
A	Markov chain	approach	to the	sampling	Lovász	local	lemma

Weiming Feng
University of Edinburgh

Base on joint	works	with:

Heng	Guo
Edin

Ku He
ICT

Chunyang Wang
NJU

Jiaheng Wang
Edin

Yitong Yin
NJU	

Chihao Zhang	
SJTU

BARC	Talk,	University	of	Copenhagen, Denmark
9th May 2023

Conjunctive	normal	form	(CNF)
• Instance:	a	formula	Φ = (𝑉, 𝐶),	for	example

Φ = 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%
𝑉 = {𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%}: set	of	Boolean	variables; 𝐶:	set	of	clauses.

• SAT	solutions:	an	assignment	of	variables	in	𝑉 s.t.	𝚽 = true.

• Computational	tasks:
• Decision:	Does	SAT	solution	exist?		

NP-Complete problem	[Cook	1971,	Levin	1973]

• Counting:	How	many	SAT	solutions?	
#P-Complete problem	[Valiant	1979].

clause

(𝒌, 𝒅)-CNF	formula	𝚽 = (𝑽, 𝑪)

Φ = 𝑥! ∨ ¬𝑥" ∨ 𝑥# ∧ 𝑥! ∨ 𝑥" ∨ 𝑥$ ∧ 𝑥# ∨ ¬𝑥$ ∨ ¬𝑥%

variable degree 𝑑 clause size 𝑘

Lovász	local	lemma (LLL) [Erdős and Lovász, 1975]
SAT solution exists if 𝑘 ≳ log 𝑑 (𝑘 ≥ log 𝑑 + log 𝑘 + 𝐶)

Algorithmic Lovász	local	lemma (ALLL) [Moser and Tardos, 2009]
Find a SAT solution when 𝑘 ≳ log 𝑑

Sampling Lovász	local	lemma (SLLL)
Sample a SAT solution uniformly at random if 𝑘 = Ω(log 𝑑)

Counting Lovász	local	lemma (CLLL)
Approximately count number of SAT solutions if 𝑘 = Ω(log 𝑑)

Sampling & counting 𝑘-SAT solutions
• Input: a	 𝑘, 𝑑 -CNF	formulaΦ = (𝑉, 𝐶)with 𝑉 = 𝑛,	an	error	bound	𝜖 > 0.

• Almost uniform sampling: random solution 𝑿 ∈ true, false & s.t.
the	total	variation	distance	𝑑'& 𝑿, 𝜇 ≤ 𝜖,

𝜇:	the	uniform	distribution	of	all	SAT	solutions

• Approximate counting: estimate the number of SAT solutions, output
1 − 𝜖 𝑍 ≤ *𝒁 ≤ 1 + 𝜖 𝑍,

𝑍 = the number of SAT solutions

almost uniform
sampling

approximate	
counting

self-reduction
[Jerrum,	Valiant,	Vazirani	1986]

[1]Monotone CNF: all	variables	appear positively𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .

Work Regime
Running		time

or
lower bound

Technique

HSZ19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)

Work Regime
Running		time

or
lower bound

Technique

HSZ19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)

GJL17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2 [2]

𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 partial	rejection	sampling

[1]Monotone CNF: all	variables	appear positively𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .
[2] s: two dependent clauses share at least 𝑠 variables.

Work Regime
Running		time

or
lower bound

Technique

HSZ19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)

GJL17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2 [2]

𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 partial	rejection	sampling

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛'()*(,-) linear	programming

[1]Monotone CNF: all	variables	appear positively𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .
[2] s: two dependent clauses share at least 𝑠 variables.

Work Regime
Running		time

or
lower bound

Technique

HSZ19 Monotone	CNF[1]
𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 log 𝑛 Markov	chain	Monte	Carlo

(MCMC)

GJL17 𝑠 ≥ min log 𝑑𝑘 , 𝑘/2 [2]

𝑘 ≳ 2 log 𝑑 poly 𝑑𝑘 𝑛 partial	rejection	sampling

Moitra’17 𝑘 ≳ 60 log 𝑑 𝑛'()*(,-) linear	programming

BGGGŠ15 𝑘 ≤ 2 log 𝑑 − 𝐶 No poly-time algorithm unless NP=RP

[1]Monotone CNF: all	variables	appear positively𝛷 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥& .
[2] s: two dependent clauses share at least 𝑠 variables.

