Rapid mixing from spectral independence beyond the Boolean domain

Weiming Feng Nanjing University

Joint work with: Heng Guo (University of Edinburgh)

Yitong Yin (Nanjing University)

Chihao Zhang (Shanghai Jiao Tong University)

SODA 2021, Online

Glauber dynamics

Sampling from joint distribution

Set of variables V

Finite domain $[q] = \{1, 2, ..., q\}$ for $q \ge 2$

Joint distribution μ over $\Omega = \text{supp}(\mu) \subseteq [q]^V$

Problem draw random samples from μ

Fundamental MCMC: Glauber dynamics

Start from an arbitrary feasible configuration $X \in \Omega$;

For each t from 1 to T do

- pick a variable $v \in V$ uniformly at random;
- resample $X_v \sim \mu_v(\cdot | X_{V \setminus \{v\}})$;

Return X;

Example: proper q-coloring

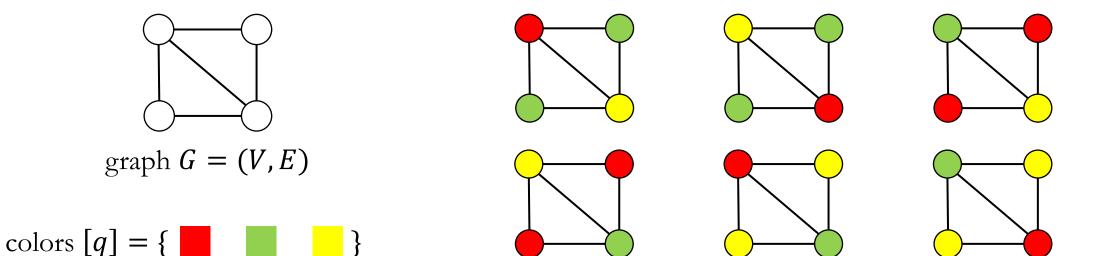
Uniform proper q-coloring

Undirected graph G = (V, E)

Finite set of colors $[q] = \{1, 2, ..., q\}$

Gibbs distribution μ uniform distribution over Ω

$$\Omega = \{X \in [q]^V \mid X \text{ is a proper coloring}\}$$



 Ω : set of all proper colors

Example: proper q-coloring

Uniform proper q-coloring

Undirected graph G = (V, E)

Finite set of colors $[q] = \{1, 2, ..., q\}$

Gibbs distribution μ uniform distribution over $\Omega = \{X \in [q]^V \mid X \text{ is a proper coloring}\}$

Problem sample proper coloring u.a.r.

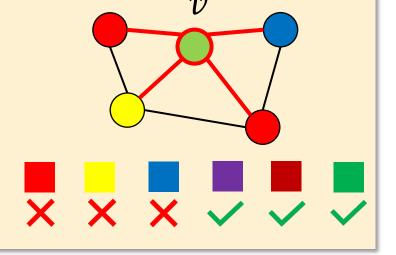
Glauber dynamics for proper q-coloring

Start from an arbitrary proper coloring $X \in \Omega$;

For each t from 1 to T do

- pick a vertex $v \in V$ uniformly at random;
- resample X_v from $[q] \setminus \{X_u \mid u \in \Gamma(v)\}$ uniformly at random;

Return X;



Convergence

Glauber dynamics: Markov chain over Ω

Transition Matrix $P \in \mathbb{R}^{\Omega \times \Omega}$

Glauber dynamics is reversible

detailed balance equation with respect to μ

$$\forall X, Y \in \Omega, \mu(X)P(X,Y) = \mu(Y)P(Y,X)$$

Stationary distribution $\mu P = \mu$

move among any states with positive probability

Proposition (convergence)

If Glauber dynamics is <u>connected</u>, it converges to <u>unique</u> stationary distribution μ .

If $q \ge \Delta + 2$, Glauber dynamics converges to uniform distribution over q-colorings.

Mixing time

How fast does the Glauber dynamics converge to stationary distribution μ ?

