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Abstract

We develop a new framework to prove the mixing or relaxation time for the Glauber dy-
namics on spin systems with unbounded degree. It works for general spin systems including
both 2-spin and multi-spin systems. As applications for this approach:

• We prove the optimal O(n) relaxation time for the Glauber dynamics of random q-list-
coloring on an n-vertices triangle-tree graphwithmaximumdegree ∆ such that q/∆ > α⋆,
where α⋆ ≈ 1.763 is the unique positive solution of the equation α = exp(1/α). This
improves the n1+o(1) relaxation time for Glauber dynamics obtained by the previous work
of Jain, Pham, and Vuong (2022). Besides, our framework can also give a near-linear time
sampling algorithm under the same condition.

• We prove the optimal O(n) relaxation time and near-optimal Õ(n) mixing time for the
Glauber dynamics on hardcore models with parameter λ in balanced bipartite graphs such
that λ < λc(∆L) for the max degree ∆L in left part and the max degree ∆R of right part
satisfies ∆R = O(∆L). This improves the previous result by Chen, Liu, and Yin (2023).

At the heart of our proof is the notion of coupling independence which allows us to consider
multiple vertices as a huge single vertex with exponentially large domain and do a “coarse-
grained” local-to-global argument on spin systems. The technique works for general (multi)
spin systems and helps us obtain some new comparison results for Glauber dynamics.

1 Introduction
The spin system is a fundamental probabilistic graphical model. It is defined on a graph G = (V, E),
where every vertex is a randomvariable and every edgemodels the local interactions. Each variable
takes a value from a discrete domain [q] = {1, 2, . . . , q}. Each vertex has a vector b ∈ R

q
≥0 called

the external field and each edge has a symmetric matrix A ∈ R
q×q
≥0 called the interaction matrix. The

spin system defines a Gibbs distribution over [q]V such that for any configuration σ ∈ [q]V ,

µ(σ) ∝ ∏
v∈V

b(σv) ∏
e={u,v}∈E

A(σu, σv).

The spin system covers many important distributions including the uniform distribution of graph
colorings, the Ising model, the hardcore gas model in Physics, and a broad class of undirected
graphical models in machine learning [MM09].
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Sampling from the Gibbs distribution is a central algorithmic task for spin systems. TheGlauber
dynamics is a fundamental Markov chain Monte Carlo (MCMC) method for sampling from high-
dimensional distributions. Given a distribution µ over [q]V , it starts from an arbitrary X ∈ Ω(µ),
where Ω(µ) ⊆ [q]V is the support of µ. In each step, it updates the current state X as follows:

• pick a variable v ∈ V uniformly at random;

• resample the value of Xv from the conditional distribution µv(· | XV\v).

It is well-known that if the state space Ω(µ) is connected through the moves of Glauber dynamics,
then the distribution µ is the unique stationary distribution for the Glauber dynamics.

In this paper, we study the convergence rate of the Glauber dynamics. Let (Xt)t≥0 denote the
random sequence generated by the Glauber dynamics. Many notions capture the convergence rate.
The most standard one is the mixing time, which is defined by

TGD
mix(µ, ε) := max

X0∈Ω(µ)
min {t > 0 | DTV (Xt ∥ µ) ≤ ε} , (1)

where DTV (Xt ∥ µ) denote the standard total variation distance between µ and the distribution of
Xt. In words, if the Glauber dynamics starts from the worst initial state X0, the mixing time is the
minimum number t such that the total variation distance between Xt and µ is below a sufficiently
small constant. Another widely used notion is the relaxation time. Let P : Ω(µ) ×Ω(µ) → [0, 1]
denote the transition matrix of the Glauber dynamics. A standard fact says that P only has non-
negative real eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥ λ|Ω| ≥ 0 [DGU14]. The gap λ1 − λ2 = 1− λ2 is
called the spectral gap of Glauber dynamics. The relaxation time is defined by

TGD
rel (µ) :=

1
1− λ2

.

It is well known that TGD
mix(µ, ε) = O(TGD

rel (µ) log 1
εµmin

), where µmin = minσ∈Ω(µ) µ(σ).
Recently, in a series ofworks [ALOV19,AL20,ALO20] studiedGlauber dynamics using highdi-

mensional expanders. An important notion called spectral independence was developed during this
process. Anari, Liu, andOveisGharan [ALO20] first introduced spectral independence for Boolean
distributions. The follow-up works [CGŠV21, FGYZ21] then generalized it to non-Boolean distri-
butions. For example, for a Boolean distribution µ over {−1,+1}[n], the influence matrix Ψ ∈ Rn×n

≥0
is defined by Ψ(u, v) := PrX∼µ [Xv = + | Xu = +] − PrX∼µ [Xv = + | Xu = −]. A distribution µ
is C-spectrally independent if the maximum eigenvalue of Ψ is at most C. If every conditional
distribution of µ is C-spectrally independent, then by the local-to-global argument [AL20], both
relaxation and mixing time of Glauber dynamics are bounded by nO(C), where n is the number of
variables. Given this polynomial bound nO(C), manyworks tried to obtain an improved or even the
optimal mixing/relaxation time for Glauber dynamics, especially when µ is a Gibbs distribution
defined by spin systems. Chen, Liu and Vigoda [CLV21] proved that for spin systems on bounded
degree graphs, the spectral independence implies both O(n log n) optimal mixing time and O(n)
optimal relaxation time.

The next question is how to deal with spin systems on unbounded degree graphs. Many works
[JPV22, CFYZ21,AJK+22, CE22, CFYZ22] focused on this question. Significant progresswasmade,
especially for 2-spin systems (q = 2). [JPV22] first studied coloring and weighted independent
sets (hardcore model) in high-girth graphs and proved the near-optimal n1+o(1) relaxation time.
[CFYZ21] introduced a stronger variant of spectral independence called complete spectral indepen-
dence, and proved the optimal O(n) relaxation time for anti-ferromagnetic 2-spin systems in the
uniqueness regime. To obtain the optimal mixing time, [AJK+22] made the first step and defined
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a new notion called entropic independence. After a line of works [AJK+22, CE22, CFYZ22], the op-
timal O(n log n) mixing time was established for a broad class of 2-spin systems.

Most of the previous techniques [CFYZ21, AJK+22, CE22, CFYZ22] for unbounded degree
graphs are restricted to the 2-spin systems. We consider the following question in this paper.

How to prove the optimal mixing/relaxation time
for Glauber dynamics on (multi) spin systems with unbounded degree?

To the best of our knowledge, the only previous result beyond 2-spin systems is the n1+o(1) re-
laxation time for graph coloring [JPV22]. However, [JPV22] relies on the coupling analysis for
colorings in [HV06], which makes it difficult to be generalized to other spin systems.

In this work, we develop a new framework for proving mixing/relaxation time for the Glauber
dynamics on general spin systems including both 2-spin and multi-spin systems. Our new frame-
work is based on a stronger variant of the spectral independence known as the coupling indepen-
dence, which is already used implicitly or explicitly inmany previousworks [Liu21, BCC+21, CZ23,
CG24, CLMM23, Jer24]. A spin system µ on [q]V is C-coupling independent if for any v ∈ V and
a, b ∈ [q], there is a coupling (X, Y) where X ∼ µv←a and Y ∼ µv←b such that

E [dH(X, Y)] ≤ C.

Here, dH(X, Y) = |{v ∈ V | Xv ̸= Yv}| denotes the hamming distance between X and Y and µv←a

the distribution induced by µ conditional on v taking the value a.
Given a spin system on a graph G with Gibbs distribution µ, we show that if µ and all the condi-

tional distributions induced by µ satisfy the coupling independence and themaximumdegree of G
is greater than a large constant, then the following comparison results hold for Glauber dynamics.

• Relaxation time comparison. The relaxation time satisfies TGD
rel (µ) = O(TGD

rel (µ
⋆)), where

µ⋆ is a conditional distribution obtained from µ by fixing the values on a subset Λ ⊆ V of
variables. The set Λ is chosen intentionally such that the induced subgraph G[V \Λ] on other
vertices has smaller maximum degree. For many spin systems, the distribution µ⋆ is in an
“easy regime” so that the mixing/relaxation time for µ⋆ is easy to analyze. We can bound the
relaxation time for µ via this comparison result (see Theorem 9).

• Mixing time comparison. If µ is amonotone spin system (Definition 14) and the Glauber dy-
namics starts from a specific initial configuration, then the mixing time satisfies TGD

mix(µ, ε) =

Õ(TGD
mix(µ

⋆, 1
4e )), where Õ hides a polylog(n/ε) factor (See Theorem 15).

We obtain the relaxation/mixing time bounds via the above comparison results. In the relaxation
time comparison result, the constant factor in O(·) is independent of the degree of the graph. In
applications, the distribution µ⋆ is in an “easy regime”, we can use some standard technique to
show TGD

rel (µ
⋆) = O(n). The comparison result gives the optimal TGD

rel (µ) = O(n) relaxation time.
Similarly, in the applications of monotone systems, we can obtain the near-optimal Õ(n) mixing
time for general graphs. Our comparison results only hold for graphs with large maximum de-
grees. It does not cause any issue in applications, because coupling independence implies spectral
independence, and for graphs with bounded maximum degree, [CLV21] already established the
optimal relaxation/mixing time.

Our proving techniques can also give a near-linear time (in input size) sampling algorithm
(see Theorem 13). Furthermore, we introduce a general technique to establish coupling indepen-
dence for 2-spin systems (Theorem 16). Specifically, many spectral independence results for 2-spin
systems are proved by analyzing the decay of correlation in the self-avoiding walk tree [CLV20,
CLY23]. We show that all of such proofs can be translated to a proof of coupling independence.
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Organization of the paper In Section 1.1, we first exhibit some concrete applications. In Section 2,
we give our technical results and an overview of proof techniques. Section 3 is for preliminaries.
In Section 4, we prove the relaxation time comparison result. In Section 5, we give a near-liner time
sampling algorithm. In Section 6, we prove the mixing time comparison result for monotone sys-
tems. In Section 7, we give a general technique for establishing coupling independence. Section 8
and Section 9 are for proofs of applications.

1.1 Applications

Let G = (V, E) be a graph with maximum degree ∆ and [q] = {1, 2, . . . , q} a set of colors. Given
a set of color lists Lv ⊆ [q], v ∈ V, a proper list-coloring X ∈ [q]V assigns a color Xv ∈ Lv to each
vertex v ∈ V such that adjacent vertices receive different colors. In a special case when Lv = [q]
for all V ∈ V, the list coloring becomes the standard graph q-coloring. We use µ to denote the
uniform distribution over all proper list-colorings in G. For the list coloring, in each step, the
Glauber dynamics picks a random vertex v and update its color to a random available color. There
is a long line of works studying the mixing and relaxation time of Glauber dynamics e.g. [Jer95,
Vig00, CDM+19].

In the era of spectral independence, the proper list-coloring has been re-studied by a series
of works [CGŠV21, FGYZ21, CLMM23]. Though the technique varies, all these works ended
up establishing some coupling independence results for the proper list-coloring. For list color-
ings on triangle-free graphs. Let α⋆ ≈ 1.763 denote the unique positive solution to the equation
α = exp(1/α). When |Lv| > (α⋆ + δ)∆, the Oδ(1)-coupling independence can be established by
techniques in [CGŠV21, FGYZ21]. Our framework gives the optimal relaxation time of Glauber
dynamics even if the maximum degree of G is unbounded.

Theorem 1 (Coloring: Relaxation Time). Let δ > 0 be a constant. For any triangle-free graph G =
(V, E) and color lists (Lv)v∈V , if |Lv| ≥ (α⋆ + δ)∆ for all v ∈ V, where ∆ ≥ 3 is the maximum degree of
G, then relaxation time of Glauber dynamics is Oδ(n), where n is the number of vertices in G.

Under the condition of Theorem 1, the relaxation time of the Glauber dynamics has been stud-
ied by many previous works. Combining the spectral independence technique [AL20, ALO20]
with the correlation decay analysis [GMP05, GKM13], two independentworks [CGŠV21, FGYZ21]
proved the polynomial relaxation time nO(1/δ) of Glauber dynamics. For graphs with bounded
maximum degree ∆ = O(1), Chen, Liu and Vigoda [CLV21] established the O∆,δ(n) relaxation
time, where O∆,δ(·) hides a constant factor like ∆O(∆2/δ). For general graphs with possibly un-
bounded maximum degree, Jain, Pham and Vuong [JPV22] proved the first almost linear relax-
ation time Oδ(ne(log log n)2

) = Oδ(n1+o(1)). Their proof combined the techniques in [CLV21] with
the coupling analysis in [HV06]. Compared to previous results, Theorem 1 gives the optimal linear
relaxation time for general graphs.

We prove Theorem 1 by first verifying the coupling independence condition (Definition 7) and
then applying our comparison result (Theorem 9). Theorem 1 requires |Lv| ≥ (α⋆ + δ)∆ because
the current best coupling independence result requires this number of colors but our comparison
result does not require such a strong condition. It is conjectured thatOδ(1)-coupling independence
should hold for proper list-coloring in general graphs when |Lv| ≥ (1 + δ)∆ + O(1).

Conjecture 2 (Folklore). Let δ > 0 be a constant. For any graph G = (V, E)withmaximumdegree
∆ and color lists (Lv)v∈V such that |Lv| ≥ (1+ δ)∆+O(1) for all v ∈ V, the the uniformdistribution
µ over all the proper list-colorings of G is Oδ(1)-coupling independent.
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Our comparison framework can prove optimal relaxation time for Glauber dynamics on proper
list-colorings of graphs (with potentially unbounded degree) as long as Conjecture 2 holds.

Proposition 3. If Conjecture 2 holds with δ > 0, then for any list coloring instance in Conjecture 2, the
relaxation time of Glauber dynamics is Oδ(n).

The standard relation between relaxation time and mixing time implies that the Glauber dy-
namics mixes in time Oδ(n2 log q), which yields a sampling algorithm for the uniform distribution
µ of graph colorings in time Oδ(∆n2 log q) because each step of Glauber dynamics can be simu-
lated in time O(∆). However, in terms of sampling algorithm, our technique would directly give
an algorithm (not the Glauber dynamics) in time Õδ(∆n). Since the input graph G contains ∆n
edges, the running time is linear-near in the input size.

Theorem 4 (Coloring: Algorithm). Let δ > 0 be a constant. There exists an algorithm such that given
any ε > 0, any triangle-free graph G = (V, E) and color lists (Lv)v∈V , if |Lv| ≥ (α⋆ + δ)∆ for all v ∈ V,
where ∆ ≥ 3 is the maximum degree of G, it returns a random sample X satisfying DTV (X ∥ µ) ≤ ε in
time ∆n(log n

ε )
C(δ), where C(δ) is a constant depending only on δ.

The next example is the hardcore model. Let G = (V, E) be a graph. Let λ > 0 be the fugacity.
The hardcore model defines a distribution µ over all independent sets S ⊆ V in G such that µ(S) ∝
λ|S|. Let ∆ ≥ 3 denote the maximum degree of graph G. There is a critical threshold for the tree
uniqueness phase transition [Kel85]

λc(∆) :=
(∆− 1)(∆−1)

(∆− 2)∆ .

such that if λ ≤ λc(∆) the correction between two vertices decays in their distance; if λ > λc(∆),
the long-range correlation exists. A computational phase transition occurs at the same threshold.
If λ < λc(∆), polynomial time sampling algorithm exists [Wei06]; if λ > λc(∆), the sampling
problem is hard unless NP = RP [Sly10]. The mixing and relaxation time of the Glauber dy-
namics for hardcore model were also extensively studied [LV99, HV06, EHŠ+19]. Recent works
analyzed Glauber dynamics via spectral independence [ALO20]. The optimal Oδ(n log n) mixing
time and the optimal Oδ(n) relaxation time were established when λ ≤ (1− δ)λc(∆) for general
graphs [CLV21, CE22, CFYZ22].

