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Conjunctive	normal	form	(CNF)
• Instance:	a	formula	Φ = (𝑉, 𝐶),	for	example

Φ = 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%
𝑉 = {𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%}: set	of	Boolean	variables; 𝐶:	set	of	clauses.

• SAT	solutions:	an	assignment	of	variables	in	𝑉 s.t.	𝚽 = true.

• Computational	tasks:
• Decision:	Does	SAT	solution	exist?		

NP-Complete problem	[Cook	1971,	Levin	1973]

• Counting:	How	many	SAT	solutions?	
#P-Complete problem	[Valiant	1979].

clause



(𝒌, 𝒅)-CNF	formula	𝚽 = (𝑽, 𝑪)

Φ = 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%

variable degree 𝑑 clause size 𝑘

Lovász	local	lemma (LLL) [Erdős and Lovász, 1975]
SAT solution exists if 𝑘 ≳ log 𝑑 (𝑘 ≥ log 𝑑 + log 𝑘 + 𝐶)

Algorithmic Lovász	local	lemma (ALLL) [Moser and Tardos, 2009]
Find a SAT solution when 𝑘 ≳ log 𝑑

Sampling Lovász	local	lemma (SLLL)
Sample a SAT solution uniformly at random if 𝑘 = Ω(log 𝑑)

Counting Lovász	local	lemma (CLLL)
Approximately count number of SAT solutions if 𝑘 = Ω(log 𝑑)



Sampling & counting 𝑘-SAT solutions
• Input: a	 𝑘, 𝑑 -CNF	formulaΦ = (𝑉, 𝐶)with 𝑉 = 𝑛,	an	error	bound	𝜖 > 0.

• Almost uniform sampling: random solution 𝑿 ∈ true, false & s.t.
the	total	variation	distance	𝑑'& 𝑿, 𝜇 ≤ 𝜖,

𝜇:	the	uniform	distribution	of	all	SAT	solutions

• Approximate counting: estimate the number of SAT solutions, output
1 − 𝜖 𝑍 ≤ *𝒁 ≤ 1 + 𝜖 𝑍,

𝑍 = the number of SAT solutions

almost uniform
sampling

approximate	
counting

self-reduction
[Jerrum,	Valiant,	Vazirani	1986]



[1]Monotone CNF: all	variables	appear positively𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .

Work Regime
Running		time

or
lower bound

Technique

HSZ19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)
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GJL17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2 [2]
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[2] s: two dependent clauses share at least 𝑠 variables.
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Work Regime
Running		time

or
lower bound

Technique

HSZ19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)

GJL17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2 [2]

𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 partial	rejection	sampling

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛'()*(,-) linear	programming

BGGGŠ15 𝑘 ≤ 2 log 𝑑 − 𝐶 No poly-time algorithm unless NP=RP

[1]Monotone CNF: all	variables	appear positively𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .
[2] s: two dependent clauses share at least 𝑠 variables.

Open Problem

fast sampling algorithm when 𝑘 ≳ 2 log 𝑑



Our Results [F., Guo, Yin and Zhang, 2020 & F., He and Yin, 2021 ]

For any (𝑘, 𝑑)-CNF formula satisfying 𝑘 ≳ 13 log 𝑑 ,

• sampling algorithm	(main	algorithm)
draw almost uniform random SAT solution in time 4𝑂 𝑑"𝑘#𝑛!.<<! ;

• counting algorithm	(by	reduction)
count SAT solutions approximately in time 4𝑂 𝑑#𝑘#𝑛".<<! .

Further Improvements on our algorithm
• Better analysis [Jain, Pham and Vuong, 2021]: improve to 𝑘 ≳ 5.741 log 𝑑.
• Better accuracy [He, Sun and Wu, 2021]: perfect sampling via CTFP

State-of-the-art [He, Wang and Yin, 2022]
• 𝑘 ≳ 5 log 𝑑 (non-MCMC sampling algorithm)



Glauber dynamics (Gibbs sampling)

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥$ ∨ 𝑥&) ∧ (𝑥% ∨ ¬𝑥& ∨ 𝑥')

true

false

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 & ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌C ∼ (⋅∣ 𝑌&\C);
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F!