Glauber dynamics $X_0, X_1, X_2, ...$ where each $X_i \in \Omega \subseteq [q]^V$

Mixing time
$$T_{\text{mix}} = \max_{X_0 \in \Omega} \min \left\{ t \mid d_{TV}(X_t, \mu) \leq \frac{1}{4e} \right\},$$

$$d_{TV}(X_t, \mu) \text{: the total variation distance between } X_t \text{ and } \mu.$$

The Glauber dynamics is rapid mixing if

$$T_{\text{mix}} = \text{Poly}(n)$$
 $n = |V| = \#\{\text{variables}\}$

✓ Sample from an exponential space $|\Omega| = \exp(O(n))$ within polynomial steps $T_{mix} = \text{poly}(n)$.

Open problems

Under what **condition** of the distribution μ the Glauber dynamics for μ rapid mixing?

Under what **relation** between q and max degree Δ the Glauber dynamics for coloring rapid mixing?

Previous works

Glauber dynamics for graph coloring

General graphs [Jer95, Vig00, SS97, CDMPP19]

current best result
$$q \ge \left(\frac{11}{6} - \epsilon_0\right) \Delta$$
 [CDMPP19]

Special graphs [DF01, Hay03,HV03,GMP05, HV06, Mol04, Hay13,DFHV13]

High-dimensional expansion (HDX)

Strongly log-concave distribution [ALOV19, CGM19]

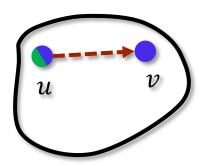
Spectral independence with Boolean domain $\{0, 1\}^V$ [ALO20]

Spectral
Independence

Mixing up to uniqueness for anti-ferro 2-spin systems [CLV20]

- A spectral independence condition for general distribution.
- Rapid mixing of Glauber dynamics from spectral independence.
 - combinatorial proof: coupling;
 - algebraic proof for Boolean variables [ALO20].
- Application: a new rapid mixing regime for **graph coloring**.
 - relate spectral independence with correlation decay;
 - a refined recursive coupling [GMP05] argument.

Result (I). A spectral independence condition beyond the Boolean domain.

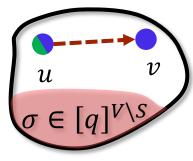


 μ : a distribution over $\Omega \subseteq [q]^V$

 $|V| \times |V|$ influence matrix $\Psi \in \mathbb{R}^{V \times V}$ with $\Psi(u, u) = 0$ and

maximum influence on v caused by a disagreement on u

$$\Psi(u,v) = \max_{i,j\in[q]} d_{TV}(\mu_v(\cdot|u\leftarrow i),\mu_v(\cdot|u\leftarrow j))$$



influence matrix

for conditional distribution

For any subset $S \subseteq V$, any feasible $\sigma \in [q]^{V \setminus S}$ μ_S^{σ} distribution on S conditional on σ

influence matrix $\Psi_s^{\sigma} \in \mathbb{R}^{S \times S}$ for conditional distribution

$$\Psi_S^{\sigma}(u,v) = \max_{i,j \in [q]} d_{TV} \left(\mu_v^{\sigma}(\cdot | u \leftarrow i), \mu_v^{\sigma}(\cdot | u \leftarrow j) \right)$$

Result (I). A spectral independence condition beyond the Boolean domain

Spectral independence [This work]

There is a constant C > 0 such that

for all conditional distributions μ_S^{σ} ,

spectral radius of influence matrices $\rho(\Psi_S^{\sigma}) \leq C$.

Spectral independence for Boolean variables [Anari, Liu, Oveis Gharan 20]

Distribution over **Boolean domain** {0,1}^V

signed influence matrix: $I_S^{\sigma}(u, v) = \mu_v^{\sigma}(1 \mid u \leftarrow 1) - \mu_v^{\sigma}(1 \mid u \leftarrow 0)$.

Relation: $\Psi_S^{\sigma}(u, v) = |I_S^{\sigma}(u, v)|$.

Spectral independence: for all influence matrices, max eigenvalue $\lambda_{\max}(I_S^{\sigma}) \leq C$.

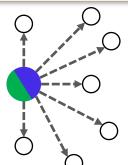
Result (II). Rapid mixing of Glauber dynamics from spectral independence

Theorem [This work]

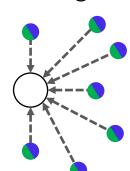
 μ is spectrally independent with constant C

$$T_{\text{mix}} = O\left(n^{1+2C}\log\left(\frac{1}{\mu_{\text{min}}}\right)\right),\,$$

where $\mu_{\min} = \min_{X \in \Omega} \mu(X)$.