However, for the hardcore model on bipartite graphs, the picture is not very clear. Consider
the hardcore model in a bipartite graph G = (V = VL ⊎ VR, E). Let ∆L denote the maximum
degree in the left part. Assume 3 ≤ ∆L. It is recently known that the uniqueness threshold for
the hardcore model on the bipartite graph can be refined to λc(∆L) ≥ λc(∆) where ∆ ≥ ∆L is the
maximum degree of the bipartite graph [LL15, CLY23]. The Glauber dynamics is also proved to
have polynomial mixing time when λ < λc(∆L) [CLY23].

On the other side, when λ > λc(∆L), the lower bound in [Sly10] does not hold for bipartite
graphs and the problem is #BIS-hard [CGG+16], where #BIS is the problem of counting the inde-
pendent sets in bipartite graphs. A line of works (e.g. [JKP20, CP20, LLLM22, CGŠV22, JPP23])
studied various sampling algorithms in the low-temperature (large λ) regime.

Within the critical threshold λ < λc(∆L), we consider “balanced” bipartite graphs. Let ∆R be
the maximum degree in VR. We say a bipartite graph is θ-balanced if ∆R ≤ θ∆L.

Theorem 5 (Bipartite Hardcore: Relaxation Time). Let δ ∈ (0, 1) and θ > 1 be two constants. For any
hardcore model on a θ-balanced bipartite graph G with fugacity λ, if λ ≤ (1− δ)λc(∆L), then the relaxation
time of Glauber dynamics is Oδ,θ(n), where n is the number of vertices in G.
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For the mixing time, again, the standard relation gives Oδ,θ(n2) mixing time of the Glauber
dynamics. However, since the bipartite graph hardcore is a monotone system, our technique also
implies the Õδ,θ(n) mixing time of Glauber dynamics starting from the independent set containing
all vertices in the left part: X0 = VL. Formally, for any S ∈ Ω(µ),

TGD
mix(µ, ε | S) = min {t > 0 | DTV (Xt ∥ µ) ≤ ε ∧ X0 = S} .

Theorem 6 (Bipartite Hardcore: Mixing Time). Let δ ∈ (0, 1) and θ > 1 be two constants. For any
hardcore model on a θ-balanced bipartite graph G with fugacity λ, if λ ≤ (1− δ)λc(∆L), then the mixing
time of Glauber dynamic starting from VL satisfies TGD

mix(µ, ε | VL) = n(log n
ε )

C(δ,θ), where C(δ, θ) is a
constant depending only on δ and θ.

The previous work [CLY23] established the (∆L log n
λ )O(1/δ)n2 relaxation time for the Glauber

dynamics, which, by the standard relation, implies the (∆L log n
λ )O(1/δ)n3 log 1+λ

λ mixing time. The
previous result holds for general bipartite graphs as long as λ ≤ (1 − δ)λc(∆L). For balanced
bipartite graphs, we obtained the optimal relaxation time Oδ,θ(n) and the near-optimal mixing
time Õδ,θ(n), which significantly improved the dependency to n and ∆L compared to the previous
result. For example, in the critical case when λc = (1− δ)λc(∆L) = Θ(1/∆L), previous result gives
∆O(1/δ)

L n2 · polylog(n) relaxation time and ∆O(1/δ)
L n3 · polylog(n) mixing time but our result gives

O(n) relaxation time and n · polylog(n)mixing time. However, our result works only on balanced
bipartite graphs. The result in [CLY23] is still state-of-the-art for general bipartite graphs.

Finally, we point out that our technique could also recover many previous O(n) relaxation time
results for anti-ferromagnetic 2-spin systems in [CFYZ21]. See Remark 10 for one example.

2 Technical Results and Proof Overview

2.1 Coupling Independence

In this section, we give our general results for spin systems. Let G = (V, E) be a graph. Let
[q] = {1, 2, . . . , q} be a set of q ≥ 2 spins. For each vertex v ∈ V, let vector bv ∈ R

q
≥0 be the external

field at vertex v. For each edge e ∈ E, let symmetric matrix Ae ∈ R
q×q
≥0 be the interaction matrix at

edge e. A spin system defines a Gibbs distribution µ over [q]V such that,

∀σ ∈ [q]V µ(σ) ∝ w(σ) := ∏
u∈V

bu(σu) ∏
e={v,w}∈E

Ae(σv, σw).

We often use Ω(µ) ⊆ [q]V to denote the support of the Gibbs distribution µ.
Let Λ ⊆ V be a subset of vertices. Given any pinning τ ∈ [q]V\Λ, we define a conditional

distribution µτ by for any configuration σ ∈ [q]V ,

µτ(σ) ∝ wτ(σ) := 1[σΛ = τ] · ∏
u∈Λ

bu(σu) ∏
e={v,w}∈E

v,w∈Λ

Ae(σv, σw) ∏
e={v,w}∈E
v∈Λ∧w/∈Λ

Ae(σv, τw). (2)

In words, µτ is a Gibbs distribution obtained for µ by removing all edges e ⊆ V \ Λ and putting
a constraint that every vertex in v ∈ V \ Λ must take the value τv. In particular, if τ is feasible
(e.g. τ belongs the support of the marginal distribution µV\Λ), then µτ is exactly the conditional
distribution induced by µ given the condition τ. For all spin systems considered in this paper, it
holds that ∑σ wτ(σ) > 0 for all τ. The distribution in (2) is well-defined. Furthermore, for any
subset S, we use µτ

S to denote the marginal distribution on S projected from µτ.
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The following conditions plays a key role in the proof of our main results. Let ρ : V → N>0 be
a function that maps every vertex v ∈ V to a positive integer. We call the function ρ the Hamming
weight function. For any two (possibly partial) configurations σ, τ ∈ [q]Λ, where Λ ⊆ V, define
their weighted Hamming distance with respect to ρ by

Hρ(σ, τ) := ∑
v∈Λ:σ(v) ̸=τ(v)

ρ(v). (3)

Definition 7 (Coupling Independence). Let C ≥ 1 be a constant. A distribution µ over [q]V is said
to be C-coupling independent (C-CI) if there exists Hamming weight function ρ : V → N>0 such
that the following holds. For any pinning σ1, σ2 ∈ [q]S, where S ⊆ V and σ1, σ2 disagree only at
one vertex v0 ∈ S, there exists a coupling (X, Y), where X ∼ µσ1 and Y ∼ µσ2 , such that

E
[
Hρ(X, Y)

]
ρ(v0)

≤ C.

The expectation E
[
Hρ(X, Y)

]
is a kind ofWasserstein distance between µσ1 and µσ2 . The notion

of coupling independence was introduced explicitly in [CZ23] to study the spectral independence
property. For example, for Boolean distributions1 (q = 2), given any pinning τ ∈ {−,+}V\Λ, the
|Λ| × |Λ| influence matrix [ALO20] is defined by

Ψτ
µ(v, u) := µτ∧v+

u (+)− µτ∧v−
u (+), (4)

where u, v ∈ Λ and τ∧ v± denotes the pinning τ together with v taking the value±. A distribution
µ is C-spectrally independent if the maximum eigenvalue of Ψτ

µ is at most C for any pinning τ.
It is not hard to show that C-coupling independence implies C-spectral independence. Hence,
recent works [CZ23, CLMM23, CG24] utilized coupling independence to establish the spectral
independence for various spin systems.

2.2 Compare Markov Chains via Coupling Independence

In this work, we findmore applications for coupling independence beyond establishing spectral in-
dependence. We build some comparison results of Markov chains via coupling independence. As
a by-product result, we also show that the coupling independence gives fast sampling algorithms.

Let µ be a Gibbs distribution over [q]V on graph G = (V, E). For any Λ ⊆ V, we use G[Λ] to
denote the induced subgraph of G on vertex set Λ.

Definition 8 (Relaxation Time with Pinning). Let µ be a Gibbs distribution on graph G = (V, E)
withmaximumdegree ∆. Let η ∈ [0, 1]. Let D(η) denote all subsets Λ ⊆ V such that themaximum
degree of G[Λ] is at most η∆. Define

T(η)
rel (µ) := max

{
TGD
rel (µ

τ) | Λ ∈ D(η) ∧ τ ∈ [q]V\Λ
}

.

In the above definition, µτ is a distribution on [q]V . In every step, the Glauber dynamics picks
v ∈ V uniformly at random then resamples the value on v. If v /∈ Λ, the value of v after resampling
is always τv. Indeed, µτ is essentially the same as µτ

Λ. But, considering µτ would help us simplify
some results and proofs. The following is our main comparison result.

1The influencematrix and spectral independence are also defined for general distributionswith q ≥ 2. See [CGŠV21]
for the detailed definition.
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Theorem 9 (Relaxation Time Comparison). Let M ≥ 1 and 0 < η ≤ 1
2⌈M⌉ be two constants. There

exists ∆0 = Ω(M2

η2 log M
η ) such that for any Gibbs distribution µ on graph G with the maximum degree

∆ ≥ ∆0, if µ satisfies M-coupling independence, then the relaxation time of Glauber dynamics on µ satisfies

TGD
rel (µ) ≤ 2O(M/η) · T(η)

rel (µ).

The theorem is proved in Section 4. See Section 2.4 for a proof overview.
The above theorem is a comparison result between two kinds of relaxation times. Consider the

case when parameters of µ are close to the critical threshold so that the relaxation time TGD
rel (µ) is

hard to analyze. By choosing a sufficiently small η, suppose for any Λ ∈ D(η) and any τ ∈ [q]V\Λ,
the conditional distribution µτ falls into an easy regime. The relaxation time T(η)

rel (µ) is easy to
analyze. Theorem 9 boosts the relaxation time from an easy regime to the hard regime if µ satisfies
the coupling independence and the maximum degree ∆ is greater than a constant ∆0.

When applying Theorem 9 to a specific spin system with Gibbs distribution µ, we first need to
show that the µ satisfies the coupling independence property. Next, we choose a small constant
η to guarantee that T(η)

rel (µ) is easy to analysis. Now, the constant parameter ∆0 in Theorem 9 is
fixed. If the maximum degree ∆ ≤ ∆0 = O(1) is bounded, then since the coupling independence
implies the spectral independence, the previous work [CLV21] already established the optimal
relaxation time for µ. If the maximum degree ∆ ≥ ∆0, we can apply our boosting result to bound
the relaxation time. We show how to prove Theorem 1 and Proposition 3 via Theorem 9.

Proof Sketch of Theorem 1 Given a triangle-free graph G = (V, E) and color lists Lv ⊆ [q]
with |Lv| ≥ (α⋆ + δ)∆ for all v ∈ V, let µ denote the uniform distribution over all proper list-
colorings. By going through the analysis in [FGYZ21], we can prove that µ satisfies O(1/δ)-
coupling independence. Let η be a parameter to be fixed later. For any Λ ⊆ D(η), any pinning
τ ∈ [q]V\Λ, the distribution µτ is essentially the same as the distribution µτ

Λ because the color-
ing outside Λ is fixed by τ. By self-reducibility, µτ

Λ is a list coloring on G′ = G[Λ] with color list
L′v = Lv \ {τu | u /∈ Λ ∧ {u, v} ∈ E}. Let deg′(v) and deg(v) denote the degree of v in G′ and G
respectively. The new instance satisfies

∀v ∈ Λ,
∣∣L′v∣∣ ≥ |Lv| − (deg(v)− deg′(v)) =⇒ |L′v|

∆′
≥ |Lv| − deg(v)

∆′
,

where ∆′ denote the maximum degree of G′. By the definition of D(η), deg′(v) ≤ ∆′ ≤ η∆. We
have |Lv| − deg(v) > (α⋆ − 1)∆ ≥ α⋆−1

η ∆′. if we set the parameter η ≤ 1
10 , then

∀v ∈ Λ, |L′v| ≥ 5∆′. (5)

In this easy regime, one can use path coupling [BD97] to show T(η)
rel (µ) = O(n). To apply Theo-

rem 9, we pick a small η = O(δ) and η < 1
10 . If ∆ ≥ ∆0 = Θ( 1

δ4 log 1
δ ), then

T(η)
rel (µ) = 2O(1/δ2)n = Oδ(n).

On the other hand, if ∆ ≤ ∆0 = Θ( 1
δ4 log 1

δ ), then the maximum degree is bounded, we can use the
result in [CLV21] to obtain the relaxation time T(η)

rel (µ) = Oδ(n) in the same order. This gives
the proof sketch of Theorem 1. The only missing component is how to establish the coupling
independence, which can be found in Section 9.
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Proof of Proposition 3 To obtain (5), we only need to use the fact that α⋆ > 1. If we replace α⋆

with (1 + δ), then we can set η ≤ δ
5 and (5) still holds. The same analysis proves Proposition 3.

Remark 10 (HardcoreModel inUniqueness Regime). Theorem9 could also rediscover someprevi-
ous results. For example, for the hardcoremodel on a graph G = (V, E)with fugacity λ ≤ (1− δ)∆,
[CFYZ21] proved the optimal Oδ(n) relaxation time. For a fixed λ, the hardcore model falls into an
easy regime if we can reduce the maximum degree of the graph by a constant factor. The hardcore
model in the uniqueness regime satisfies O(1/δ)-coupling independence (which can be proved by
Theorem 16 in this paper). Using a similar argument as that for list coloring, one can rediscover
the optimal Oδ(n) relaxation time using Theorem 9.

We remark that the relaxation time result for the bipartite graph hardcore model (Theorem 5)
is not a direct consequence from Theorem 9. We need to tweak the proof of Theorem 9 to prove
Theorem 5. The proof of Theorem 5 is in Section 8. See Section 2.4 for a proof overview.

Remark 11 (Compare Theorem 9 to the Technique in [CFYZ21]). Another comparison result about
relaxation timewas given in [CFYZ21]. The previous result considers general Boolean distribution
(not necessarily Gibbs distribution) µ over {−,+}V . Given a vector λ = (λv)v∈V , (λ ∗ µ) denotes
the distribution such that for any σ ∈ {−,+}V , (λ ∗ µ) ∝ µ(σ)∏v∈V:σ(v)=+ λv. The result says if
(λ ∗ µ) is spectrally independent for all λ ∈ (0, 1]V , then one can compare TGD

rel (µ) to TGD
rel (λθ ∗ µ),

where λθ is the vectorwith constant value 0 < θ < 1. When applying results to Gibbs distributions,
here are some differences between Theorem 9 and the previous result.

• Theorem 9 works for general domain [q] but previous result works only for Boolean domain;

• The condition is incomparable. Theorem 9 requires coupling independence for µ and a de-
gree lower bound for the underlying graph but the previous result requires spectral indepen-
dence for a family of distributions;

• The easy regime is incomparable. The easy regime in Theorem 9 is the conditional distribu-
tions on a small degree subgraph but the easy regime in the previous result is λθ ∗ µ;

For many spin systems, one can use Theorem 9 to establish the optimal O(n) relaxation for
Glauber dynamics, where n is the number of variables in the spin system. By the standard relation
betweenmixing and relaxation time, themixing time of Glauber dynamics can usually be bound by
O(n2). Each transition of Glauber dynamics can be simulated in time O(∆). Hence, one can obtain
a sampling algorithm in time O(∆n2). Alternatively, we can give a faster sampling algorithm in
time Õ(∆n) if the easy regime has linear-near mixing time.

Definition 12 (Mixing Timewith Pinning). Let µ be a Gibbs distribution on graph G = (V, E)with
maximum degree ∆. Let η ∈ [0, 1]. Let D(η) denote all subsets Λ ⊆ V such that the maximum
degree of G[Λ] is at most η∆. Define

T(η)
mix(µ) := max

{
TGD
mix

(
µτ,

1
4e

)
| Λ ∈ D(η) ∧ τ ∈ [q]V\Λ

}
.