Glauber dynamics: random walk over solution space via	local	update.

rapid mixing slow mixing not mixing

We are here！



Connectivity	barrier (toy example)
• (𝑘, 𝑑)-CNF formulaΦ = (𝑉, 𝐶)with	𝑉 = 𝑥!, 𝑥", … 𝑥E :

Φ = 𝐶! ∧ 𝐶" ∧ ⋯∧ 𝐶E.
𝐶! = (¬𝑥! ∨ 𝑥" ∨ 𝑥# ∨ ⋯∨ 𝑥E) forbids	100…0

𝐶" = (𝑥! ∨ ¬𝑥" ∨ 𝑥# ∨ ⋯∨ 𝑥E) forbids	010…0

𝐶E = (𝑥! ∨ 𝑥" ∨ 𝑥# ∨ ⋯∨ ¬𝑥E) forbids	000…1

• Any	assignment	𝑋 ∈ 0,1 & with	 𝑋 ! = 1 is	infeasible.

• All	false	solution	𝟎 is	disconnectedwith	others.

00…0

00…1

01…0

10…0

Other	Solutions



Can we obtain fast sampling algorithm
when the solution space is disconnected?

Question for SLLL

Glauber dynamics: random walk over solution space via	local	update.

rapid mixing slow mixing not mixing

We are here！



Our technique:	projection

Projecting from a	high dimension to a	lower dimension to improve connectivity

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png



Construct	a	good	subset of	variables	𝑆 ⊆ 𝑉

Run	Glauber	dynamics	on	projected	distribution 𝜇! to	draw	sample	𝑋 ∼ 𝜇!

Draw	sample		𝑌 ∼ 𝜇"\$(⋅ |𝑋) from	the	conditional	distribution

Start from a uniform	random 𝑋 ∈ true,false /;
For each 𝑡 from 1 to 𝑇

• Pick a variable 𝑣 ∈ 𝑆 uniformly at random;
• Resample 𝑋0 ∼ 𝜇0(⋅ |𝑋/\0);

Return 𝑋; T/F?

There	exists	an	efficiently	constructible	subset 𝑆 ⊆ 𝑉 such	that:
• the	Glauber	dynamics	on	𝜇! is	rapidly	mixing,
• the	Glauber	dynamics	on	𝜇! can	be	implemented	efficiently (draw	𝑋% ∼ 𝜇%(⋅ |𝑋!\%)),
• sampling	assignment	for	𝑉\𝑆 can	be	implemented	efficiently	(draw	𝑌 ∼ 𝜇"\!(⋅ |𝑋)).

computing	exact	distr.	
can	be	#P-hard

𝒗



Construct	a	good	subset of	variables	𝑆 ⊆ 𝑉

Run	Glauber	dynamics	on	projected	distribution 𝜇! to	draw	sample	𝑋 ∼ 𝜇!

Draw	sample		𝑌 ∼ 𝜇"\!(⋅ |𝑋) from	the	conditional	distribution

Our	Tasks:
• Construct	such	a	good	subset 𝑆 ⊆ 𝑉.	
• Show	that	the	Glauber	dynamics	on	𝜇! is	rapidly	mixing.
• Given	assignment	on 𝑆,	draw	samples	efficiently from the	conditional	distribution.

Start from a uniform	random 𝑋 ∈ true,false /;
For each 𝑡 from 1 to 𝑇

• Pick a variable 𝑣 ∈ 𝑆 uniformly at random;
• Resample 𝑋0 ∼ 𝜇0(⋅ |𝑋/\0);

Return 𝑋; T/F?