Open Problem

fast sampling algorithm when 𝑘 ≳ 2 log 𝑑

Our Results [F., Guo, Yin and Zhang, 2020 & F., He and Yin, 2021]

For any (𝑘, 𝑑)-CNF formula satisfying 𝑘 ≳ 13 log 𝑑 ,

• sampling algorithm	(main	algorithm)
draw almost uniform random SAT solution in time 4𝑂 𝑑"𝑘#𝑛!.<<! ;

• counting algorithm	(by	reduction)
count SAT solutions approximately in time 4𝑂 𝑑#𝑘#𝑛".<<! .

Further Improvements on our algorithm
• Better analysis [Jain, Pham and Vuong, 2021]: improve to 𝑘 ≳ 5.741 log 𝑑.
• Better accuracy [He, Sun and Wu, 2021]: perfect sampling via CTFP

State-of-the-art [He, Wang and Yin, 2022]
• 𝑘 ≳ 5 log 𝑑 (non-MCMC sampling algorithm)

Glauber dynamics (Gibbs sampling)

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥$ ∨ 𝑥&) ∧ (𝑥% ∨ ¬𝑥& ∨ 𝑥')

true

false

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 & ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌C ∼ (⋅∣ 𝑌&\C);

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥$ ∨ 𝑥&) ∧ (𝑥% ∨ ¬𝑥& ∨ 𝑥')

true

false

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 & ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌C ∼ (⋅∣ 𝑌&\C);

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥$ ∨ 𝑥&) ∧ (𝑥% ∨ ¬𝑥& ∨ 𝑥')

true

false

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 & ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌C ∼ 𝜇C(⋅∣ 𝑌&\C);

T/F?

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

(𝑥!∨ ¬𝑥" ∨ 𝑥#) ∧ (𝑥" ∨ 𝑥$ ∨ 𝑥&) ∧ (𝑥% ∨ ¬𝑥& ∨ 𝑥')

true

false

Glauber dynamics (Gibbs sampling)

Start from an arbitrary solution 𝑌 ∈ 𝑇, 𝐹 & ;

For each 𝑡 from 1 to 𝑇 do

• Pick 𝑣 ∈ 𝑉 uniformly at random;

• Resample	𝑌C ∼ 𝜇C(⋅∣ 𝑌&\C);

F!

Glauber dynamics: random walk over solution space via	local	update.

rapid mixing slow mixing not mixing

We are here！

Connectivity	barrier (toy example)
• (𝑘, 𝑑)-CNF formulaΦ = (𝑉, 𝐶)with	𝑉 = 𝑥!, 𝑥", … 𝑥E :

Φ = 𝐶! ∧ 𝐶" ∧ ⋯∧ 𝐶E.
𝐶! = (¬𝑥! ∨ 𝑥" ∨ 𝑥# ∨ ⋯∨ 𝑥E) forbids	100…0

𝐶" = (𝑥! ∨ ¬𝑥" ∨ 𝑥# ∨ ⋯∨ 𝑥E) forbids	010…0

𝐶E = (𝑥! ∨ 𝑥" ∨ 𝑥# ∨ ⋯∨ ¬𝑥E) forbids	000…1

• Any	assignment	𝑋 ∈ 0,1 & with	 𝑋 ! = 1 is	infeasible.

• All	false	solution	𝟎 is	disconnectedwith	others.

00…0

00…1

01…0

10…0

Other	Solutions

Can we obtain fast sampling algorithm
when the solution space is disconnected?

Question for SLLL

Glauber dynamics: random walk over solution space via	local	update.

rapid mixing slow mixing not mixing

We are here！

Our technique:	projection

Projecting from a	high dimension to a	lower dimension to improve connectivity

Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png

Construct	a	good	subset of	variables	𝑆 ⊆ 𝑉

Run	Glauber	dynamics	on	projected	distribution 𝜇! to	draw	sample	𝑋 ∼ 𝜇!

Draw	sample		𝑌 ∼ 𝜇"\$(⋅ |𝑋) from	the	conditional	distribution

Start from a uniform	random 𝑋 ∈ true,false /;
For each 𝑡 from 1 to 𝑇

• Pick a variable 𝑣 ∈ 𝑆 uniformly at random;
• Resample 𝑋0 ∼ 𝜇0(⋅ |𝑋/\0);

Return 𝑋; T/F?