In words, for any pinning τ on V \Λ with Λ ∈ D(η), T(η)
mix(µ) is an upper bound for the mixing

time T of Glauber dynamics for µτ such that starting from the worst initial X0, the total variation
distance between XT and µτ is at most 1

4e .

Theorem 13 (Fast Sampling Algorithm). Let M ≥ 1 and 0 < η ≤ 1
2⌈M⌉ be two constants. There exists

an algorithm such that given any ε ∈ (0, 1) and any Gibbs distribution µ on graph G with the maximum
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degree ∆ ≥ ∆0 = ( 10M
η )2 log 10M

η , if µ satisfies M-coupling independence such that the weighted hamming
distance ρ satisfies ρmax

ρmin
= poly(n), then it returns a random sample X satisfyingDTV (X ∥ µ) ≤ ε in time

∆T(η)
mix(µ)

(
log

n
ε

)O(M/η)
,

where n is the number of vertices in G and we use ρmax = maxv∈V ρ(v) and ρmin = minv∈V ρ(v).
The theorem is proved in Section 5. See Section 2.4 for a proof overview.
In the above theorem, suppose ρmax

ρmin
= O(nd) for some universal constant d, then the running

time in above theorem should be TGD
mix(µ, η)∆(log n

ε )
C(M/η+d) for some universal constant C. We

then hide the constants C and d by O(·) in Theorem 13.
Theorem 4 can be obtained from Theorem 13. Consider the list coloring on a triangle free

graphs G = (V, E) with |Lv| ≥ (α⋆ + 1)∆. The uniform distribution µ satisfies O(1/δ)-coupling-
independence with standard Hamming weight ρ(v) = 1 for all v ∈ V. Take η = O(1/δ) be a small
constant with η < 1

10 . By (5), a simple path coupling [BD97] shows that TGD
mix(µ, η) = O(n log n).

Hence, if the maximum degree of ∆ is greater than ∆0, we run the algorithm in Theorem 13 and
the running time is ∆n · polylog( n

ε ). Otherwise, the maximum degree is bounded and the re-
sult in [CLV21] gives the Oδ(n log n) mixing time of the Glauber dynamics, then we can simulate
Glauber dynamics to obtain a sampling algorithm. The proof of Theorem 4 is in Section 9.

The algorithm in Theorem 13 is not the Glauber dynamics. Roughly speaking, the algorithm
uses some strategy to pick vertex and uses the Glauber update to resample the value of the picked
vertex. However, for monotone spin systems, we can compare this algorithm to Glauber dynamics
via censoring inequality [PW13] and then we can bound the mixing time of Glauber dynamics.

Let µ over [q]V be the Gibbs distribution. Define a partial order ≤ for [q]V as follows. For each
v ∈ V, pick a total order ≤v on [q]. For any two X, Y ∈ [q]V ,

X ≤ Y ⇐⇒ ∀v ∈ V, Xv ≤v Yv. (6)

For two distributions µ and ν over [q]V , we say µ is stochastic dominated by ν (i.e., µ ⪯ ν) if there
is a coupling C between µ, ν such that Pr(X,Y)∼C [X ≤ Y] = 1. Let P be the transition matrix of the
Glauber dynamics on µ, which can be written as

P =
1
n ∑

v∈V
Pv, (7)

where Pv performs updates at the v ∈ V such that Pv(X, Y) = µXV\v(Y), for all X, Y ∈ [q]V .
Definition 14. [LPW17, Chapter 22] We say µ is a monotone spin system if for every v ∈ V, Pv is
ordering persists, which means for any X, Y ∈ [q]V with X ≤ Y, it holds that Pv(X, ·) ⪯ Pv(Y, ·).

By the definition of the partial ordering≤ in [q]V , there is a unique maximum configuration for
the ordering. Denote this state as X+. Recall TGD

mix(µ, ε | X+) denotes the mixing time of Glauber
dynamics starting from X+.
Theorem 15 (Mixing Time Comparison). Let M ≥ 1 and 0 < η ≤ 1

2⌈M⌉ be two constants. For any
monotone spin system µ on graph G with themaximum degree ∆ = Ω(M2

η2 log M
η ), if µ satisfies M-coupling-

independence such that the Hamming weight ρ satisfies ρmax
ρmin

= poly(n), then the mixing time of Glauber
dynamics starting from the maximum configuration satisfies

TGD
mix(µ, ε | X+) ≤

(
log

n
ε

)O(M/η)
· T(η)

mix(µ),

where n is the number of vertices in graph G.

10



The theorem is proved in Section 6. See Section 2.4 for a proof overview.
The above theorem is of independent interest. Suppose µ is a monotone system with coupling

independence property. The parameters of µ are in the critical regime and the underlying graph
has an unbounded maximum degree. If we can choose a proper constant η such that T(η)

mix(µ) =

O(n log n), then the theorem gives a linear-optimal Õ(n) mixing time of Glauber dynamics for µ
starting from the maximum configuration.

To obtain the linear-near mixing time for µ, some previous works [CFYZ22, CE22, AJK+22] de-
veloped comparison techniques for themodified log-Sobolev (MLS) constants. Roughly speaking,
if one can lower bound the MLS constant mls(µ) of the Glauber dynamics for µ, then one can ob-
tain the optimalO(n log n)mixing time. Previous works comparedmls(µ) to mls(µ′), where µ′ is a
distribution in the easy regime, and such comparison requires µ to satisfy certain entropic indepen-
dence [AJK+22] condition. In general, it is not easy to verify the entropic independence condition
and analyzemls(µ′) even if µ′ is in an easy regime. Theorem 15 only requires the coupling indepen-
dence condition and directly compares the mixing time. However, Theorem 15 requires monotone
systems, and the final mixing result is restricted.

We remark that although the hardcore model in bipartite graphs is a monotone system, Theo-
rem 6 is not a direct consequence from Theorem 15. We need to tweak the proof of Theorem 15 to
prove Theorem 6. The proof of Theorem 6 is in Section 8. See Section 2.4 for a proof overview.

2.3 Establish Coupling Independence

The next question is how to establish the coupling independence condition for spin systems. Pre-
viously, spectral independence was known for many spin systems. The coupling independence
was often a by-product result when proving spectral independence. Hence, it is known for some
specific spin systems such as subgraph world [CZ23], b-matching [CG24] and coloring in high
girth graphs [CLMM23].

In this paper, we give a tool to turn many existing spectral independence results into coupling
independence results. A large family of spin systems is 2-spin systems. Let G = (V, E) be a graph
with maximum degree ∆ ≥ 3. Let 0 ≤ β ≤ γ be the edge interactions such that γ > 0. Let λ > 0
be the external field. Let µ be the Gibbs distribution on G with parameters β, γ, λ such that for
any σ ∈ {−,+}, µ(σ) ∝ λn+(σ)βm+(σ)γm−(σ), where n+(σ) is the number of vertices v with σv = +
and m±(σ) is the number of edges {u, v} with σu = σv = ±. The 2-spin system is said to be
ferromagnetic if βγ > 1 and anti-ferromagnetic if βγ < 1.

Anari, Liu, and Oveis Gharan [ALO20] analyzed the spectral independence for the hardcore
model. Chen, Liu, and Vigoda [CLV20] extended the analysis to general 2-spin systems. Recall the
influence matrix Ψτ

µ is defined in (4). The maximum eigenvalue Eigmax(Ψ
τ
µ) can be upper bound

by the total influence from one vertex

Eigmax(Ψ
τ
µ) ≤ max

v ∑
u∈V
|Ψµ(v, u)|. (8)

The RHS is called the total influence bound. For 2-spin systems, the analysis is performed on the Self-
Avoiding-Walk (SAW) tree [Wei06]. Roughly speaking, fix a vertex v, the SAW tree Tv enumerates
all the SAWs in graph G starting from v. By defining a proper 2-spin system on Tv, one can use the
total influence from the root in Tv to upper bound the total influence from v in G, and thus establish
the spectral independence forGibbs distribution µ. In [CLV20], aweighted version of (8) is studied
to deal with general 2-spin systems. We give the following result for coupling independence.
Theorem 16 (Informal version of Lemma 39). For 2-spin systems, the (weighted) total influence bound
in the Self-Avoid-Walk tree implies coupling independence.
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As a consequence, all the spectral independence results for 2-spin systems in [CLV20] can
be turned into coupling independence results in black-box. For the hardcore model in bipartite
graphs( Theorem 5 and Theorem 6), we can also use the above result to transform the total influ-
ence bound in [CLY23] into coupling independence result.

Theorem 16 is proved by constructing a recursive coupling in Section 7. Fix a vertex v in G.
We build a coupling (X, Y) between µv+ and µv− and show the discrepancy between X and Y are
bounded by the total influence in the SAW tree Tv. Suppose v has d neighbors u1, u2, . . . , ud. We
split v into d copies v1, v2, . . . , vd such that vi only has one neighbor ui. Define the pinning σi such
that vj for j ≥ i takes the value+ and vj for j < i takes the value−. Then µv+ = µσ0 and µv− = µσd .
We couple each adjacent µσi−1 and µσi , thenmerge them into a coupling between two endpoints µσ0

and µσd . For each adjacent pair, the only difference between σi and σi−1 is the pinning at vi. Hence,
we first couple the only neighbor ui of vi then construct the coupling recursively if the coupling
at ui fails. This recursive processing essentially enumerates all SAWs from v. We can relate the
coupling with the SAW tree to prove the theorem.

For multi-spin systems such as list-coloring, we can mimic the recursive coupling for 2-spin
systems. Since the previous spectral independence results for list-coloring were also obtained via
the SAW tree [FGYZ21, CGŠV21], a similar proof gives the coupling independence.

2.4 Proof Overview

We give a proof overview for the relaxation time comparison result in Theorem 9. Let G = (V, E)
be a graph with maximum degree ∆. Let ℓ and k be two constant integers such that ℓ < k. Their
specific values will be fixed later. We first partition all the vertices in V into k parts U1, U2, . . . , Uk
such that for any vertex v ∈ V, each Ui does not have more than η

ℓ ∆ neighbors of v. In other words,
let Γv = {u | (u, v) ∈ E} denote the set of neighbors of v in graph G. For any i ∈ [k], |Γv ∩Ui| ≤ η

ℓ ∆.
The existence of the partition is guaranteed by the Lovász local lemma. However, the local lemma
requires the maximum degree ∆ to be sufficiently large. That is why we require a lower bound for
∆ in our technical results. We also remark that in our proof, the degree lower bound is used solely
to ensure the existence of the partition. A similar partition appeared in the previous work [JSS21].

The input Gibbs distribution µ over [q]V is a joint distribution of n variables (Xv)v∈V , where
each variable takes its value from [q]. Now, we can view µ as a joint distribution of k variables
Y = (Yi)i∈[k] such that each variable Yi = XUi takes its value from a huge domain [q]Ui . We define
the k↔ (k− ℓ) down-up walk on Y. Given Y = (Y1, Y2, . . . , Yk), the Markov chain does as follows

• Down-walk: Sample a set S ∈ ([k]ℓ ) of ℓ indices uniformly at random and then remove the
configuration on the set S: Y → Y[k]\S;

• Up-walk: Resample YS from µ conditional on Y[k]\S and then go back to a full configuration
Y[k]\S → Y[k]\S ∪YS.

A full configuration Y = (Y1, Y2, . . . , Yk) is on the level k. In the down-walk, we sample a random
subset of indices S ⊆ [k] with size ℓ. By dropping the configuration YS, we move from a full
configuration at level k to a partial configuration at level k− ℓ. In the up-walk, we resample YS and
go back to the level k. The process can also be viewed as a kind of block dynamics for configuration
X ∈ [q]V . In every step, we pick a random subset US = ∪i∈SUi ⊆ V of variables and resample
X(US) conditional on X(V \US).

We use local-to-global technique [AL20, ALO20] to analyze the spectral gap of the k↔ (k− ℓ)
down-upwalk forY. The local-to-global technique suggests to analyze the relaxation time of k↔ 1
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down-up walk2. In the down walk, we pick a random S of size |S| = k− 1 and drop YS. In the up-
walk, we resample YS and go back to level k. We use coupling independence to analyze this k↔ 1
down-up walk via path coupling. For simplicity, suppose µ satisfies C-coupling independence
with standard Hamming distance (ρ(v) = 1 for all v ∈ V). We can view this k ↔ 1 down-up
walk on Y as a block dynamics on X ∈ [q]V , where it updates a block US in every step. Given two
X ∈ [q]V and X′ ∈ [q]V that disagree only at one vertex v ∈ V, say v ∈ U1, we couple the transition
of k ↔ 1 down-up walk. Let two k ↔ 1 down-up walks (starting from X and X′, respectively)
select the same random subset S ⊆ [k] such that |S| = k− 1.

• If 1 ∈ S, which happens with probability k−1
k , then since v ∈ U1 the value of v is removed in

the down-walk, and thus X and X′ can be coupled perfectly after the transition.

• If 1 /∈ S, which happens with probability 1
k , then since v ∈ U1, the disagreement at v may

percolate to other blocks in the up-walk step. We use the coupling in the M-coupling inde-
pendence to couple the up-walk so that the expected Hamming distance between X and X′

after the transition is at most M.

Hence, the expected Hamming distance between X and X′ after transition is at most M
k . If k > M,

the path coupling gives the O(log n)mixing time and O(1) relaxation time for this down-up walk.
To apply the local-to-global technique, we also need to fix a configuration YΛ, where Λ ⊆ [k] and
|Λ| = t ≤ ℓ, and consider the (k− t)↔ 1 down-up walk for Y[k]\Λ. The same path coupling works
if k− t > M. By choosing k and ℓ such that k− ℓ > M and using the local-to-global technique, we
can show that the k↔ (k− ℓ) down-up walk for Y has O(1) relaxation time.

We then compare the k↔ (k− ℓ) down-up for Y = (Y1, Y2, . . . , Yk) to the Glauber dynamics for
X ∈ [q]V . Recall that k↔ (k− ℓ) down-upwalk is a kind of block dynamics for X. In every step, the
block dynamics updates a subset US = ∪i∈SUi with |S| = ℓ. The update step is to resample X(US)

conditional on X(V \US). This step samples from the conditional Gibbs distribution µ
X(V\US)
US

on
subgraph G[US]. By the construction of the partition, the maximum degree of G[US] is at most η∆

so that we have the relaxation time bound T(η)
rel (µ) for Glauber dynamics on µ

XV\US
US

. Let Tdown-up
rel

denote the relaxation time of k↔ (k− ℓ) down-up walk. By some standard comparison argument
between block dynamics and the Glauber dynamics, we can prove Theorem 9 by showing that

TGD
rel (µ) ≤ Tdown-up

rel × T(η)
rel (µ) = O(1)× T(η)

rel (µ).

Next, we briefly explain how to get the near-linear time sampling algorithm in Theorem 13
and the mixing time in Theorem 15. Note that for k↔ 1 down-up walk, the path coupling actually
gives the O(log n)mixing time. For one update step, it selects a subset S ⊆ [k]with |S| = k− 1. Let
i denote the missing index, i.e. S ∪ {i} = [k]. The update step resamples YS conditional on Yi. We
can simulate this transition step using (k− 1) ↔ 1 down-up walk for the conditional distribution
on YS. This down-up walk also has the O(log n) mixing time. We do this recursively until we
need to sample from a conditional distribution on YS′ with |S′| = ℓ. Note that the maximum
degree of the graph G[US′ ] is at most η∆. Now, we simulate the Glauber dynamics for T(η)

mix(µ)
steps to sample from the conditional distribution. Hence, the total number of Glauber steps is
(log n)O(ℓ)T(η)

mix(µ). For monotone systems, we can compare this algorithm to Glauber dynamics
via censoring inequality.