𝒗



Mark	a	set	of	variables	𝑆 ⊆ 𝑉 such	that
• each	clause	contains	at	least	𝛼𝑘 = Θ(𝑘)marked	variables;
• each	clause	contains	at	least	𝛽𝑘 = Θ(𝑘) unmarked	variables;
where		0 < 𝛼, 𝛽 < 1 are	two	constant	parameters	with	𝛼 + 𝛽 < 1

Mark	variables	[Moitra’	17]

at	least	𝛼𝑘marked	
variables	

at	least	𝛽𝑘
unmarked	variables	

marked	
variables	
in	one	
clause

Marked	set	𝑆 ⊆ 𝑉
is	constructed	by
algorithmic	LLL
(Moser-Tardos)



The	rapid	mixing	of	Glauber	dynamics on 𝜇!

Key	Property:	local	uniformity
For	any	𝑣 ∈ 𝑆,	any	𝑋F\C ∈ 𝑇, 𝐹 F\C,

∀𝑐 ∈ 𝑇, 𝐹 , 𝜇C 𝑐 𝑋F\C =
1
2
1 +

1
poly 𝑑𝑘

Pr[T]≈ 0.5 and	Pr[F]≈ 0.5

Each	clause	has	at	least	𝛽𝑘 unmarked	variables

by	LLL

• The	Glauber	dynamics	is	connected (𝜇F 𝑋F > 0 for	all	𝑋F ∈ 𝑇, 𝐹 F)
• The	Glauber	dynamics	mixes in	𝑂(𝑛 log 𝑛) steps
• path	coupling	analysis	[F.,	Guo,	Yin	and	Zhang,	2020]	[F.,	He	and	Yin,	2021]
• information	percolation	analysis		[Jain,	Pham	and	Vuong,	2021]



Transition	of	Glauber	dynamics
resample	𝑋% ∼ 𝜇%(⋅ |𝑋!\%)

Sample unmarked variable	
sample	𝑌 ∼ 𝜇"\!(⋅ |𝑋)

Implementation of the algorithm

T/F?

Challenge:	computing the	exact conditional distributions can be #P-hard.
Solution:				draw	approximate samples	via	rejection	sampling

𝒗
T/F?

T/F?
T/F?

T/F?

T/F?

T/F?

T/F?
T/F?

T/F?T/F?

T/F?

T/F?T/F?



remove	satisfied	clauses
𝑥! ∨ 𝑥" ∨ ¬𝑥# ∨ ¬𝑥$
𝑥! = T or 𝑥$ = F

resample	𝑋0 from	𝜇0(⋅ |𝑋/\0)

𝒗

𝐶:	connected	component	containing	𝑣

𝒗

each	clause	has	
at	least	𝛼𝑘marked	variables	

local	uniformity
each	marked	variables	takes

an	almost	uniform	random	value

remove	
each	clause	
with	prob.

≈ 1 −
1
2

GE

with	high	probability
component	size	is	

𝑂(log 𝑛)

rejection	sampling
on	component	



1. Run	Moser-Tardos algorithm	to	construct	marked	set	𝑆 ⊆ 𝑉;

2. Run	Glauber	dynamics	on	𝜇F for	𝑂 𝑛 log HI steps	to	sample	𝑋 ∼ 𝜇F;
(implemented	using rejection sampling)

3. Run rejection sampling to draw	𝑌 ∼ 𝜇&\F(⋅∣ 𝑋);

4. Return	𝑋 ∪ 𝑌.

Input： a 𝑘-CNF formulaΦ = (𝑉, 𝐸)with maximum degree 𝑑, an error bound 𝜖 > 0.
Output: a random sample σ∈ true, false ! s.t. 𝑑"! 𝜎, 𝜇 ≤ 𝜖.



set of marked variables 𝑆 ⊆ 𝑉



an assignment 𝑋 ∈ 𝑇, 𝐹 !

