co = (x4 V—x,Vx3V--VXxg)forbids 010 ...0
Cr = (xq1VXxyVx3V--V-=xp)forbids 000 ...1
* Any assignment X € {0,1}" with ||X]|; = 1 is infeasible.

e All false solution 0 is disconnected with others.

m- Other Solutions

Glauber dynamics: random walk over solution space via local update.

rapid mixing slow mixing * not mixing

Question for SLLL

Can we obtain fast sampling algorithm
when the solution space is disconnected?

Our technique: projection

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png

Projecting from a high dimension to a lower dimension to improve connectivity

Construct a good subset of variables S € V

Run Glauber dynamics on projected distribution pus to draw sample X ~ ug

Start from a uniform random X € {true,false}®;
Foreachtfrom1ltoT

* Pickavariable v € S uniformly at random;
* Resample X}, ~ p, (* [Xs\);
Return X;

Draw sample Y ~ puy\s(: [X) from the conditional distribution

There exists an efficiently constructible subset S < V such that:

computing exact distr.
the Glauber dynamics on ug is rapidly mixing, can be #P-hard

the Glauber dynamics on g can be implemented efficiently (draw X, ~|u, (- |Xs\»)),

sampling assignment for V\S can be implemented efficiently (draw Y ~| s (- [X)).

Construct a good subset of variables S € V

Run Glauber dynamics on projected distribution pus to draw sample X ~ ug

Start from a uniform random X € {true,false}®;
Foreachtfrom1toT
* Pickavariable v € § uniformly at random;
* Resample X, ~ u, (- [Xs\0);
Return X;

Draw sample Y ~ uy\s(: [X) from the conditional distribution

Our TasKks:

* Construct such a good subsetS C V.

* Show that the Glauber dynamics on ug is rapidly mixing.

* Given assignment on S, draw samples efficiently from the conditional distribution.

Mark variables |[Moitra’ 17]

Mark a set of variables S € V such that
* each clause contains at least ak = 0©(k) marked variables;

* each clause contains at least Sk = ©(k) unmarked variables;
where 0 < a,f < 1 are two constant parameters witha + f < 1

marked

variables
in one
clause

~

A

at least fk
unmarked variables

at least ak marked
variables

Marked setS C V

is constructed by

algorithmic LLL
(Moser-Tardos)

The rapid mixing of Glauber dynamics on pg

[Each clause has at least fk unmarked variables]
by LLL ‘

e P
Key Property: local uniformity
For any v € S, any Xs\, € {T,F}*\,

Ve € {T,F} (c|X)—1(1+ .)
C)) Hy C S\v) — 2 poly(dk)
- /

* The Glauber dynamics is connected (us(Xs) > 0 for all X € {T, F}*)

* The Glauber dynamics mixes in O (nlogn) steps
* path coupling analysis [F, Guo, Yin and Zhang, 2020] [F, He and Yin, 2021]
* information percolation analysis [Jain, Pham and Vuong, 2021]

Implementation of the algorithm

Transition of Glauber dynamics Sample unmarked variable
resample X,, ~ 1, (- [Xs,) sample Y ~ s (- 1X)

Challenge: computing the exact conditional distributions can be #P-hard.

Solution: draw approximate samples via rejection sampling

remove satisfied clauses

(x1 VX, V=xgV—xy)
xy=Torx, =F </

resample X;, from 1, (- [Xs\») C: connected component containing v
e ~N . .
each clause has ~ ‘ with high probability
at least ok marked variables remove component size is
O(logn
. eaf:tl;lclauze 9 (logn) y
with prob.
4)
local uniformity 1\ %k l
each marked variables takes y ~1- (E) rejection sampling
an almost uniform random value y \ y on component

_

Input: ak-CNF formula ® = (V, E) with maximum degree d, an error bound € > 0.

Output: a random sample o€ {true, false}' s.t. d;y (o, u) < e.

1. Run Moser-Tardos algorithm to construct marked setS C V/;

2. Run[GIauber dynamics on ,uS}“or 0, (n log %) steps to sample X ~ ug;

(implemented using rejection sampling)

3. Run rejection sampling to draw Y ~ (¢ X);

4. Return X UY.

set of marked variables S € V

\

™

an assignment X € {T,F}°

=X

a set of assignment Y € {T, F}¥ with Y

Compress

e &

CNF solution space: disconnected compressed space: connected

Rapid mixing of Glauber dynamics

Inverse

\

\

compressed state random CNF solution

Fast implementation of algorithm

Hypergraph colouring

Instance: a k-uniform hypergraph H(V, E')) with max degree d and g colours

* each hyperedge contains k vertices

* each vertex belongs to < d hyperedges

Hypergraph colouring: X € [g]V assign v € V a colour X,,

* no hyperedge is monochromatic

Lovasz Local lemma and algorithmic LLL

e find a hypergraph colouring when g = d'/* (g > C,d*/*=1)