2In [AL20, ALO20], the local walk is essentially defined as the 1 ↔ k up-down walk. Every state is Yi for i ∈ [k].
In the up-walk, it extends Yi to a full configuration Y. In the down-walk step, it samples a random index j ∈ [k] and
updates Y to Yj. It is well-known that 1↔ k up-down walk and k↔ 1 up-down walk has the same relaxation time.
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The results for list-coloring are consequences of general technical results. However, we need
to tweak the analysis to prove the results for hardcore model in bipartite graphs (Theorem 5 and
Theorem 6). The reason is that for hardcore model on G = (VL ∪VR, E), we only know λ < λc(∆L)
butwe cannot control the degree∆R in the right partVR. Our technique can only prove the coupling
independence for µL, which is the marginal distribution on VL projected from µ. To prove the
relaxation time and mixing time results, we first partition VL into disjoint part U1, U2, . . . , Uk such
that for any vertex v ∈ VR, v has no more than η

ℓ ∆ neighbors in each Ui. Again, the existence of
the partition is guaranteed by the local lemma. Let X ∼ µL be a partial configuration on VL. We
can define Y = (Y1, Y2, . . . , Yk), where Yi = XUi . By a similar proof, we show that the k ↔ (k− ℓ)
down-upwalk for Y is rapid mixing. We consider a global Markov chain over {−,+}VL∪VR defined
as follows. Let X ∈ {−,+}VL∪VR be a full configuration.

• Drop the right part to obtain X ← X(VL);

• Update X using the k↔ (k− ℓ) down-up walk for Y = (Y1, . . . , Yk), where Yi = X(Ui);

• Sample X(VR) ∼ µX
VR

and let X ← X ∪ X(VR).

We first compare this chain to the k ↔ (k − ℓ) down-up walk and then compare the Glauber
dynamics for µ to this Markov chain. This gives the relaxation time of Glauber dynamics. For the
mixing time, we can first obtain a near-linear time sampling algorithm for µL, since hardcoremodel
in bipartite graph is a monotone system, we then compare the algorithm to the Glauber dynamics
for µ via censoring inequality.

3 Preliminaries

3.1 ϕ-Divergences and ϕ-Entropies

Let ϕ : D → R be a convex function with domain D ⊆ R. Let µ be a distribution over a finite set
Ω. For any random variable f : Ω→ D, the ϕ-entropy of f with respect to µ is defined as

Entϕ
µ [ f ] := Eµ [ϕ( f )]− ϕ(Eµ [ f ]). (9)

Note that Entϕ
µ [ f ] ≥ 0 follows directly from the Jensen’s inequality since ϕ is a convex function. In

particular, when D ⊇ R≥0, the notion of ϕ-entropy can be used to measure the distance between
distributions. Let ν and µ be distributions on Ω such that ν is absolutely continuous with respect
to µ, then the ϕ-divergence Dϕ(ν ∥ µ) between ν and µ is defined as

Dϕ(ν ∥ µ) := Entϕ
µ

[
ν

µ

]
. (10)

In practice, typical choice of the function ϕ are

• TV(x) = 1
2 |x− 1|: this defines the TV-distance DTV (ν ∥ µ) = 1

2 ∑x∈Ω |ν(x)− µ(x)|;

• χ2(x) = x2: this defines the χ2-divergence Dχ2(ν ∥ µ) = (∑x∈Ω ν(x) · ν(x)
µ(x) )− 1;

• KL(x) = x log x: this defines the KL-divergence DKL (ν ∥ µ) = ∑x∈Ω ν(x) log ν(x)
µ(x) .
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By conventions, the χ2-entropy is usually called variance (with the notation Varµ [ f ]) and the KL-
entropy is usually called entropy (with the notation Entµ [ f ]):

Varµ [ f ] = Eµ

[
f 2]−Eµ [ f ]2 (11)

Entµ [ f ] = Eµ [ f log f ]−Eµ [ f ] log Eµ [ f ] . (12)

3.2 Markov Chain Background

Definition 17. Let Ω and Ω′ be two finite sets. A Markov kernel P from Ω to Ω′ assigns to every
element x ∈ Ω a distribution P(x, ·) on Ω′. In particular, P could be seen as a matrix in RΩ×Ω′

≥0 .

WhenΩ = Ω′, theMarkov kernel P becomes the transitionmatrix of someMarkov chain (Xt)t≥0.
We use P to refer to this Markov chain if it is clear in the context. The Markov chain P is

• irreducible, if for any x, y ∈ Ω, there is a t > 0 such that Pt(x, y) > 0;

• aperiodic, if for any x ∈ Ω, it holds that gcd
{

x | Pt(x, x) > 0
}
= 1.

A distribution µ on Ω is called the stationary distribution of P if µP = µ. If a Markov chain is both
irreducible and aperiodic, then it has a unique stationary distribution.

Definition 18 (time-reversal). Let Ω and Ω′ be two finite sets. The time-reversal P∗ of a Markov
kernel P from Ω to Ω′ with respect to µ is defined by the following detailed balanced equation:

∀x ∈ Ω, y ∈ Ω′, µ(x)P(x, y) = µ∗(y)P∗(y, x), (13)

where µ∗ = µP is the corresponding distribution on Ω′.

In particular, let P be a Markov chain on Ω. Let P∗ be its time-reversal with respect to µ. Then
P is called reversible with respect to µ if P = P∗. This implies µ is a stationary distribution of P.

Let P be a Markov chain on Ω with the unique stationary distribution µ. The mixing time of
Glauber dynamics is defined in (1). It can be defined similarly for a general Markov chain P.

In this paper, we are particularly interested in the block dynamics defined as follows.

Block dynamics Let µ be a distribution over [q]V , not necessarily Gibbs distribution. Let B =
{B1, B2, . . . , Bℓ} a set of blocks, where Bi ⊆ V. Define the following block dynamics. Given any
X ∈ Ω(µ), the block dynamics does as follows

• down-walk D: sample i ∈ [ℓ] uniformly at random and let X → XV\Bi
;

• up-walk U: sample XBi ∼ µ
XV\Bi
Bi

and extend XV\Bi
→ XBi ∪ XV\Bi

.

Here, we decompose the block dynamics into two steps, the down-walk D and the up-walk U. Let
Ω = Ω(µ) be the set of full configurations. Let Ω∗ = {XV\Bi

| X ∈ Ω∧ 1 ≤ i ≤ ℓ} be a set of partial
configurations. The down-walk D : Ω ×Ω∗ → R≥0 goes from a full configuration to a random
partial configuration. And the up-walk U : Ω∗ ×Ω → R≥0 goes from a partial configuration to a
random full configuration. We view both D and U as transition matrices. Moreover, U = D∗ is the
time-reversal of D with respect to µ. Let P = DU be the composition of D and U. P is the transition
matrix of the block dynamics and P is time-reversible with respect to µ. In particular, if each Bi
only contains a single variable, then the block dynamics above is exactly the Glauber dynamics.

In order to investigate the relaxation time of the block dynamics. We primarily use the notion
of approximate tensorization [MSW03, CMT15] and block factorization of variance [CP21]. Recall
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µ is a distribution over [q]V . We use Ω(µ) to denote the support of µ. Let f : Ω(µ) → R be a
function. And X ∼ µ be a random sample. We will use Eµ [ f ] to denote E [ f (X)]. Recall that the
variance of f is the χ2-entropy of f defined as Varµ [ f ] = Var [ f (X)] = E

[
f 2(X)

]
−E [ f (X)]2.

For any subset S ⊆ V, define

VarS [ f ] := Var
[

f (X) | XV\S
]

and µ[VarS [ f ]] := E
[
Var

[
f (X) | XV\S

]]
as a shorthand. We note that VarS [ f ] is a random variable Ω(µ) → R. Given a sample x ∈ Ω(µ),
the value of this random variable is given by

Varx
S[ f ] := Var

[
f (X) | XV\S

]
(x) = Var

[
f (X) | XV\S = xV\S

]
.

Definition 19. Let B = {B1, B2, . . . , Bℓ} a set of blocks, where Bi ⊆ V. We say µ satisfies B-block
factorization of variance with parameter C if the following inequality holds for every f : Ω(µ)→ R:

Varµ [ f ] ≤ C
ℓ ∑

B∈B
µ[VarB [ f ]].

In particular, if every Bi is a single variable v ∈ V and ℓ = |V|, then we say µ satisfies C-approximate
tensorization of variance.

The block factorization of variance is closely related to the contraction of the down-walk D on
the χ2-divergence. We formally define it as follow.

Definition 20. We say the down-walk of the block dynamics has δ-contraction for χ2-divergence if
for any distribution ν over Ω(µ) such that ν is absolutely continuous with respect to µ,

Dχ2(νD ∥ µD) ≤ (1− δ)Dχ2(ν ∥ µ).

It is well-known that the relaxation time, block factorization and the contraction of the down-
walk are equivalent. We summarize this into the following proposition.

Proposition 21. The following three properties are equivalent for block dynamics:
1. the relaxation time of block dynamics is T;
2. µ satisfies B-block factorization of variance with parameter T;
3. the down-walk has 1/T-contraction for χ2-divergence.

For the equivalence of Item 1 and Item 2, we refer the readers to [CMT15, Cap23]. And for the
equivalence of Item 2 and Item 3, we refer the readers to [CLV21, Lemma 2.7].

3.3 Coupling and Path Coupling

Let (X, Y) be two jointly distributed random variables such that X ∼ ν and Y ∼ µ. Then, (X, Y)
is called a coupling of ν and µ. The TV-distance between two distribution ν and µ over Ω can be
bounded by coupling. The following result is standard and is called the coupling lemma. We refer
the readers to [LPW17, Proposition 4.7] for a proof.

Lemma 22 (coupling lemma). Let ν and µ be two probability distributions on Ω. Then

DTV (ν ∥ µ) = inf {Pr [X ̸= Y] | (X, Y) is a coupling of ν and µ} .

There exists an optimal coupling of ν and µ that achieves the infimum.
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Coupling can be used to bound both mixing time and relaxation time of a Markov chain. Let
ρ : V → N>0 be the Hamming distance weight in Definition 7. Let Ω ⊆ [q]V . Let P be the
transition matrix of a Markov chain on Ω. Suppose there is a δ ∈ (0, 1) that for each x, y ∈ Ω, there
is a coupling (X1, Y1) of P(x, ·) and P(y, ·) satisfying

E
[
Hρ(X1, Y1)

]
≤ (1− δ)Hρ(x, y), (14)

where Hρ is the weighted Hamming distance in (3). For convenience, let ρmax := maxv∈V ρv and
ρmin := minv∈V ρv. Then it is standard to have the following results.

Lemma 23. If (14) holds, then Tmix(P, ε) ≤ 1
δ

(
log ρmax

ρmin
+ log 1

ε

)
.

Lemma 24. If (14) holds and the matrix P is positive semi-definite, then the relaxation time is bounded by

Trel(P) ≤ 1/δ.

We refer the reader to [BD97] for a proof of Lemma 23 and [LPW17, Theorem 13.1] for a proof
of Lemma 24. In particular, all the Markov chains considered in this paper are down-up walks
(i,e. block dynamics). And it is well-known that down-up walks are positive semi-definite [AL20,
Section 2.4]. Hence, when (14) holds, we can directly use Lemma 24 to bound the relaxation time
of the down-up walk and block dynamics. Finally, the path coupling is a tool to construct the
coupling of the Markov chain.

Lemma 25 ([BD97]). Let P : [q]V × [q]V → R≥0 be a Markov chain. If for any x, y ∈ [q]V such that x
and y disagree only at a single vertex v, there exists a coupling (x, y)→ (X1, Y1) of P such that

E [ρ(X1, Y1)] ≤ (1− δ)ρ(x, y) = (1− δ)ρ(v0),

then for any x, y ∈ [q]V , there exists a coupling satisfying (14).
With path coupling, one only needs to construct coupling for adjacent x, y rather than all x, y.

The path coupling requires that P is defined over [q]V × [q]V rather than Ω×Ω, where Ω ⊆ [q]V . In
this paper, we only consider block dynamics. It is easy to extend the block dynamics to [q]V × [q]V

using the conditional distribution defined in (2).

3.4 Lovász Local Lemma and Algorithmic Local Lemma

The Lovasz local lemma [EL75] is used to prove the existence of a combinatorial object. In this
paper, we will focus on its symmetric and algorithmic version [MT10].

Let E1, · · · , En be a set of bad events in some probability space. We want to show that there is
a sample in the probability space that is not included in any bad events. A dependency graph for
E1, · · · , En is a graph G = ([n], E) such that for each i ∈ [n], event Ei is mutually independent of
the events

{
Ej | (i, j) ̸∈ E

}
.

Lemma 26 (Lovász local lemma, [EL75, MT10]). Let p = maxi Pr [Ei] and ∆ be the degree of depen-
dency graph for E1, · · · , En. If ep(∆ + 1) ≤ 1, then it holds that

Pr

[
n⋂

i=1

Ei

]
>

(
1− 1

∆ + 1

)n

,

where we use Ei to denote the negation of Ei.
In particular, if all the events E1, · · · , En are determined by a set of mutually independent random vari-

ables X1, · · ·Xm, then there is a Las Vegas algorithm that runs in time np
1−p in expectation. When it halts, it

will output an assignment x = (x1, · · · , xm) of Xis such that event Ej does not holds under x for all j.
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4 Proof of Relaxation Time Comparison Result
In this section, we will prove Theorem 9. Let µ be a Gibbs distribution on graph G = (V, E). The
proof works whenever the graph G has a good partition. We give it a formal definition as follow.

Definition 27 ((ξ, k)-degree partition). Let k ≥ 1 be an integer and ξ > 0. A graph G = (V, E) is
said to have a (ξ, k)-degree partition if there exists a partition V = U1 ⊎U2 ⊎ . . . ⊎Uk such that

∀1 ≤ i ≤ k, ∀v ∈ V, |Γv ∩Ui| ≤
(1 + ξ)∆

k
.

We note that a similar but simpler definition appeared in [JSS21], where they partition the
graph into 2 parts with certain degree constrains.

The following result states that we can do comparison between relaxation time of Glauber dy-
namics given a good partition and M-coupling-independence.

Theorem 28. Let µ be a Gibbs distribution on G = (V, E) such that:
• µ satisfies M-coupling-independence for some integer M ≥ 1;
• G has a (ξ, k)-degree partition such that k ≥ 2M.

Then, the relaxation time of Glauber dynamics on µ satisfies

TGD
rel (µ) ≤ 2k−2M · T(η)

rel (µ), such that η = 2(1 + ξ)M/k.

Note that Theorem 28 only need the existence of such partition. It does not need the explicit
construction of the partition. When the maximum degree ∆ of G is sufficiently large, the existence
of (ζ, k)-partition could be proved by the Lovász local lemma.

Proposition 29. Let k ≥ 1 be an integer and ξ ∈ (0, 1). For any graph G = (V, E) with maximum degree
∆ ≥ ∆0(k, ξ) = Ω( k2

ξ2 log k) has a (ξ, k)-degree partition.

We defer the proof of Proposition 29 to Section 4.3. Now, we are ready to prove Theorem 9.

Proof of Theorem 9. For simplicity, we just fix ξ = 1. Note that M-coupling-independence directly
implies ⌈M⌉-coupling-independence. We take k = ⌈4 ⌈M⌉ /η⌉, which implies k > 2 ⌈M⌉ auto-
matically. By Proposition 29, when ∆ ≥ ∆0(k, 1) = Ω(k2 log k) = Ω(M2

η2 log M
η ), graph G has a

(1, k)-partition. We make a summary of what we have as follow:

• µ is ⌈M⌉-coupling-independence;

• G has (1, k)-degree partition and k ≥ 2 ⌈M⌉.

Then, by Theorem 28, we have

TGD
rel (µ) ≤ 2k−2⌈M⌉ · T(4⌈M⌉/⌈4⌈M⌉/η⌉)

rel (µ) ≤ 2O(M/η) · T(η)
rel (µ),

where in the last inequality, we use the fact that k = O(M/η) and 4 ⌈M⌉ ≤ ⌈4 ⌈M⌉ /η⌉ · η.