There	exists	an	efficiently	constructible	subset 𝑆 ⊆ 𝑉 such	that:
• the	Glauber	dynamics	on	𝜇! is	rapidly	mixing,
• the	Glauber	dynamics	on	𝜇! can	be	implemented	efficiently (draw	𝑋% ∼ 𝜇%(⋅ |𝑋!\%)),
• sampling	assignment	for	𝑉\𝑆 can	be	implemented	efficiently	(draw	𝑌 ∼ 𝜇"\!(⋅ |𝑋)).

computing	exact	distr.	
can	be	#P-hard

𝒗

Construct	a	good	subset of	variables	𝑆 ⊆ 𝑉

Run	Glauber	dynamics	on	projected	distribution 𝜇! to	draw	sample	𝑋 ∼ 𝜇!

Draw	sample		𝑌 ∼ 𝜇"\!(⋅ |𝑋) from	the	conditional	distribution

Our	Tasks:
• Construct	such	a	good	subset 𝑆 ⊆ 𝑉.	
• Show	that	the	Glauber	dynamics	on	𝜇! is	rapidly	mixing.
• Given	assignment	on 𝑆,	draw	samples	efficiently from the	conditional	distribution.

Start from a uniform	random 𝑋 ∈ true,false /;
For each 𝑡 from 1 to 𝑇

• Pick a variable 𝑣 ∈ 𝑆 uniformly at random;
• Resample 𝑋0 ∼ 𝜇0(⋅ |𝑋/\0);

Return 𝑋; T/F?

𝒗

Mark	a	set	of	variables	𝑆 ⊆ 𝑉 such	that
• each	clause	contains	at	least	𝛼𝑘 = Θ(𝑘)marked	variables;
• each	clause	contains	at	least	𝛽𝑘 = Θ(𝑘) unmarked	variables;
where		0 < 𝛼, 𝛽 < 1 are	two	constant	parameters	with	𝛼 + 𝛽 < 1

Mark	variables	[Moitra’	17]

at	least	𝛼𝑘marked	
variables	

at	least	𝛽𝑘
unmarked	variables	

marked	
variables	
in	one	
clause

Marked	set	𝑆 ⊆ 𝑉
is	constructed	by
algorithmic	LLL
(Moser-Tardos)

The	rapid	mixing	of	Glauber	dynamics on 𝜇!

Key	Property:	local	uniformity
For	any	𝑣 ∈ 𝑆,	any	𝑋F\C ∈ 𝑇, 𝐹 F\C,

∀𝑐 ∈ 𝑇, 𝐹 , 𝜇C 𝑐 𝑋F\C =
1
2
1 +

1
poly 𝑑𝑘

Pr[T]≈ 0.5 and	Pr[F]≈ 0.5

Each	clause	has	at	least	𝛽𝑘 unmarked	variables

by	LLL

• The	Glauber	dynamics	is	connected (𝜇F 𝑋F > 0 for	all	𝑋F ∈ 𝑇, 𝐹 F)
• The	Glauber	dynamics	mixes in	𝑂(𝑛 log 𝑛) steps
• path	coupling	analysis	[F.,	Guo,	Yin	and	Zhang,	2020]	[F.,	He	and	Yin,	2021]
• information	percolation	analysis		[Jain,	Pham	and	Vuong,	2021]

Transition	of	Glauber	dynamics
resample	𝑋% ∼ 𝜇%(⋅ |𝑋!\%)

Sample unmarked variable	
sample	𝑌 ∼ 𝜇"\!(⋅ |𝑋)

Implementation of the algorithm

T/F?

Challenge:	computing the	exact conditional distributions can be #P-hard.
Solution:				draw	approximate samples	via	rejection	sampling

𝒗
T/F?

T/F?
T/F?

T/F?

T/F?

T/F?

T/F?
T/F?

T/F?T/F?

T/F?

T/F?T/F?

remove	satisfied	clauses
𝑥! ∨ 𝑥" ∨ ¬𝑥# ∨ ¬𝑥$
𝑥! = T or 𝑥$ = F

resample	𝑋0 from	𝜇0(⋅ |𝑋/\0)

𝒗

𝐶:	connected	component	containing	𝑣

𝒗

each	clause	has	
at	least	𝛼𝑘marked	variables	

local	uniformity
each	marked	variables	takes

an	almost	uniform	random	value

remove	
each	clause	
with	prob.