Sampling Lovasz Local lemma

e Sample a uniform hypergraph colouring in the local lemma regime

Running time
Work Regime or Technique
lower bound

Linear hypergraph!! Markov chain Monte Carlo

]
FAL7 q = max{logn,d'/*} O(nlogn) (MCMC)

|1] Linear hypergraph: for all distinct hyperedge e;,e, € E,|le; Ney| < 1

Running time
Work Regime or Technique
lower bound

Linear hypergraph!! Markov chain Monte Carlo
O(nl
FAL7 q = max{logn,d/*} (nlogn) (MCMC)
GLLZ17 I pPoly(dklogg) linear programming

|1] Linear hypergraph: for all distinct hyperedge e;,e, € E,|le; Ney| < 1

Running time

Work Regime or Technique
lower bound
Linear hypergraph!! Markov chain Monte Carlo

FAL7 q = max{logn,d'/*} O(nlogn) (MCMC)
GLLZ17 I pPoly(dklogg) linear programming
GGW22 q < d?/x No poly-time algorithm unless NP=RP

Li h h : :

GGW22 mea; <ygf;,§rap No poly-time algorithm unless NP=RP

|1] Linear hypergraph: for all distinct hyperedge e;,e, € E,|le; Ney| < 1

Open Problem

fast sampling algorithm when g = d?/¥ (general) and q = d'/* (linear)

Results obtained by MCMC with compression

MCMC with compression [F, He and Yin, 2021]
* O(poly(dk) - n*°%1) running time if g = d°/%

Improved analysis on general hypergraph [Jain, Pham and Vuong, 2021]
* O(poly(dk) - n*°%1) running time if ¢ = d3/*

Improved analysis on linear hypergraph [F, Guo and Wang, 2022]
« O(poly(dk) - n¥°°1) running time if ¢ = d?*9)/¥ for any constant § > 0

Perfect sampling via CFTP [He, Sun and Wu, 2021]
 O(poly(dk) - n) expected running time if g = d3/%

Mark/unmarked paradigm

; ;]_ at least fk unmarked
variables
marked variables g
in one hyperedge < ! / } at least ak marked
variables

By Lovasz Local lemma, Local lemma regime:
such marked set exists if * CNF: k = Q(logd) Q
k = Q(logd) * Hypergraph colouring: g = A®%(/K) x

set of marked variables

State compression for hypergraph colouring

the set of g colours Balanced projection scheme

h:q] = [s]
foranyj € [s],
R = 41

Bucket #1 Bucket #2 Bucket # s
the set of s buckets

s=gq'forconstant0 <y <1

Projection of colouring
for any hypergraph colouring X € [q]",

Y=h(X)stY,=h(X,) forallveV

Compression: different colouring X € [¢q]V may be mapped to the same Y € [s]”

Distribution m = m}, over the compressed space [s]”
h(X) ~mif X ~ p,

u is the uniform distribution over all hypergraph colourings

Sampling algorithm for hypergraph colourings

1. Choose a proper s = gY to define the balanced projection scheme h;

2. Run Glauber dynamics on rry, for O(nlogn) steps to sample Y ~ my;

(implemented using rejection sampling)
3. Run rejection sampling to draw X € h~1(Y) uniformly at random;

4. Return X.

Deterministic approximate counting

(

.

almost uniform
sampling

\

J

standard reduction

[Bezakova, Stefankovié, Vazirani, Vigoda, 2008]
[Jerrum, Valiant, Vazirani 1986]

r] ™
randomised
approximate

_ counting)

Randomised counting: with probability at least 2 /3, output Z satisfying

(1-e)Z<Z2<(1+¢€2Z

Z total number of solutions (say total number of hypergraph colourings)

Deterministic counting: output Z satisfying

(1-e)Z<Z2<(1+¢e)Z

?

Deterministic approximate counting for hypergraph colourings

Work Regime Running time Technique
GLLZ17 q = d1/k npoly(dklog q) linear programming
JPV21 e nPoly(dklog q) linear programming
HWY22 q = d>/* npoly(dklog q) derandomisation

[MCMC & Compression: sampling full colouring X € [g]” in O(nlogn) transition steps]

l Coupling towards the past [F,, Guo, Wang, Wang and Yin, 2022]

[Sample from marginal distribution ug for a small subset S € V in O(logn) step]

l derandomisation

[nPoly(@kloga)_time deterministic approximate counting if g = d3/%]

Open problems

CNF formula
. Poly-Time Algorithm
] k = 5logd
my guess
Hypergraph colouring
9 Poly-Time Algorithm
: g < A3k
my guess

Thank you! Q&A