Now, we only left to prove Theorem 28. Let µ be a Gibbs distribution on graph G = (V, E).
Suppose G has a partition V = U1 ⊎U2 ⊎ . . . ⊎Uk. We note that for 1 ≤ i ≤ k, it is possible that Ui
is empty. Let 1 ≤ ℓ ≤ k be an integer. Consider the following k↔ ℓ down-up walk defined on the
partition. It starts from an arbitrary X ∈ Ω(µ) and it does as follows in each step:
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• pick a subset R ⊆ [k] with |R| = ℓ uniformly at random;

• resample XV\UR
∼ µV\UR

(· | XR), where UR = ∪i∈RUi.

In the down walk, it picks a subset R ⊆ [k] of size ℓ and remove the configuration at V \UR. In
the up walk, it resamples the configuration on V \UR conditional on the configuration on UR. Let
Trel(k, ℓ) denote the relaxation time of the above k ↔ ℓ down-up walk. This down-up walk is a
block dynamics for the Gibbs distribution µ. In each step, it picks random block UR and update the
values on other variables conditional on UR.

The following result bound the relaxation time of the k↔ (k− 2M) down-up walk.

Lemma 30. Let M ≥ 1 and k ≥ 2M be two integers. For any Gibbs distribution µ on graph G, if µ satisfies
M-coupling independence, then for any partition U1, · · ·Uk of G, the relaxation time of k ↔ (k − 2M)
down-up walk satisfies Trel(k, k− 2M) ≤ 2k−2M.

Lemma 30 is proved in Section 4.1. It follows from the standard local-to-global paradigm. How-
ever, unlike the usual situation, the “local” part here is actually non-local in the sense that it may
have exponential sized influence matrix or correlation matrix. We surpass this obstacle by working
with coupling independence instead of standard spectral independence condition in [ALO20].

Then, according to standard comparison argument between the blockdynamics and theGlauber
dynamics, we can bound the relaxation time of the Glauber dynamics by the relaxation time of the
block dynamics. Taking into account that the block dynamics actually runs on a (ξ, k)-partition,
we have the following result which is proved in Section 4.2.

Lemma 31. For any Gibbs distribution µ on graph G, if G has a (ξ, k)-partition U1, · · · , Uk. Then for any
0 ≤ ℓ ≤ k− 1, the relaxation time of Glauber dynamics is bounded by

TGD
rel (µ) ≤ Trel(k, ℓ) · T(η(ℓ))

rel (µ), where η(ℓ) = (1 + ξ) · k− ℓ

k
,

and Trel(k, ℓ) denotes the relaxation time of the k↔ ℓ down-up walk on the partition U1, · · · , Uk.

Now, we are ready to prove Theorem 28.

Proof of Theorem 28. Pick ℓ = k− 2M and combine Lemma 30 and Lemma 31.

4.1 Relaxation Time of Block Dynamics via Coupling Independence

In this section, we prove Lemma 30. To do so, we introduce some auxiliary Markov chains to help
us analyze the relaxation time of k ↔ (k− 2M) down up walk. Let R ⊆ [k] with size |R| = r. For
any τ ∈ [q]UR , we define the (k− r) ↔ 1 down up walk on µτ

V\UR
. The chain starts from arbitrary

Y ∈ Ω(µτ
V\UR

). In each step, it does as follows

• pick an index j ∈ [k] \ R uniformly at random and let Λ = V \ R \Uj;

• resample YΛ ∼ µΛ(· | YUj , τ).

In words, in thisMarkov chain, the configuration on R is fixed by τ and the configuration on V \UR
is free. Hence, we have k− r levels in total. In the down walk, it picks one index j and remove the
configurations on all V \UR except Uj, and thus the chain goes to level 1. In the up walk, it goes
back to the level s by sampling a random configuration on Λ conditional on YUj and τ. Again, let
Tτ
rel(k− r, 1) denote the relaxation time of (k− r)↔ 1 down-up walk conditioning on τ.
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Proposition 32 ([AL20]). Let 0 ≤ ℓ ≤ k− 1. If there exists γ0, γ1, . . . , γℓ−1 such that for any 0 ≤ r ≤
ℓ− 1, any R ⊆ [k] with |R| = r, any τ ∈ [q]UR , Tτ

rel(k− r, 1) ≤ γr, then the k↔ ℓ down-up walk satisfies

Trel(k, ℓ) ≤
ℓ−1

∏
i=0

γi.

The proof of Proposition 32 follows from standard local to global argument in [AL20]. We give
a simple proof in Appendix A for the completeness.

Finally, the relaxation time bound for (k − r) ↔ 1 down-up walk could be established from
coupling independence via path coupling.

Lemma 33. If µ satisfies M-coupling-independent, then for any 0 ≤ r ≤ k − 2M, any R ⊆ [k] with
|R| = r, and any pinning τ ∈ [q]UR , it holds that

Tτ
rel(k− r, 1) ≤ γr = 2.

Proof. We use path coupling to analyze the (k − r) ↔ 1 down-up walk. For the simplicity of
notation, we denote UR = V \UR. Fix R ⊆ [k] and τ ∈ [q]UR . Note that µτ

UR
is a distribution over

[q]UR . One may assume UR is not empty. Otherwise, the lemma is trivial.
Fix two configurations X and Y in [q]UR (not necessarily feasible in µτ

UR
) that differs only at

single vertex v0. We couple the transition (X, Y) → (X′, Y′) of (k − r) ↔ 1 down-up walk as
follows

• sample the same j ∈ [k] \ R, construct the same Λ = UR∪{j};

• if v0 /∈ Uj, let X′Uj
= Y′Uj

= XUj = YUj and perfectly couple X′Λ and Y′Λ;

• if v0 ∈ Uj, use the coupling in Definition 7 to sample (X′′, Y′′) where X′′ ∼ µ
τ∧XUj and

Y′′ ∼ µ
τ∧YUj and let X′ = X′′UR

and Y′ = Y′′UR
.

We can apply the coupling in Definition 7 because µ is M-CI. Specifically, we apply the coupling
with pinnings τ ∧XUj and τ ∧YUj . Both X′′, Y′′ returned by the coupling are full configurations on
V. We take partial configurations on U to get X′ and Y′. We have Hρ(X′, Y′) = Hρ(X′′, Y′′) because
X′′UR

= Y′′UR
= τ. It is straightforward to verify both X → X′ and Y → Y′ follows the transition rule

of (k− r)↔ 1 down-up walk. We have the following result

E
[
Hρ(X′, Y′) | X, Y

]
≤ M

k− r
· ρ(v0) =

M
k− r

Hρ(X, Y) ≤ 1
2

Hρ(X, Y),

where the last inequality holds because k− r ≥ 2M.
By path coupling argument, for any Z1 and Z2 in [q]U (Z1 and Z2 may differ at multi vertices),

there exists a coupling (Z1, Z2) → (Z′1, Z′2) such that E
[
Hρ(Z′1, Z′2) | Z1, Z2

]
≤ (1− 1

2 )Hρ(Z1, Z2).
Hence, the step-wise decay coupling implies the relaxation time Tτ

rel(s, 1) ≤ 2.

Now, we are ready to prove Lemma 30. Combining Proposition 32 and Lemma 33,

Trel(k, k− 2M) ≤
k−2M−1

∏
i=0

γi = 2k−2M.
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4.2 Compare Glauber Dynamics to Block Dynamics (Proof of Lemma 31)

In this section, we will prove Lemma 31. Let 0 ≤ ℓ < k be the integer in theorem. Recall that G
has a (ξ, k)-degree partition V = U1 ⊎ . . . ⊎Uk. According to Proposition 21, the relaxation time
of the k → ℓ down up walk implies the block factorization of variance as follow: for any function
f : Ω(µ)→ R, it holds that

Varµ [ f ] ≤ Trel(k, ℓ)

( k
k−ℓ)

∑
S⊆[k]:|S|=k−ℓ

µ[VarUS [ f ]] =
Trel(k, ℓ)

( k
k−ℓ)

∑
S⊆[k]:|S|=k−ℓ

∑
τ∈[q]V\US

µV\US
(τ)Varµτ [ f ] .

In distribution µτ, consider the graph G[US]. By Definition 27, the maximum degree of the
subgraph is at most (1 + ξ) k−ℓ

k ∆ ≤ η(ℓ)∆. Let n be the number of vertices in V. We can apply
Definition 8 on µτ to obtain

Varµτ [ f ] ≤ T(η(ℓ))
rel (µ)

1
n ∑

v∈V
µτ[Varv [ f ]] = T(η(ℓ))

rel (µ)
1
n ∑

v∈US

µτ[Varv [ f ]],

where the last equation holds because the values on V \ Ui are fixed and so the variance is 0.
Combining the above two inequalities together implies

Varµτ [ f ] ≤ T(η(ℓ))
rel (µ)

Trel(k, ℓ)

( k
k−ℓ)

· 1
n ∑

S⊆[k]:|S|=k−ℓ
∑

v∈US

µ[Varv [ f ]]

= T(η(ℓ))
rel (µ)

(k− ℓ)Trel(k, ℓ)
k

· 1
n ∑

v∈V
µ[Varv [ f ]] ≤ T(η(ℓ))

rel (µ)Trel(k, ℓ) · 1
n ∑

v∈V
µ[Varv [ f ]].

This proves TGD
rel ≤ T(η(ℓ))

rel (µ) · Trel(k, ℓ).

4.3 Partition the Graph via Local Lemma (Proof of Proposition 29)

Let G = (V, E) be a graph. For any vertex v ∈ V, we use Γv to denote the neighborhood of v.
We use the Lovász local lemma to prove the existence. For each vertex v, sample an index i ∈ [k]

uniformly and independently and let v join the set Ui. For each v ∈ V, define bad event Bv as there
exists i ∈ [k] such that |Γv ∩Ui| > (1+ξ)∆

k . Suppose the degree of v is 1 ≤ d ≤ ∆. Fix i ∈ [k]. For
each j ∈ [d], we use Xj ∈ {0, 1} to indicate whether the j-th neighbor of v belongs to Ui. Then

Pr
[
|Γv ∩Ui| >

(1 + ξ)∆
k

]
≤ Pr

[
d

∑
i=1

Xj ≥
d
k
+

ξ∆
k

]
≤ exp

(
−2ξ2∆2

dk2

)
≤ exp

(
−2ξ2∆

k2

)
,

where the tail bound follows from Hoeffding’s inequality. By a union bound,

Pr [Bv] ≤ k exp
(
−2ξ2∆

k2

)
.

Finally, Bu and Bv are dependent with each other only if distG(u, v) ≤ 2. The maximum degree of
dependency graph is at most ∆2− 1. The Lovász local lemma says the partition in the lemma exists
if e · ∆2 · ke−2ξ2∆/k2

< 1, which is true if ∆ = Ω( k2

ξ2 log k). This finishes the proof of Proposition 29.
We remark that to prove the results about Glauber dynamics, we only use this partition in the

analysis and we do not need to explicitly construct the partition.
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5 A Fast Sampling Algorithm
In this section, we prove Theorem 13. We will use the same setting as Section 4. Assume G has
a (1, k)-degree partition V = U1 ⊎ U2 ⊎ · · · ⊎ Uk. By Lemma 26 and Section 4.3, not only such
partition exists, but we can construct it explicitly in linear time in expectation. We can further
modify it to obtain a construction algorithm that runs in worst case linear time. Let T be the run-
ning time of the Las Vegas algorithm. By definition, T is a random variable with E [T] = O(n).
By the Markov inequality, if we run the Las Vegas algorithm until time 2E [T], then it halts with
probability Pr [T ≤ 2E [T]] = 1− Pr [T ≥ 2E [T]] ≥ 1/2. Hence, we can run log2

2
ε copies of Las

Vegas algorithm until time 2E [T]. If there is at least one copy halts, then we use that partition to
continue. If none of them halts, then we output an arbitrary sample. The latter case will contribute
to the TV-distance but it only happens with probability (1/2)log2

2
ε = ε/2. Hence, in the rest part

of this section, we can assume the partition U1, · · · , Uk is already provided for simplicity.
We choose k =

⌈
4⌈M⌉

η

⌉
as we did in the proof of Theorem 9 in Section 4, where M, η are pa-

rameters used in Theorem 13. For convenience, for R ⊆ [k], we will use UR to denote ∪i∈RUi and
ΛR = V \ UR. Then, for any R ⊆ [k] with XUR ∈ Ω(µUR), we will consider the (k − |R|) ↔ 1
down-up walk on the conditional distribution µΛR(· | XUR). To simplify the notation, we will use
the following notation.

Definition 34. We use the notion µ[XUR ] to denote the distribution µΛR(· | XUR) = µV\UR
(· | XUR).

Recall that it starts from an arbitrary Y = YΛR ∈ Ω(µ[XUR ]), in each step,

• pick i ∈ [k] \ R uniformly at random;

• resample YΛR∪{i} ∼ µ[XUR ⊎YUi ].

In the rest of this section, we will denote this down-up walk as PX(UR).
Now, in order to have a fast sampling algorithm for the distribution µ, we try to implement P∅

on this partition. Note that after picking the index i ∈ [k], the resample phase of P∅ is non-trivial.
Suppose i is fixed, now the problem is reduced to sampling from µ[XUi ]. We could then further
decompose this task by running PX(Ui).

Weuse the above scheme recursively until the problem is reduced to sampling from µ[XUR ] such
that |R| = k − 2M. Then, in order to sample from µ[XUR ], we simply run the Glauber dynamics
for plenty of steps.

Formally, we will use the algorithm SimDownUp(X, UR) in Algorithm 1 to simulate the down-
up walk PX(UR) or the Glauber dynamics (depends on |R|) for plenty of steps. We will determine
the parameters T0 and T1 in Algorithm 1 later. This should be able to generate a random sample
within small TV-distance from µ[XUR ].

Now, we are ready to prove Theorem 13.

Proof of Theorem 13. In order to prove Theorem 13, Let X ∈ Ω(µ) be an arbitrary state. We only
need to verify that SimDownUp(X,∅)will eventually returns a sample Y such thatDTV (Y ∥ µ) ≤ ε
after the time claimed in Theorem 13. First, we fix T0 and T1 as follow

T0 =
⌈

TGD
mix(µ, η) · C · log

(n
ε

)⌉
,

T1 =
⌈

C · log
(n

ε

)⌉
,

where C = O(M/η). Without loss of generality, we may assume that n is sufficiently large such
that 2 ≤ 2C ≤ log n to simplify the formulations. Since otherwise, n is a constant and we can run
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Algorithm 1:
1 SimDownUp(X, UR) begin
2 Let Y = X be the initial state;
3 if |M| ≥ k− 2M then
4 update YΛR by running Glauber dynamics on µ[XUR ] for T0 steps;
5 else
6 for t = 1, · · · , T1 do
7 pick i ∈ [k] \ R uniformly at random;
8 update YΛR∪{i} = SimDownUp(Y, XUR ⊎YUi);
9 end

10 end
11 return YΛR ;
12 end

a brute force algorithm to generate samples. Then, T1 ≤ 1 + C log n
ε ≤

(
log n

ε

)2 and the running
time claimed in Theorem 13 follows directly from our setting for T0 and T1.

Now, we are only left to show that the sample returned by SimDownUp(∅) has the desired
accuracy. To achieve this, we will show that for every R ⊆ [k] such that 0 ≤ |R| ≤ k− 2M and for
all X ∈ Ω(µ), it holds that

DTV (SimDownUp(X, UR) ∥ µ[XUR ]) ≤
( ε

n

)C/4 ρmax

ρmin

k−2M−|R|

∑
i=0

Ti
1 =: F(|R|). (15)

Then, by T1 ≥ 1, k = ⌈4 ⌈M⌉ /η⌉ ≤ n, and the fact that ρmax/ρmin = poly(n), we note that

F(0) ≤
( ε

n

)C/4
poly(n)Tk

1 ≤
( ε

n

)C/4
poly(n)

(
log
(n

ε

))2k
,

where in the last inequality, we use the assumption 2 ≤ 2C ≤ log n make the formulation simple.
Now, it is direct to see that there exists a C of the order O(M/η) such that F(0) ≤ ε. This proves
Theorem 13.