Bounded one-to-all influence



Bounded all-to-one influence

spectral
$$\leq \sum_{u \in S} \Psi_S^{\sigma}(u, v) \leq C$$

Spectral Independence

Rapid Mixing

Result (III). Rapid mixing for q-coloring on triangle-free graph with $q > 1.763\Delta$

Theorem [This work]

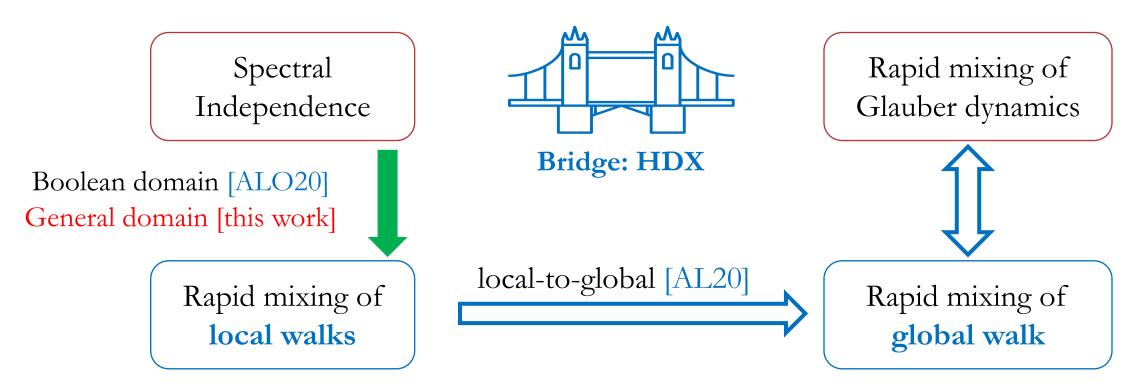
constant

Triangle free graph and $q \ge (\alpha + \delta)\Delta$ where $\alpha \approx 1.763$ s.t. $\alpha = \exp(1/\alpha)$

$$T_{\text{mix}} \le n^{2+O(1/\delta)} \log q.$$

Work	Regime	Girth	Addition condition	Mixing time
[GMP05]	$q > \alpha \Delta$	≥ 4	$\Delta = O(1) + \text{amenable graph}$	$O(n^2)$
[HV06]	$q \ge (\alpha + \delta)\Delta$	≥ 4	$\Delta = \Omega(\log n)$	$O(n \log n)$
[DFHV13]	$q \ge (\alpha + \delta)\Delta$	≥ 5	$\Delta \ge \Delta_0(\delta)$	$O(n \log n)$
This work	$q \ge (\alpha + \delta)\Delta$	≥ 4		$n^{2+O(1/\delta)}\log q$

Proof outline



Graph
Coloring

Decay analysis [this work]

Based on recursive coupling

[GMP05]

Spectral
Independence

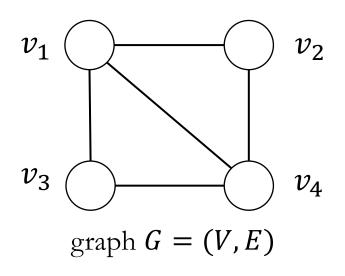
Glauber dynamics

Lazy local random walk

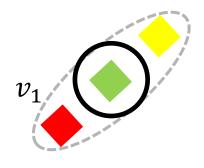
State space
$$U = \{ (v, i) \mid v \in V, i \in [q] \}$$

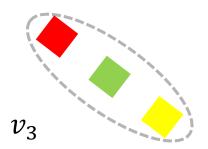
Current state $(v,i) \in U$. Transition $(v,i) \rightarrow (u,j)$

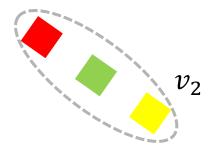
- pick a vertex $u \in V$ uniformly at random;
- sample $j \sim \mu_u(\cdot | v \leftarrow i)$.