a set of assignment 𝑌 ∈ 𝑇, 𝐹 " with 𝑌! = 𝑋

compress



CNF solution space: disconnected compressed space: connected

Compress

Rapid mixing of Glauber dynamics



Inverse

Fast implementation of algorithm

random CNF solutioncompressed state



Hypergraph colouring
Instance:	a 𝑘-uniform hypergraph 𝐻(𝑉, 𝐸)with max degree 𝑑 and 𝑞 colours
• each hyperedge contains 𝑘 vertices

• each vertex belongs to≤ 𝑑 hyperedges

Hypergraph colouring: 𝑋 ∈ 𝑞 & assign 𝑣 ∈ 𝑉 a colour 𝑋C
• no hyperedge is monochromatic

Lovász Local lemma and algorithmic LLL
• find a hypergraph colouring when 𝑞 ≳ 𝑑!/E (𝑞 ≥ 𝐶E𝑑!/(EJ!))

Sampling Lovász Local lemma
• Sample a uniform hypergraph colouring in the local lemma regime



Work Regime
Running		time

or
lower bound

Technique

FA17 Linear hypergraph[1]
𝑞 ≳ max{log 𝑛 , 𝑑&/(} 𝑂(𝑛 log 𝑛) Markov	chain	Monte	Carlo

(MCMC)

[1] Linear hypergraph: for all distinct hyperedge 𝑒!, 𝑒" ∈ 𝐸, |𝑒! ∩ 𝑒"| ≤ 1
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Running		time

or
lower bound

Technique

FA17 Linear hypergraph[1]
𝑞 ≳ max{log 𝑛 , 𝑑&/(} 𝑂(𝑛 log 𝑛) Markov	chain	Monte	Carlo

(MCMC)

GLLZ17 𝑞 ≳ 𝑑&)/( 𝑛*+,-(/(,+01) linear	programming

[1] Linear hypergraph: for all distinct hyperedge 𝑒!, 𝑒" ∈ 𝐸, |𝑒! ∩ 𝑒"| ≤ 1



Work Regime
Running		time

or
lower bound

Technique

FA17 Linear hypergraph[1]
𝑞 ≳ max{log 𝑛 , 𝑑&/(} 𝑂(𝑛 log 𝑛) Markov	chain	Monte	Carlo

(MCMC)

GLLZ17 𝑞 ≳ 𝑑&)/( 𝑛*+,-(/(,+01) linear	programming

GGW22 𝑞 ≲ 𝑑3/( No poly-time algorithm unless NP=RP

GGW22 Linear hypergraph
𝑞 ≲ 𝑑&/( No poly-time algorithm unless NP=RP

Open Problem

fast sampling algorithm when 𝑞 ≳ 𝑑"/E (general) and 𝑞 ≳ 𝑑!/E (linear)

[1] Linear hypergraph: for all distinct hyperedge 𝑒!, 𝑒" ∈ 𝐸, |𝑒! ∩ 𝑒"| ≤ 1



Results obtained by MCMC with compression

MCMC with compression [F., He and Yin, 2021]
• 4𝑂 poly 𝑑𝑘 ⋅ 𝑛!.<<! running time if 𝑞 ≳ 𝑑K/E

Improved analysis on general hypergraph [Jain, Pham and Vuong, 2021]
• 4𝑂 poly 𝑑𝑘 ⋅ 𝑛!.<<! running time if 𝑞 ≳ 𝑑#/E

Improved analysis on linear hypergraph [F., Guo and Wang, 2022]

• 4𝑂 poly 𝑑𝑘 ⋅ 𝑛!.<<! running time if 𝑞 ≳ 𝑑("LM)/E for any constant 𝛿 > 0

Perfect sampling via CFTP [He, Sun and Wu, 2021]
• 4𝑂(poly 𝑑𝑘 ⋅ 𝑛) expected running time if 𝑞 ≳ 𝑑#/E