Now, we only left to prove (15). We will prove (15) via induction on |R|.

Base case |R| = k− 2M. In this case, SimDownUp(X, UR) degenerates to the Glauber dynamics
on µ[XUR ] that runs T0 steps. By our assumption on T0, this gives

DTV (SimDownUp(X, UR) ∥ µ[XUR ]) ≤
( ε

n

)C
≤ F(k− 2M).

Inductive case 0 ≤ |R| < k − 2M. Fix 0 ≤ r < k − 2M. Suppose (15) holds when r <
|R| ≤ k − 2M, we will show that it also holds for |R| = r. Recall that we use ΛR to denote
V \ UR. Suppose X is the initial state used in Algorithm 1. We run PX(UR) from X(ΛR) for T1
steps and we denote these steps as X(ΛR) = Z0, Z1, · · · , ZT1 . Similarly, we denote each steps of
SimDownUp(X, UR) as X(ΛR) = Y0, Y1, · · · , YT1 . We note that Zis andYis here are partial configura-
tions on Ω(µΛR). According to this definition we know ZT1 ∼ PT1

X(UR)
(X(ΛR), ·) and YT1 is returned

from SimDownUp(X, UR). By the triangle inequality,

DTV (SimDownUp(X, UR) ∥ µ[XUR ]) ≤ DTV (ZT1 ∥ YT1) +DTV (ZT1 ∥ µ[XUR ]) . (16)
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We note that the TV-distance between ZT1 and µ[XUR ] can be bounded via the decay of the Marko-
vian coupling, which is already done in the proof of Lemma 33. This means

DTV (ZT1 ∥ µ[XUR ]) ≤
(

1
2

)T1

· ρmax

ρmin
· n ≤

( ε

n

)C/4
· ρmax

ρmin
, (17)

where, in the last equation, we use the fact that C ≥ 4 to simplify the formula.
In order to bound DTV (ZT1 ∥ YT1), we use the standard way to construct a coupling between

ZT1 and YT1 . Note that SimDownUp(X, UR) and PX(UR) only differs at the resample stage. Recall that
for R ⊆ [k], we use ΛR to denote V \UR. For t = 1, · · · T1, We build the coupling between Zt and
Yt recursively as follow:

1. sample the same index i ∈ [k] \ R and let Zt(Ui) = Zt−1(Ui) and Yt(Ui) = Yt−1(Ui);

2. in the resampling stage:

• if Zt−1 = Yt−1, then Zt(ΛR∪{i}) and Yt(ΛR∪{i}) are sampled from the optimal coupling
between µ[X(UR) ⊎Yt−1(Ui)] and SimDownUp(Yt−1 ⊎ X(UR), X(UR) ⊎Yt−1(Ui));

• otherwise, if Zt−1 ̸= Yt−1, then Zt(ΛR∪{i}) and Yt(ΛR∪{i}) are sampled from µ[X(UR)⊎
Yt−1(Ui)] and SimDownUp(Yt−1 ⊎ X(UR), X(UR) ⊎Yt−1(Ui)) independently.

For simplicity, weuse ν[X(UR)⊎Yt−1(Ui)] to denote the distribution generated by SimDownUp(Yt−1⊎
X(UR), X(UR) ⊎Yt−1(Ui)). Hence, according to the coupling lemma (Lemma 22), we have

DTV (ZT1 ∥ YT1) ≤ Pr [ZT1 ̸= YT1 ] ≤ Pr [∃t, s.t. t is the first time that Zt ̸= Yt]

(union bound) ≤
T1

∑
t=1

Pr
[
Zt ̸= Yt and ∀j<tZj = Yj

]
≤

T1

∑
t=1

Pr [Zt ̸= Yt | Zt−1 = Yt−1]

=
T1

∑
t=1

Ei,Yt−1 [DTV (µ[X(UR) ⊎Yt−1(Ui)] ∥ ν[X(UR) ⊎Yt−1(Ui)])]

(I.H.) ≤ T1 · F(|R|+ 1). (18)

Combining (16), (17), and (18), we have

DTV (SimDownUp(X, UR) ∥ µ[X(UR)]) ≤ F(|R|+ 1) · T1 +
( ε

n

)C/4
· ρmax

ρmin
.

Plugging in the definition of F in (15), we finish the proof of (15) and the proof of Theorem 13.

6 Mixing Time Comparison for Monotone Systems
In this section, we prove Theorem 15. For monotone spin systems, the famous censoring inequality
states that censoring updates never decreases the distance to stationary. We refer the readers to
[PW13] and the textbook [LPW17] for details. We referDefinition 14 for the definition ofmonotone
spin systems. Then the censoring inequality on monotone spin systems is stated as follow.
Lemma 35 ([PW13]). Let µ be a monotone spin system. Let v1, v2, · · · , vm be a random sequence of
vertices. Let π be the distribution resulting from updates at v1, · · · , vm, starting from the maximum state.
Let ν be the distribution resulting from updates at a random subsequence vi1 , · · · , vik , also started from
the maximum state. The randomness for the updates is independent from the randomness of the sequence
v1, v2, · · · , vm and the subsequence vi1 , · · · , vik . Then π ⪯ ν, and

DTV (π ∥ µ) ≤ DTV (ν ∥ µ) .
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Formonotone spin systems, the censoring inequality allows us to compare the Glauber dynam-
ics with the simulate algorithm SimDownUp in Algorithm 1. However, to finish the comparison,
we need a slightly stronger partition. We define it formally as follow.

Definition 36. Let U1, · · · , Uk be a (ζ, k)-partition of V as defined in Definition 27. If it further
holds that |Ui| ≥ n

2k , then we say U1 · · · , Uk is a balanced (ζ, k)-partition.

The following result shows that such partition exists.

Proposition 37. Let k ≥ 1 be an integer and ξ ∈ (0, 1). Then, any n-vertices graph G = (V, E) such that
n = Ω(k log k) and the maximum degree ∆ = Ω( k2

ξ2 log k) has a balanced (ξ, k)-degree partition.

Proof. For each vertex v, sample an index iv ∈ [k] uniformly at random and let v join the set Uiv .
According to the proof of Proposition 29 in Section 4.3 and Lemma 26, when ∆ = Ω( k2

ζ2 log k),

Pr
[
(Ui)i∈[k] is a (ζ, k)-partition

]
≥
(

1− 1
∆ + 1

)n

.

Then for any t ∈ [k], let Yv = 1[iv = t] to indicate that if vertex v is added to Ut. Let Y = ∑v Yv and
we have E [Y] = n/k directly. Then by the Chernoff bound, it holds that

Pr
[
|Ut| <

n
2k

]
≤ Pr [Y ≤ E [Y] /2] ≤ exp (−E [Y] /8) = exp

(
− n

8k

)
.

Then according to a union bound

Pr
[
(Ui)i∈[k] is a balanced (ζ, k)-partition

]
≥ 1− Pr

[
(Ui)i∈[k] is not a (ζ, k)-partition

]
− ∑

t∈[k]
Pr
[
|Ut| <

n
2k

]
≥
(

1− 1
∆ + 1

)n

− k exp
(
− n

8k

)
,

which is positive when n = Ω(k log k) and ∆ = Ω(k). In summary, when ∆ = Ω( k2

ζ2 log k) and
n = Ω(k log k), then such partition exists.

Proof of Theorem 15. In this prove, we will basicly use the same setting as the proof of Theorem 13
in Section 5. However, to apply the censoring inequality, we need to do the following changes:

• In Section 5, we are using the (1, k)-partition for the proof. Here, we use the stronger balanced
(1, k)-partition. The existence of such partition is guaranteed by Proposition 37. Since k =
O(M/η) is only a constant depending on M and η, we can assume n = Ω(k log k) without
loss of generality to meet the requirement in Proposition 37.

• Also note that in the proof of Theorem 13 in Section 5, the initial state X ∈ Ω(µ) for the
algorithm SimDownUp(X,∅) is picked arbitrarily from Ω(µ). Here, in order to use censoring
inequality, we have to use the maximum state X0 ∈ Ω(µ) as initial state.

Let Tsim = TGD
mix(µ, η)

(
log 2n

ε

)O(M/η) be the number of updates performed byGlauber dynamics
required by Theorem 13. We note that the extra ∆ in Theorem 13 is used to implement one step of
the Glauber dynamics.
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In this manner, the algorithm SimDownUp(X0,∅) can be seen as repeatedly applying Glauber
dynamics updates Pv (see (7)) at some randomly chosen vertex v to the current states initiating
from the maximum over the whole state space. Suppose the update sequence of this process is

v1,1, · · · , v1,T0 ,
v2,1, · · · , v2,T0 ,
· · · , · · · , · · · ,
vN,1, · · · , vN,T0 ,

where T0 is the parameter defined in Algorithm 1 and we use N to denote Tsim/T0. We note that
for each 1 ≤ i ≤ N, the vertices

{
vi,j
}

1≤j≤T0
are picked independently from a subset ΛRi = V \URi

(Ri ⊆ [k]) uniformly at random. Note that Ri is also picked from [k] according to some distribution.
We run the Glauber dynamics P from themaximal state for CTsim steps where C is some integer

parameter that we will determine later. The update sequence of the Glauber dynamics is

u1,1, · · · , u1,CT0 ,
u2,1, · · · , u2,CT0 ,
· · · , · · · , · · · ,

uN,T0 , · · · , uN,CT0 ,

where each ui,j is picked from V uniformly at random. We consider an indicator Ii,j = 1[ui,j ∈ ΛRi ].
Note that conditioning on Ii,j = 1, it holds that ui,j is distributed uniformly over ΛRi .

Now, we consider a censored Glauber dynamics P1 starting from the maximum state. An up-
date ui,j in P is censored P1 if Ii,j = 0. After that, we further censor P1 to P2 to make sure that there
are at most T0 updates for each row i, 1 ≤ i ≤ N.

For fixed I·,·, let the resulting distribution of P be πI and the resulting distribution of P2 be νI.
By the censoring inequality in Lemma 35

DTV (πI ∥ µ) ≤ DTV (νI ∥ µ) .

Let ρ be the resulting distribution of the algorithm SimDownUp(X0,∅). By the triangle inequality:

DTV (πI ∥ µ) ≤ DTV (νI ∥ ρ) +DTV (ρ ∥ µ) .

Taking expectation w.r.t. I·,· at both side, we arrive at

EI [DTV (πI ∥ µ)] ≤ EI [DTV (νI ∥ ρ)] +DTV (ρ ∥ µ) . (19)

By a standard coupling argument, it holds that DTV (π ∥ µ) ≤ EI [DTV (πI ∥ µ)]. It sufficient for
us to bound the RHS of (19). According to our choice of Tsim and Theorem 13, we know that
DTV (ρ ∥ µ) ≤ ε/2. Now, it is sufficient for us to show that EI [DTV (νI ∥ ρ)] ≤ ε/2. Note that
when I·,· is picked that P2 has exactly T0 updates in each row, then P2 and SimDownUp becomes the
same random process, and hence DTV (νI ∥ ρ) = 0. Hence we have

EI [DTV (νI ∥ ρ)] ≤ 1− PrI [P2 has exactly T0 updates in each row]

= PrI [∃i, P1 has < T0 updates in the i-th row]

(union bound) ≤∑
i

PrI [P1 has < T0 updates in the i-th row] . (20)

For the i-th row, according to the definition of the balanced (1, k)-partition (Ui)i∈[k] in Definition 36,
we note that each Ii,j = 1 with probability |ΛRi | / |V| ≥ 1

2k . This means (Ii,j)1≤j≤CT0 are i.i.d
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random 0/1 random variables with mean E
[
Ii,j
]
≥ 1

2k . Let X = ∑1≤j≤CT0
Ii,j, we know E [X] ≥

CT0
2k . According to the Chernoff bound

Pr [X < T0] = Pr
[

X <
CT0

2k
· 2k

C

]
≤ Pr

[
X ≤ E [X] · 2k

C

]
≤ exp

(
−E [X] (1− 2k/C)2

2

)
≤ exp

(
−CT0

10k

)
(21)

where we use the assumption C ≥ 10k to simplify the formulation.
Combining (20) and (21), it holds that

EI [DTV (νI ∥ ρ)] ≤ N · exp
(
−CT0

10k

)
.

It is then directly to notice that in order to make EI [DTV (νI ∥ ρ)] ≤ ε/2, we need

C ≥ 10k
T0

log
2N
ε

.

Recall the parameters related to SimDownUp that we have k = O(M/η) and

T0 = TGD
mix ·O(M/η) · log

(
2n
ε

)
,

N ≤ Tsim = TGD
mix(µ, η)

(
log

2n
ε

)O(M/η)

.

This means we can assume n to be sufficiently large and pick C = O(M/η). We finish the proof by
noticing that the number of updates performed by the Glauber dynamics is bounded by CTsim =

TGD
mix(µ, η)

(
log 2n

ε

)O(M/η).

7 Establish Coupling Independence via Self-Avoiding-Walk Tree
Let µ be the Gibbs distribution of a 2-spin system with parameters β, γ, λ on a connected graph
G = (V, E). Assume there is an arbitrary ordering of vertices in G. We fix an arbitrary total order
< on V. For any vertex r ∈ V, the self-avoiding-walk (SAW) tree [Wei06, LLY13] TSAW(G, r) is a
tree with pinnings on some leaves. The tree enumerates all self-avoiding-walks v0, v1, . . . , vℓ in G
starting from r = v0 such that

• all vertices v0, v1, . . . , vℓ−1 are distinct;

• either the degree of vℓ is 1 in G or vℓ is a cycle-closing vertex (i.e. vi = vℓ for some i < ℓ);

• for every cycle-closing vertex vℓ in a SAW v0, v1, . . . , vℓ with vℓ = vi for some i < ℓ, the value
of vℓ is fixed as − if vi+1 > vℓ−1 and the value of vℓ is fixed as + if vi+1 < vℓ−1.

In the definition of the SAW tree, each vertex v ∈ V in graph G may have multiple copies in
TSAW(G, r). We say a copy is free if its value is not fixed. One can define a two-spin system with
pinning on TSAW using the same parameters β, γ, λ. We use π to denote the Gibbs distribution on
TSAW(G, r).

We can extend a pinning in G to a pinning in TSAW(G, r). Let Λ ⊆ V and r /∈ Λ. Given any
pinning τ ∈ {−,+}Λ, for any vertex v ∈ Λ, we find all copies v̂ of v in TSAW(G, r) such that v̂ is free,
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fix the value of v̂ as τv, and remove all descendants of v̂. Again, the pinning only appears in leaves
of this new tree. We slightly abuse the notation to denote the new SAW tree by Tτ

SAW(G, r) and the
Gibbs distribution in this SAW tree by πτ. We also call the SAW tree Tτ

SAW(G, r) as TSAW(G, r)with
pinning τ.

The SAW tree also admits an inductive definition (e.g. see [CLV20]), which will be used in our
analysis. Suppose r has d neighbors u1 < u2 < . . . < ud. We split r into r1, r2, . . . , rd and connect ri
to ui to obtain a graph G. Let Ui denote the pinning that fixes the value of rj with j < i to be − and
the value for rj with j > i to be +. To construct the SAW tree Tτ

SAW(G, r), one can first construct all
Ti = Tτ∧Ui

SAW (G− ri, ui) and then connect r to the root of each Ti.
Recall the definition of influence matrix Ψτ

π in (4). We list some standard properties of SAW
tree, which are widely-used for establishing the spectral independence for 2-spin systems [ALO20,
CLV20, CFYZ21].