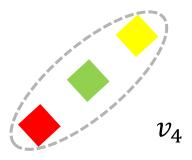


colors
$$[q] = \{$$





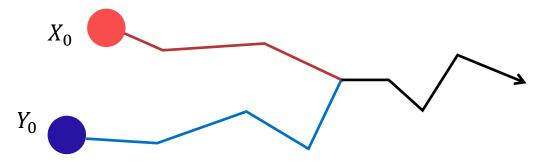


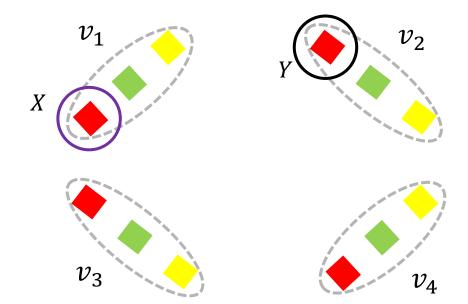


Our technique: coupling

Coupling $(X_t, Y_t)_{t \ge 0}$ of local walk

- start from two states $X_0, Y_0 \in U$
- two chains $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ follow local walk





Coupling

Current state $X_t = (u, i)$ and $Y_t = (v, j)$

Next state
$$X_{t+1} = (u', i')$$
 and $Y_{t+1} = (v', j')$

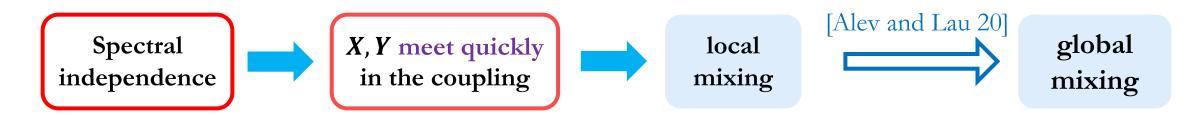
- Pick the same $u' = v' \in V$ uniformly at random;
- Sample (i',j') from the **optimal coupling** between $\mu_{u'}(\cdot | u \leftarrow i)$ and $\mu_{v'}(\cdot | v \leftarrow j)$.

Observation: for any $t \ge 1$, X_t and Y_t must be on the same vertex.

$$X_t = (v, i)$$
 and $Y_t = (v, j)$ (same vertex, different color)

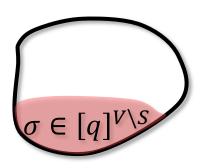
- Pick the same vertex $u \in V$ uniformly at random.
- Couple the colors on u optimally, the coupling fails with probability

$$d_{TV}(\mu_u(\cdot|v\leftarrow i), \mu_u(\cdot|v\leftarrow j)) \le \Psi(v,u).$$
 (Influence $v\to u$)



Remark (conditional distributions)

- [AL20] requires local mixing on all conditional distributions.
- Our coupling also works for all conditional distributions.



Spectral independence for coloring

List coloring instance

- graph G = (V, E) with max degree Δ ;
- each vertex $v \in V$ has a color list L_v .

Proper list coloring X

- $X_v \in L_v$ for all $v \in V$;
- $X_u \neq X_v$ for all $\{u, v\} \in E$.

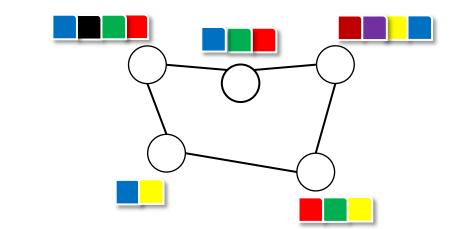
Gibbs distribution μ

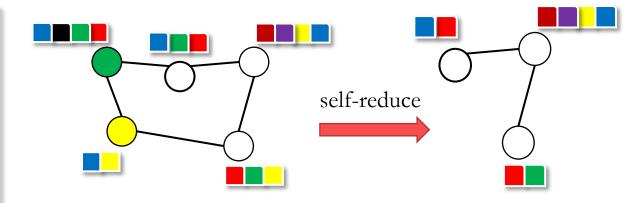
uniform distribution over all proper list colorings.