Mark/unmarked paradigm

at	least	𝛼𝑘marked	
variables	

at	least	𝛽𝑘 unmarked	
variables	

marked	variables	
in	one	hyperedge

By Lovász Local lemma,

such marked set exists if

𝑘 = Ω(log 𝑑)

Local lemma regime:

• CNF: 𝑘 = Ω(log 𝑑)

• Hypergraph colouring: 𝑞 = ΔN(!/E)

set of marked variables



State compression for hypergraph colouring

the set of 𝑞 colours

Bucket #1 Bucket #2 Bucket #	𝑠

the set of 𝑠 buckets

Balanced projection scheme
ℎ: 𝑞 → [𝑠]

for any 𝑗 ∈ [𝑠],

|ℎJ! 𝑗 | =
𝑞
𝑠
± 1

𝑠 = 𝑞O for constant 0 < 𝛾 < 1

Projection of colouring
for any hypergraph colouring 𝑋 ∈ 𝑞 &,

𝑌 = ℎ(𝑋) s.t. 𝑌C = ℎ(𝑋C) for all 𝑣 ∈ 𝑉
Compression: different colouring 𝑋 ∈ 𝑞 & may be mapped to the same 𝑌 ∈ 𝑠 &



Distribution 𝜋 = 𝜋P over the compressed space 𝑠 &

ℎ 𝑋 ∼ 𝜋 if 𝑋 ∼ 𝜇,

𝜇 is the uniform distribution over all hypergraph colourings

Sampling algorithm for hypergraph colourings

1. Choose a proper 𝑠 = 𝑞O to define the balanced projection scheme ℎ;

2. Run	Glauber	dynamics	on	𝜋P for	𝑂 𝑛 log 𝑛 steps	to	sample	𝑌 ∼ 𝜋P;
(implemented	using rejection sampling)

3. Run rejection sampling to draw	𝑋 ∈ ℎJ!(𝑌) uniformly at random;

4. Return	𝑋.



Deterministic approximate counting

almost uniform
sampling

randomised
approximate	
counting

standard reduction
[Bezáková, Štefankovič, Vazirani, Vigoda, 2008]

[Jerrum,	Valiant,	Vazirani	1986]

Randomised counting: with probability at least 𝟐/𝟑, output �𝑍 satisfying

1 − 𝜖 𝑍 ≤ �𝑍 ≤ 1 + 𝜖 𝑍,
𝑍 total number of solutions (say total number of hypergraph colourings)

Deterministic counting: output �𝑍 satisfying

1 − 𝜖 𝑍 ≤ �𝑍 ≤ 1 + 𝜖 𝑍



Deterministic approximate counting for hypergraph colourings

Work Regime Running		time Technique

GLLZ17 𝑞 ≳ 𝑑&4/( 𝑛*+,-(/(,+0 1) linear	programming

JPV21 𝑞 ≳ 𝑑5/( 𝑛*+,-(/(,+0 1) linear	programming

HWY22 𝑞 ≳ 𝑑6/( 𝑛*+,-(/(,+0 1) derandomisation

MCMC & Compression: sampling full colouring 𝑋 ∈ 𝑞 & in 𝑂(𝑛 log 𝑛) transition steps

Coupling towards the past [F., Guo, Wang, Wang and Yin, 2022]

Sample frommarginal distribution 𝜇F for a small subset 𝑆 ⊆ 𝑉 in 𝑂(log 𝑛) step

derandomisation

𝑛QRST(UE SRV W)-time deterministic approximate counting if 𝑞 ≳ 𝑑#/E



Open problems

NP-Hard
𝑘 ≲ 2 log 𝑑

Poly-Time	Algorithm
𝑘 ≳ 5 log 𝑑?

CNF	formula

my	guess

Hypergraph	colouring

NP-Hard
𝑞 ≲ Δ"/E

Poly-Time	Algorithm
𝑞 ≲ Δ#/E?

my	guess

Thank	you!	Q&A