Proposition 38 ([Wei06, ALO20]). For any SAW tree T = Tτ
SAW(G, r) with Gibbs distribution π,

• πr = µτ
r , where µ is the Gibbs distribution on graph G;

• for any free copy û of u, the degree of û in T is the same as the degree of u in G;
• for any u, v in T, any w in the path between u and v, Ψτ

π(u, v) = Ψτ
π(u, w)Ψτ

π(w, v).

We give the following result that relates the coupling independence to the influences in SAW
tree. Many previous works proved the ℓ∞ spectral independence for the SAW trees, which is a
sufficient condition for the spectral independence of the original Gibbs distribution on G. With
this lemma, we can transform them into coupling independence results in a black-box manner.
The proof of the lemma is similar to the recursive coupling introduced in [GMP05].

Lemma 39. For any Λ ⊆ V, any τ ∈ {−,+}V\Λ, any v ∈ Λ, there exists a coupling (X, Y) of µτ∧v−
Λ and

µτ∧v+
Λ , where τ ∧ vc is the condition τ together with v taking c ∈ {−,+}, such that

∀u ∈ Λ \ {v}, Pr [Xu ̸= Yu] ≤ ∑
û:û is a copy of u in Tτ

SAW(G,v)
|Ψτ

π(v, û)|, (22)

where Ψτ
π is the influence matrix for Gibbs distribution πτ in TSAW(G, v).

Proof. Fix parameters β, γ, λ of the 2-spin system. For any Gibbs distribution µ on a graph G =
(V, E), any pinning τ ∈ [q]V\Λ, where Λ ⊆ V, let |Λ| denote the number of free variables for µτ.
For any k ≥ 1, we use a induction proof to show that any conditional Gibbs distribution µτ with
k free variables satisfies (22) for any free variable v, where µ can be defined on an arbitrary finite
graph as long as µτ has k free variables. The base case k = 1 is trivial.

Suppose the induction hypothesis holds for all k′ < k. We prove it for conditional Gibbs dis-
tribution µτ with k = |Λ| free variables, where µ is defined on G = (V, E) and Λ ⊆ V. Let
u1 < u2 < · · · < ud be the neighbors of v in G. Then, we construct a graph G from G by splitting v
into {v1, v2, · · · , vd}. Using the same parameters β, γ, λ, we can define a Gibbs distribution µ on G.
Define the pinning σi such that all vj for j ≤ i take value - and all vj for j > i take the value +. To
simplify the notation, we denote ν = µτ

Λ and νi = µτ∧σi
Λ\v . It is easy to see νv+

Λ\v = ν0 and νv−
Λ\v = νd.

To couple νv+ and νv− , we only need to couple ν0 and νd.
The construction of the coupling (X0, Xd) between ν0 and νd is achieved by path coupling

method [BD97]. Specifically, we construct couplings (Xi−1, Xi) between νi−1 and νi for all 1 ≤
i ≤ d. We first sample (X0, X1) from the first coupling, then conditional on the value Xi−1, we
sample Xi from the i-th coupling. Finally, we get a coupling (X0, Xd) between ν0 and νd.
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Consider the i-th coupling (Xi−1, Xi). The only difference between νi−1 and νi is the pinning at
vertex vi. The only neighbor of vi is ui. Each distribution νi has |Λ \ v| = k− 1 free variables, so
we can use the I.H. on distribution νi. The coupling does as follows.

• Couple Xi−1(ui) and Xi(ui) via the optimal coupling between marginal distributions.

• If Xi−1(ui) = Xi(ui), then Xi−1 = Xi can be coupled perfectly. Because, by conditional
independence, given the same value c on ui, the conditional distribution on Λ \ v induced
from νi and νi−1 are the same, i.e. ν

uc
i

i−1,Λ\v = ν
uc

i
i,Λ\v for any c ∈ {−,+}; If Xi−1(ui) ̸= Xi(ui),

by I.H., there is a coupling between ν
u−i
i,Λ\v and ν

u+
i

i,Λ\v satisfying (22), and we use this coupling
to couple all variables Λ \ v3 in Xi−1 and Xi.

By the construction of coupling, we have for any vertex u ∈ Λ and u ̸= v,

Pr [Xi−1(u) ̸= Xi(u)] = Pr [Xi−1(ui) ̸= Xi(ui)] · Pr [Xi−1(u) ̸= Xi(u) | Xi−1(ui) ̸= Xi(ui)] .

The first probability on the RHS is the total variation distance between twomarginals. Consider
SAW tree Tτ

SAW(G, v). The root v has d child u1, u2, . . . , ud. We use Ti to denote the subtree rooted
at ui. By the inductive definition of SAW tree, the tree Ti + v with the value of v being − (resp. +)
is exactly TSAW(G, ui) with pinning σi ∧ τ (resp. σi−1 ∧ τ). Since SAW tree preserves the marginal
distribution at the root ui (the first property in Proposition 38),

Pr [Xi−1(u) ̸= Xi(u)] = DTV (νi−1,ui ∥ νi,ui) = |Ψ
τ
π(v, ui)|.

Consider the second step of coupling. Recall that νi = µτ∧σi
Λ\v . Consider the SAW tree TSAW(G, ui)

with pinning τ ∧ σi. Let πτ∧σi
i denote its Gibbs distribution. Let Ψτ∧σi

πi denote the influence matrix
for πτ∧σi

i . By I.H, for any u ∈ Λ \ v,

Pr [Xi−1(u) ̸= Xi(u) | Xi−1(ui) ̸= Xi(ui)] ≤ ∑
û: copies of u in Tτ∧σi

SAW (G, ui)

|Ψτ∧σi
πi (ui, û)|.

Finally, we need to relate Tτ∧σi
SAW(G, ui) to Tτ

SAW(G, v). Recall Ti is the i-th subtree of the root v in
Tτ
SAW(G, v). Again, by the induction definition of the SAW tree, Ti + v with pinning + on v is

exactly Tτ∧σi
SAW(G, ui). By the conditional independence property, given the value of ui, every variable

in subtree Ti is independent from all variables outside Ti. Hence, for any û ∈ Ti, we have

Ψτ∧σi
πi (ui, û) = Ψτ

π(ui, û).

Combining all of above analysis together and using a union bound for path coupling, we have

Pr [X0(u) ̸= Xd(u)] ≤
d

∑
i=1

Pr [Xi−1(u) ̸= Xi(u)] ≤
d

∑
i=1
|Ψτ

π(v, ui)| ∑
û: copies of u in Ti

|Ψτ
π(ui, û)|

(by last property in Proposition 38) = ∑
û: copies of u in Tτ

SAW(G, v)
|Ψτ

π(v, û)|.

This finishes the induction step of the proof.
3We remark that ui ∈ Λ \ v and ui must take + (and −) in ν

u+
i

i (and ν
u−i
i ).
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8 Hardcore Model in Bipartite Graphs
We prove Theorem 5 and Theorem 6 in this section. First, let us recall the parameters. Let δ >
0, θ > 1 be two constants. Let G = (VL, VR, E) be a bipartite graph. Let ∆L ≥ 3 and ∆R denote
the degree in the left and right parts respectively. Assume λ ≤ (1 − δ)∆L and ∆R ≤ θ∆L. Let
V = VL ⊎ VR. Let µ over {−,+}V denote the hardcore distribution in graph G with fugacity λ,
where for any X ∼ µ corresponds the the independent set {v ∈ V | Xv = +} in graph G.

The proof can be outlined as follows. We use µL to denote the marginal distribution on L pro-
jected from µ. Note that µL is not a Gibbs distribution on graph G.

8.1 Coupling Independence for Marginal Distributions

Lemma 40. The marginal µL satisfies O(1/δ)-coupling-independence with ρ(v) = 1 for all v ∈ V.

The coupling independence of µL can be obtained from Lemma 39 and the SAW-tree analysis
in [CLY23]. Fix a pinningΛ ⊆ VL and τ ∈ {0, 1}VL\Λ. For any vertex v ∈ Λ, we need to showagood
coupling exists for µτ∧v+

L and µτ∧v−
L . Similar to Section 7, starting from a vertex v, we can define the

SAW tree TSAW(G, v) and extend the pinning τ to the SAW tree to obtain a hardcore distribution
πτ in SAW tree. We use Lk to denote the set of vertices in level k, where the root v is in the level
k = 0. Hence, all copies of vertices in VL are in level Lk for even k. When λ ≤ (1− δ)λc(∆L), the
following result is proved in [CLY23, see Theorem 2, Lemma 63, Lemma 64 and inequality (84)].

Lemma 41 ([CLY23]). For any k ≥ 0, ∑w∈L2k
|Ψτ

π(v, w)| ≤ ∆L
∆L−1 (1 + λ)∆L(1− δ

10 )
k.

By Lemma 39, we can easily transform the influence bound in [CLY23] into a coupling inde-
pendence result. We now prove Lemma 40.

Proof of Lemma 40. Note that τ in a pinning on VL \ Λ. Vertices in VR ⊎ Λ is free given τ. There
exists a coupling (X, Y) between µτ∧v+

Λ⊎VR
and µτ∧v−

Λ⊎VR
satisfying the condition in Lemma 39. We can

project both X into Λ ⊆ VL to obtain a coupling (XΛ, YΛ) between µτ∧v+
Λ and µτ∧v−

Λ . The expected
Hamming distance |XΛ ⊕YΛ| = |{u ∈ Λ | Xu ̸= Yu}| can be bounded by

E [|XΛ ⊕YΛ|] ≤ 1 + ∑
k≥1

∑
w∈L2k

|Ψτ
π(v, w)| ≤ ∆L

∆L − 1
(1 + λ)∆L ∑

k≥0
(1− δ

10
)k,

where the last inequality is from Lemma 41. Finally, note that ∆L
∆L−1 ≤ 1.5 and (1 + λ)∆L = (1 +

O( 1
∆L
))∆L = O(1). The expected Hamming distance is at most O(1/δ). Since this bound holds for

any pinning τ, we proved theO(1/δ)-coupling-independence for themarginal distribution µL.

8.2 Graph Partition for Bipartite Graphs

We partition all the vertices in the left part VL into k disjoint parts U1, U2, . . . , Uk such that for

∀v ∈ VR, ∀i ∈ [k], |Γv ∩Ui| ≤ ∆L, (23)

where Γv ⊆ VL denote neighbors of v ∈ VR in graph G. Since the degree of v ∈ VR is θ∆L, we
roughly need to partition VL into k = Ω(θ) parts, which can be achieved via local lemma.

Proposition 42. For any k ≥ ⌈2θ⌉, if ∆L = Ω(θ log(kθ)), then there exists a partition VL = U1 ⊎U2 ⊎
. . . ⊎Uk satisfying (23).
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Proof. Weuse the Lovász local lemma (Lemma26) to prove the existence. Wefirst set the parameter
k ≥ ⌈2θ⌉. For each vertex v ∈ VL, sample an index i ∈ [k] uniformly and independently and let v
join the set Ui. For each u ∈ VR, define bad event Bu as there exists i ∈ [k] such that |Γu ∩Ui| > ∆L.
Suppose the degree of v is 1 ≤ d ≤ ∆R ≤ θ∆L. We have d

k +
∆L
2 ≤ ∆L. Fix i ∈ [k]. For each j ∈ [d],

we use Xj ∈ {0, 1} to indicate whether the j-th neighbor of v belongs to Ui. Then

Pr [|Γu ∩Ui| > ∆L] ≤ Pr

[
d

∑
i=1

Xj ≥
d
k
+

∆L

2

]
≤ exp

(
−∆2

L
2d

)
≤ exp

(
−∆L

2θ

)
,

where the tail bound follows from Hoeffding’s inequality. By a union bound,

Pr [Bu] ≤ k exp
(
−∆L

2θ

)
.

Finally, Bu and Bv are dependent with each other only if distG(u, v) ≤ 2. The maximum degree of
dependency graph is at most θ2∆2

L. The Lovász local lemma says the partition in the lemma exists
if e · θ2∆2

L · k exp
(
−∆L

2θ

)
< 1, which is true if ∆L = Ω(θ log θk).

8.3 Relaxation Time and Mixing Time Bounds

Let M = O(1/δ) be the coupling-independence parameter. Without loss of generality, we as-
sume M is an integer at least 1. If not, we can around M up to an integer. We set parameter
k = max{⌈2θ⌉, 10M}. Let ∆0 = ∆0(θ, δ) = Θ(θ log(kθ)) = O(θ log θ

δ ) = Oδ,θ(1) be the threshold
for ∆L in Proposition 42 such that the good k-partition exists if ∆L ≥ ∆0.

Now, we consider two cases: ∆L < ∆0 = O(1) and ∆L ≥ ∆0. The first one is the easier case. We
claim the following result.

Proposition 43. Let δ ∈ (0, 1) and θ > 1 be two constants. For any hardcore model on a θ-balanced
bipartite graph G with fugacity λ, if ∆L < ∆0(θ, δ) and λ ≤ (1− δ)λc(∆L), then the relaxation time and
mixing time of Glauber dynamics is Oδ,θ(n) and Oδ,θ(n log n), where n is the number of vertices in G.

Proposition 43 can be proved by applying the technique in [CLV21] to themarginal distribution
µL and then compare some block dynamics on µL with the Glauber dynamics on µ. The proof
in [CLV21] works for spin systems with bounded maximum degree. Although µL is not a spin
system, the conditional independence results still hold on the power graph G2[VL] and the proof
technique can be applied. We give the proof of Proposition 43 in Appendix B.

With Proposition 43, we only need to consider the large degree case ∆ ≥ ∆0, where the partition
in Proposition 42 exists. Let U1, U2, . . . , Uk denote the partition of VL. Similar to Section 4.1, we
study the k↔ (k− ℓ) down-up walk on the partition. The only difference is that we now consider
the partition on VL, so the down-up walk is defined on the marginal distribution µL. Specifically,
in each step, given the current configuration X ∈ {−,+}VL , the down-up walk does as follows

• pick a subset S ⊆ [k] with |S| = ℓ uniformly at random;

• resample XUS ∼ µL,US(· | XVL\US
) = µUS(· | XVL\US

), where US = ∪i∈SUi.

Since µL is the marginal distribution on VL projected from µ, µL,US(· | XVL\US
) is the same as the

conditional distribution µUS(· | XVL\US
) induced from µ.

Let S ⊆ [k]with size |S| = s. LetU[k]\S = ⊎i∈[k]\SUi. For any τ ∈ [q]U[k]\S , we can similarly define
the s↔ 1 down-upwalk for distribution µL as that in Section 4.1. The only difference between here
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and Section 4.1 is that here we define down-up walks on µL, which is not a Gibbs distribution of
a spin system but the down-up walks in Section 4.1 are defined for Gibbs distributions. However,
both the local-to-global argument in Proposition 32 and the path argument in Lemma 33 work for
general distributions. Hence, the same proof in Section 4.1 implies the following result.

Lemma 44. The relaxation time of k↔ (k− 2M) down-upwalk for µL on partitionU1, U2, . . . , Uk satisfies
Trel(k, k− 2M) ≤ 2k−2M.

Lemma 44 shows that k ↔ (k − 2M) down-up walk for µL has a constant relaxation Oθ,δ(1).
Now, we relate this k ↔ (k− 2M) down-up walk for µL to the following block dynamics B on µ.
The block dynamics maintains a hardcore configuration X ∈ {−,+}V on the whole graph G. In
each step,

• pick a subset S ⊆ [k] with |S| = 2M uniformly at random;

• resample XUS∪VR ∼ µUS∪VR(· | XV\US
).

The difference between the above block dynamics on µ and down-upwalk on µL is that in the above
dynamics, we always resample the configuration onVR in every step. We prove the following result
by comparing B to the k↔ (k− 2M) down-up walk.