Theorem [this work]

In **triangle-free graph**, if for all $v \in V$, $|L(v)| \ge (\alpha + \delta)\Delta \approx (1.763 + \delta)\Delta$, then under any pinning,

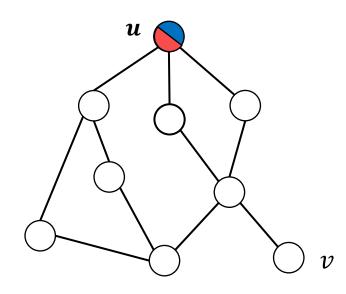
one-to-all influence =
$$O\left(\frac{1}{\delta}\right)$$
,





closed under pinning

Recursive coupling



Influence from u to v

$$\operatorname{Inf}(u \to v) = \max_{i,j \in L(u)} d_{TV} \Big(\mu_{v}(\cdot | u \leftarrow i), \mu_{v}(\cdot | u \leftarrow j) \Big)$$

One-to-all influence

$$\sum_{v \in V \setminus \{u\}} \operatorname{Inf}(u \to v)$$

Proof sketch

by recursive coupling [Goldberg, Martin, Paterson 05]

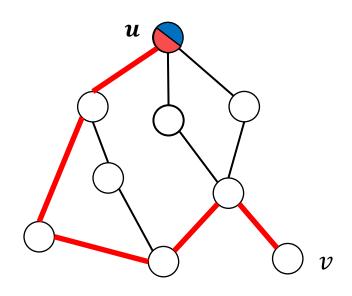
Construct a coupling (c_v, c'_v) between $\mu_v(\cdot | u \leftarrow i)$ and $\mu_v(\cdot | u \leftarrow j)$

$$d_{TV}(\mu_v(\cdot|u \leftarrow i), \mu_v(\cdot|u \leftarrow j)) \le \Pr[c_v \ne c_v']$$

Bound one-to-all influence by coupling inequality

$$\sum_{v \in V \setminus \{u\}} \operatorname{Inf}(u \to v) \le \sum_{v \in V \setminus \{u\}} \Pr[c_v \neq c_v']$$

Recursive coupling



- Staring from the "disagreement vertex" u.
- Coupling vertex one by one in a "**DFS-manner**".
- If the coupling on v fails (i.e. $c_v \neq c_v'$)
 then there is a path \mathcal{P} from u to v

ALL vertices in \mathcal{P} **FAIL** in coupling.

Bound one-to-all influence by enumerating all the paths from u

$$\sum_{u \neq v} \operatorname{Inf}(u \to v) \le \sum_{\text{all paths } P \text{ from } u} \operatorname{Influence alone the path } P \le O\left(\frac{1}{\delta}\right)$$

Triangle-free
Many colors

Coupling succeeds with high prob.

Bounded total influence

Independent work

arXiv.org > cs > arXiv:2007.08058

Computer Science > Data Structures and Algorithms

[Submitted on 16 Jul 2020]

Rapid Mixing for Colorings via Spectral Independence

Zongchen Chen, Andreas Galanis, Daniel Štefankovič, Eric Vigoda

arXiv.org > cs > arXiv:2007.08091

Computer Science > Data Structures and Algorithms

[Submitted on 16 Jul 2020]

Rapid mixing from spectral independence beyond the Boolean domain

Weiming Feng, Heng Guo, Yitong Yin, Chihao Zhang

Theorem [Chen, Galanis, Štefankovič, Vigoda 20]

The Glauber dynamics for coloring is rapid mixing if $q \ge \alpha \Delta + 1$

- different definition of spectral independence
- different method to prove spectral independence for coloring

Summary

- A definition a spectral independence for general distribution (generalize def. in [ALO20])
- Rapid mixing of Glauber dynamics from spectral independence
- Application: sampling uniform q-coloring on triangle-free graph when

$$q \ge (\alpha + \delta)\Delta \approx (1.763 + \delta)\Delta$$
.

Future work

- Improve the $n^{O(C)}$ mixing time for **general distribution**.
- Improve the $n^{O(1/\delta)}$ mixing time for spin systems (including coloring)
 - $O(n \log n)$ optimal mixing for spin systems with
 - spectral independence and $\Delta = O(1)$ [CLV20, arXiv:2011.02075].
- Better condition for spectral independence
 - example: prove spectral independence for graph coloring with **fewer colors**.

Thank you