≈ 1 −
1
2

GE

with	high	probability
component	size	is	

𝑂(log 𝑛)

rejection	sampling
on	component	

1. Run	Moser-Tardos algorithm	to	construct	marked	set	𝑆 ⊆ 𝑉;

2. Run	Glauber	dynamics	on	𝜇F for	𝑂 𝑛 log HI steps	to	sample	𝑋 ∼ 𝜇F;
(implemented	using rejection sampling)

3. Run rejection sampling to draw	𝑌 ∼ 𝜇&\F(⋅∣ 𝑋);

4. Return	𝑋 ∪ 𝑌.

Input： a 𝑘-CNF formulaΦ = (𝑉, 𝐸)with maximum degree 𝑑, an error bound 𝜖 > 0.
Output: a random sample σ∈ true, false ! s.t. 𝑑"! 𝜎, 𝜇 ≤ 𝜖.

set of marked variables 𝑆 ⊆ 𝑉

an assignment 𝑋 ∈ 𝑇, 𝐹 !

a set of assignment 𝑌 ∈ 𝑇, 𝐹 " with 𝑌! = 𝑋

compress

CNF solution space: disconnected compressed space: connected

Compress

Rapid mixing of Glauber dynamics

Inverse

Fast implementation of algorithm

random CNF solutioncompressed state

Hypergraph colouring
Instance:	a 𝑘-uniform hypergraph 𝐻(𝑉, 𝐸)with max degree 𝑑 and 𝑞 colours
• each hyperedge contains 𝑘 vertices

• each vertex belongs to≤ 𝑑 hyperedges

Hypergraph colouring: 𝑋 ∈ 𝑞 & assign 𝑣 ∈ 𝑉 a colour 𝑋C
• no hyperedge is monochromatic

Lovász Local lemma and algorithmic LLL
• find a hypergraph colouring when 𝑞 ≳ 𝑑!/E (𝑞 ≥ 𝐶E𝑑!/(EJ!))

Sampling Lovász Local lemma
• Sample a uniform hypergraph colouring in the local lemma regime

Work Regime
Running		time

or
lower bound

Technique

FA17 Linear hypergraph[1]
𝑞 ≳ max{log 𝑛 , 𝑑&/(} 𝑂(𝑛 log 𝑛) Markov	chain	Monte	Carlo

(MCMC)

[1] Linear hypergraph: for all distinct hyperedge 𝑒!, 𝑒" ∈ 𝐸, |𝑒! ∩ 𝑒"| ≤ 1

Work Regime
Running		time

or
lower bound

Technique

FA17 Linear hypergraph[1]
𝑞 ≳ max{log 𝑛 , 𝑑&/(} 𝑂(𝑛 log 𝑛) Markov	chain	Monte	Carlo

(MCMC)

GLLZ17 𝑞 ≳ 𝑑&)/(𝑛*+,-(/(,+01) linear	programming

[1] Linear hypergraph: for all distinct hyperedge 𝑒!, 𝑒" ∈ 𝐸, |𝑒! ∩ 𝑒"| ≤ 1

Work Regime
Running		time

or
lower bound

Technique

FA17 Linear hypergraph[1]
𝑞 ≳ max{log 𝑛 , 𝑑&/(} 𝑂(𝑛 log 𝑛) Markov	chain	Monte	Carlo

(MCMC)

GLLZ17 𝑞 ≳ 𝑑&)/(𝑛*+,-(/(,+01) linear	programming

GGW22 𝑞 ≲ 𝑑3/(No poly-time algorithm unless NP=RP

GGW22 Linear hypergraph
𝑞 ≲ 𝑑&/(No poly-time algorithm unless NP=RP

Open Problem

fast sampling algorithm when 𝑞 ≳ 𝑑"/E (general) and 𝑞 ≳ 𝑑!/E (linear)

[1] Linear hypergraph: for all distinct hyperedge 𝑒!, 𝑒" ∈ 𝐸, |𝑒! ∩ 𝑒"| ≤ 1

Results obtained by MCMC with compression

MCMC with compression [F., He and Yin, 2021]
• 4𝑂 poly 𝑑𝑘 ⋅ 𝑛!.<<! running time if 𝑞 ≳ 𝑑K/E

Improved analysis on general hypergraph [Jain, Pham and Vuong, 2021]
• 4𝑂 poly 𝑑𝑘 ⋅ 𝑛!.<<! running time if 𝑞 ≳ 𝑑#/E

Improved analysis on linear hypergraph [F., Guo and Wang, 2022]

• 4𝑂 poly 𝑑𝑘 ⋅ 𝑛!.<<! running time if 𝑞 ≳ 𝑑("LM)/E for any constant 𝛿 > 0

Perfect sampling via CFTP [He, Sun and Wu, 2021]
• 4𝑂(poly 𝑑𝑘 ⋅ 𝑛) expected running time if 𝑞 ≳ 𝑑#/E

Mark/unmarked paradigm

at	least	𝛼𝑘marked	
variables	

at	least	𝛽𝑘 unmarked	
variables	

marked	variables	
in	one	hyperedge

By Lovász Local lemma,

such marked set exists if

𝑘 = Ω(log 𝑑)

Local lemma regime:

• CNF: 𝑘 = Ω(log 𝑑)

• Hypergraph colouring: 𝑞 = ΔN(!/E)

set of marked variables

State compression for hypergraph colouring

the set of 𝑞 colours

Bucket #1 Bucket #2 Bucket #	𝑠

the set of 𝑠 buckets

Balanced projection scheme
ℎ: 𝑞 → [𝑠]

for any 𝑗 ∈ [𝑠],

|ℎJ! 𝑗 | =
𝑞
𝑠
± 1

𝑠 = 𝑞O for constant 0 < 𝛾 < 1

Projection of colouring
for any hypergraph colouring 𝑋 ∈ 𝑞 &,

𝑌 = ℎ(𝑋) s.t. 𝑌C = ℎ(𝑋C) for all 𝑣 ∈ 𝑉
Compression: different colouring 𝑋 ∈ 𝑞 & may be mapped to the same 𝑌 ∈ 𝑠 &

Distribution 𝜋 = 𝜋P over the compressed space 𝑠 &

ℎ 𝑋 ∼ 𝜋 if 𝑋 ∼ 𝜇,

𝜇 is the uniform distribution over all hypergraph colourings

Sampling algorithm for hypergraph colourings

1. Choose a proper 𝑠 = 𝑞O to define the balanced projection scheme ℎ;

2. Run	Glauber	dynamics	on	𝜋P for	𝑂 𝑛 log 𝑛 steps	to	sample	𝑌 ∼ 𝜋P;
(implemented	using rejection sampling)

3. Run rejection sampling to draw	𝑋 ∈ ℎJ!(𝑌) uniformly at random;

4. Return	𝑋.

Deterministic approximate counting

almost uniform
sampling

randomised
approximate	
counting

standard reduction
[Bezáková, Štefankovič, Vazirani, Vigoda, 2008]

[Jerrum,	Valiant,	Vazirani	1986]

Randomised counting: with probability at least 𝟐/𝟑, output �𝑍 satisfying

1 − 𝜖 𝑍 ≤ �𝑍 ≤ 1 + 𝜖 𝑍,
𝑍 total number of solutions (say total number of hypergraph colourings)

Deterministic counting: output �𝑍 satisfying

1 − 𝜖 𝑍 ≤ �𝑍 ≤ 1 + 𝜖 𝑍

Deterministic approximate counting for hypergraph colourings

Work Regime Running		time Technique

GLLZ17 𝑞 ≳ 𝑑&4/(𝑛*+,-(/(,+0 1) linear	programming

JPV21 𝑞 ≳ 𝑑5/(𝑛*+,-(/(,+0 1) linear	programming

HWY22 𝑞 ≳ 𝑑6/(𝑛*+,-(/(,+0 1) derandomisation

MCMC & Compression: sampling full colouring 𝑋 ∈ 𝑞 & in 𝑂(𝑛 log 𝑛) transition steps

Coupling towards the past [F., Guo, Wang, Wang and Yin, 2022]

Sample frommarginal distribution 𝜇F for a small subset 𝑆 ⊆ 𝑉 in 𝑂(log 𝑛) step

derandomisation

𝑛QRST(UE SRV W)-time deterministic approximate counting if 𝑞 ≳ 𝑑#/E

Open problems

NP-Hard
𝑘 ≲ 2 log 𝑑

Poly-Time	Algorithm
𝑘 ≳ 5 log 𝑑?

CNF	formula

my	guess

Hypergraph	colouring

NP-Hard
𝑞 ≲ Δ"/E

Poly-Time	Algorithm
𝑞 ≲ Δ#/E?

my	guess

Thank	you!	Q&A