Lemma 45. The relaxation time for block dynamics B is at most 2k−2M.

Proof. We decompose the k ↔ (k − 2M) down-up walk into two steps. Given the current con-
figuration X ∈ {−,+}VL , the down operator D sample a uniformly random subset S ⊆ [k] with
|S| = 2M andmap X to XVL\US

, and the up operator complete the partial configuration XVL\US
into

a configuration X ∈ {−,+}VL by sampling from the conditional distribution. Recall the relaxation
time is equivalent to the contraction of the down-walk (Proposition 21). Lemma 44 implies that
for any distribution πL over {−,+}VL , it holds that

Dχ2(πLD ∥ µLD) ≤ (1− C)Dχ2(πL ∥ µL), (24)

where 0 < C = 2−k+2M < 1. Similarly, we can define a down operator DB for the block dynamics
B. Given a full configuration Y ∈ {−,+}V , let PL be the projection operator that maps Y to YVL .
Then, the down operator DB = PLD, where D is the down operator for the (k − 2M) down-up
walk. For any distribution π ∈ {0, 1}V , let πL = πPL, we have

Dχ2(πDB ∥ µDB) = Dχ2(πPLD ∥ µPLD)

= Dχ2(πLD ∥ µLD)

(by (24)) ≤ (1− C)Dχ2(πL ∥ µL)

= (1− C)Dχ2(πPL ∥ µPL)

(by data-processing inequality) ≤ (1− C)Dχ2(π ∥ µ). (25)

The above inequality implies the relaxation time of B.

Finally, we can prove Theorem 5 by comparing B to the Glauber dynamics.

Proof of Theorem 5. Let C = 2k−2M. Since k = O(θ + 1
δ ), we have C = 2O(θ+1/δ) is a constant. By
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Lemma 45, we have the following block factorization of variance.

∀ f : Ω(µ)→ R, Varµ [ f ] ≤ C
(

k
2M

)−1

∑
S∈( k

2M)

µ[VarUS∪VR [ f ]]

= C
(

k
2M

)−1

∑
S∈( k

2M)
∑

τ∈{−,+}VL\US

µVL\US
(τ)Varµτ [ f ] .

Given any pinning τ ∈ {−,+}VL\US , µτ is a hardcoremodel in G[US ∪VR]with boundary condition
τ. By Proposition 42, the maximum degree of G[US ∪VR] is at most ∆L. Since λ ≤ (1− δ)λc(∆L),
we know that the Glauber dynamics in µτ has the relaxation time 2O(1/δ)n [CFYZ21]. We remark
that we can use [CFYZ21] because in the graph G[US ∪ VR], the degree of every vertex is at most
∆L. We cannot directly apply the previous result on G because we only have the degree bound for
the left part of G. As a consequence,

Varµτ [ f ] ≤ 2O(1/δ) ∑
u∈VR∪US

µτ[Varu [ f ]].

Putting everything together, we have

Varµ [ f ] ≤ C · 2O(1/δ)

(
k

2M

)−1

∑
S∈( k

2M)
∑

τ∈{−,+}VL\US

µVL\US
(τ) ∑

u∈VR∪US

µτ[Varu [ f ]]

= C · 2O(1/δ)

(
k

2M

)−1

∑
S∈( k

2M)
∑

u∈VR∪US

µ[Varu [ f ]].

In the above summation, every vertex u ∈ VL is counted for ( k−1
2M−1) times and every vertex v ∈ VR

is counted for ( k
2M). Since the variance is non-negative, we have the following bound

Varµ [ f ] ≤ C · 2O(1/δ) ∑
u∈VL∪VR

µ[Varu [ f ]].

This proves the C · 2O(1/δ) · n = Oδ,θ(n) relaxation time for Glauber dynamics.

In the rest part of this section, we will prove Theorem 6. The proof follows the same high-level
plan as the proof of Theorem 15. First, we need to strengthen the partition used in Proposition 42 to
its balanced version to apply the censoring inequality. By combining the proof for Proposition 42
and Proposition 37, one could prove the following result.
Proposition 46. For any k ≥ ⌈2θ⌉, if ∆L = Ω(θ log(kθ)) and |VL| = Ω(k log k), then there exists a
partition VL = U1 ⊎U2 ⊎ . . . ⊎Uk satisfying (23) and for every i ∈ [k], |Ui| ≥ |VL|

2k .
Technically, we need one more observation for the original proof to make it work for the bipar-

tite hardcore model. Here, we run the same algorithm SimDownUp on the distribution µ. Recall
U1, U2, · · · , Uk is a partition of VL. So, the difference here is that U1, · · ·Uk are just disjoint sets
rather than a partition of V = VL ⊎VR.

Actually, it is straightforward to notice that the same proof for Theorem 15 and Theorem 13 still
works in this scenario provided that the down-up walk or Glauber dynamics on the conditional
distribution µ[XUR ] is fast mixing (recall that µ[XUR ] is the notion we defined in Definition 34).

When |R| = k− 2M, the distribution µ[XUR ] is a hardcore model on G[US ∪VR]with boundary
condition XUR , where we let US = VL \UR. By Proposition 42, the maximum degree of G[US ∪VR]
is at most ∆L. Since λ ≤ (1− δ)λc(∆L), the Glauber dynamics in µ[XUR ] is fast mixing.
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Lemma 47 ([CFYZ22, CE22]). When λ ≤ (1− δ)λc(∆), the Glauber dynamics for the hardcore model
on any n-vertices graph with maximum degree ∆ has mixing time Oδ(n log n).

When |R| < k− 2M, the mixing of the (k− |R|) ↔ 1-down-up walk on µ[XUR ] = µUS∪VR(· |
XUR) is guaranteed by the mixing of the (k − |R|) ↔ 1-down-up walk on µUS(· | XUR). This is
already observed in [CLY23] and we include this result to prove Theorem 6. Note that the original
proof in [CLY23] is only for Glauber dynamics. But is is straight forward to generalize the proof
for the down-up walks (i.e., block dynamics).

Lemma 48 ([CLY23, Lemma 102]). Let P1 be the (k− |R|)↔ 1-down-up walk on µ[XUR ] and let P2 be
the (k− |R|)↔ 1-down-up walk on µUS(· | XUR), then we have for every x ∈ Ω(µ[XUR ]) every t ≥ 1,

DTV
(

Pt
1(x, ·) ∥ µ[XUR ]

)
≤ DTV

(
Pt

2(y, ·) ∥ µUS(· | XUR)
)

,

where y = xUS is the projection of x onto US.
Proof of Theorem 6. The proof of Theorem 6 is finished by go through the same proof as Theorem 13
and Theorem 15 with the mixing time of Glauber dynamics and down-up walks required by the
proof being guaranteed by Lemma 47 and Lemma 48.

9 List Coloring
Theorem 1 is a consequence of Theorem 9 and Theorem 4 is a consequence of Theorem 13. The
proofs of Theorem 1 and Theorem 4 are given in Section 2.2. The only missing part is the following
coupling independence result.

Lemma 49 ([FGYZ21]). Let δ ∈ (0, 0.5) be a constant and G = (V, E) be a triangle-free graph with
maximum degree ∆ ≥ 3. Let L = (Lv)v∈V be the color list such that

∀v ∈ V, |Lv| − degG(v) ≥ (α⋆ + δ− 1)∆, (26)

where α⋆ ≈ 1.763 is the unique solution to the equation α = exp(1/α). Let µ = µG,L be the uniform
distribution over all the L-list-colorings of G. Then, it holds that µ is O(1/δ)-coupling independence.

In the above lemma, we assume δ < 0.5. If δ ≥ 0.5, then |Lv| − degG(v) > 1.1∆ and optimal
relaxation and mixing time can be obtained from path coupling.

In [FGYZ21], the spectral independence result is proved for list-coloring. The above lemma
cannot be obtained by applying Lemma 39, because list-coloring is not two spin systems. However,
the proof technique in [FGYZ21] also yields the coupling independence result.

Given a list coloring instance G = (V, E),L, a pinning τ ∈ ⊗v∈V\ΛLv and a vertex v ∈ Λ,
the proof in [FGYZ21] builds the following coupling between µτ∧va

Λ and µτ∧vb

Λ , where a, b are two
different colors in Lv and µτ∧va

Λ is the marginal distribution on v conditional on τ and v taking
the color a. By self-reducibility, we can turn the pinning τ to a new list-coloring instance in graph
G ← G[Λ]. For any u ∈ Λ, Lu ← Lu \ {τw | w /∈ Λ ∧ {u, w} ∈ E}. The proof of [FGYZ21]
constructs the following coupling, which is essentially the recursive coupling in [GMP05]. Let
u1, u2, . . . , ud denote the neighbors of v in G. We split v into d vertices v1, v2, . . . , vd and connect
vi with ui. Denote the graph as Gv. Let π denote the uniform distribution of list-colorings in Gv,
where each color list of vi is the same as the list of v. Define the pinning σi on {v1, v2, . . . , vd} as
σi(vj) = b for j ≤ i and σi(vj) = a for j > i. We only need to couple πσ0 = µτ∧va

Λ and πσd = µτ∧vb

Λ .
To do this, we couple each adjacent pair πσi−1 and πσi andmerge them via path coupling. To couple
X ∼ πσi−1 and Y ∼ πσi , the analysis in [FGYZ21] essentially consider the following coupling. Note
that σi and σi−1 differ only at vi and the only neighbor of vi is ui.
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• Couple X(ui) and Y(ui) via the optimal coupling of marginal distributions at ui;

• If X(ui) = Y(ui), then couple all other vertices perfectly;

• If X(ui) ̸= Y(ui), then use the above process recursively (splitting ui and applying path
coupling) to couple πσi−1(−i)∧X(ui) and πσi(−i)∧Y(ui), where σi(−i) = {σi(vj) | j ̸= i} and we
can remove vi because conditional on ui, vi has no effect on other vertices.

The above process gives a coupling (X, Y) between µτ∧va

Λ and µτ∧vb

Λ . One can extend it to a cou-
pling between µτ∧va and µτ∧vb by letting XV\Λ = YV\Λ = τ. The analysis in [FGYZ21] bound the
discrepancy of the above recursively coupling such that

E
[
Hρ(X, Y)

]
≤ 9

2δ
+ 1[Xv ̸= Yv] =

9
2δ

+ 1 = O
(

1
δ

)
,

where Hρ(X, Y) is the standard Hamming distance (ρ(u) = 1 for all u ∈ V) between X and Y.
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A Local to Global Proof
Proof of Proposition 32. Let f : Ω(µ) → R be a function. Let Varµ [ f ] denote the variance of f with
respect to µ. For any subset S ⊆ V, let µ[VarS [ f ]] denote the average of the variance Varµσ [ f ]
where σ ∼ µV\S. For any set U, we use R ∼ (U

i ) to denote sample a uniform subset of R ⊆ U
with |R| = i. Note that when ℓ = 0, then Proposition 32 becomes trivial. Hence, without loss of
generality, we may assume ℓ ≥ 1. By the definition of relaxation time T∅

rel(k, 1),

Varµ [ f ] ≤ T∅
rel(k, 1)ER∼([k]1 )

[
µ[VarUR

[ f ]]
]
≤ γ0ER∼([k]1 )

[
µ[VarUR

[ f ]]
]

,

where for convenience, we use UR to denote the set V \ R. In the above inequality, one needs to
deal with variance Varµτ [ f ], where τ ∼ µUR . To bound it, we consider the (k− 1) ↔ 1 down-up
walk on distribution π = µτ

UB
to obtain

∀g ∈ Ω(π), Varπ [g] ≤ Tτ
rel(k− 1, 1)ER′∼([k]\R1 )

[
π[VarUR′∪R

[g]]
]

.

Since the configuration on UR is fixed as τ in µτ, the above inequality implies

Varµτ [ f ] ≤ Tτ
rel(k− 1, 1)ER′∼([k]\R1 )

[
µτ[VarUR′∪R

[ f ]]
]
≤ γ1ER′∼([k]\R1 )

[
µτ[VarUR′∪R

[ f ]]
]

.

Combining the above inequalities, we have

Varµ [ f ] ≤ γkγk−1ER∼([k]1 )

[
ER′∼([k]\R1 )

[
µ[VarUR∪R′

[ f ]]
]]

= γkγk−1ER∼([k]2 )

[
µ[VarUR

[ f ]]
]

.
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Using the above argument iteratively, we have

Varµ [ f ] ≤ γ0γ1ER∼([k]2 )

[
µ[VarUR

[ f ]]
]

≤ γ0γ1γ2ER∼([k]3 )

[
µ[VarUR

[ f ]]
]

≤ . . .

≤
(

ℓ−1

∏
i=0

γi

)
ER∼([k]ℓ )

[µ[VarUB [ f ]]] .

This proves the proposition.

B Bipartite Graph Hardcore: Bounded Degree Case
In this section, we give a brief proof of Proposition 43. The proof applies techniques in [CLV21] to
this problem. We need to do some modifications because we only have coupling independence on
the left part.

The maximum degree ∆R in the right part is bounded by θ∆L = Oθ,δ(1). If λ < 1
2θ∆L

, then the
whole hardcore model satisfies λ < 1

2∆ , where ∆ = max{∆L, ∆R}. The proposition follows from
standard path coupling [BD97].

Now, we assume 1
2θ∆L
≤ λ ≤ (1− δ)λc(∆L). As a consequence, λ = Θθ,δ(

1
∆ ). For the distribu-

tion µ on the entire graph, for any pinning σ ∈ {−,+}Λ with Λ ⊆ VL ∪VR and v /∈ Λ,

min (µσ
v(+), µσ

v(−)) ≥ b(θ, δ) = Ωθ,δ(1). (27)

This property is called b-marginal boundedness of µ in [CLV21]. It is easy to see the b-marginal
boundedness of µ implies the b-marginal boundedness of µL. Since the coupling independence
implies the spectral independence, by Lemma 40, µL is O(1/δ)-spectrally independent. Define

α :=
(

b2

100e(∆L + ∆R)

)∆L

= Θδ,θ(1). (28)

By [CLV21, Lemma 2.5], the distribution µL satisfies the following factorization of entropy

∀ f : {−,+}VL → R≥0, EntµL [ f ] ≤ C(θ, δ)

(nL
ℓ )

∑
S∈(VL

ℓ
)

µL[EntS [ f ]], (29)

where nL = |VL| and ℓ = ⌈αnL⌉. The constant C depends only on the marginal boundedness pa-
rameter b, spectral independence parameterO(1/δ), and the parameter α. Since all of themdepend
on δ, θ, it holds that C = C(δ, θ) is a constant. [CLV21, Lemma 2.5] holds for nL ≥ n0(θ, δ). How-
ever, if nL ≤ n0(θ, δ), then nL, ∆L, ∆R, λ = Θθ,δ(1) are all constants, we can take C(θ, δ) sufficiently
large to make the above inequality hold.

The inequality mentioned above is referred to as block factorization of entropy. In a similar
manner to the proof of Lemma 45, we consider twoMarkov chains. The first one is the nL ↔ nL− ℓ
down-up walk for µL. Given any configuration X ∈ {−,+}VL , it updates X as follows.

• Down-Walk D: sample S ∈ (VL
ℓ ) uniformly at random and update X to XVL\S;

• Up-Walk U: extend XVL\S to a configuration on VL by sampling XS ∼ µ
XVL\S
L,S .
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The secondMarkov chain is the block dynamics B for µ. Given any configuration X ∈ {−,+}VL∪VR

of the entire bipartite graph G = (VL ∪VR, E), it updates X as follows.

• Down-Walk DB : sample S ∈ (VL
ℓ ) uniformly at random and update X to XVL\S;

• Up-Walk UB : extend XVL\S to a configuration on VL ∪VR by sampling XS∪VR ∼ µ
XVL\S
S∪VR

.

The factorization in (29) implies the down-walk D contracts the KL-divergence by a factor of 1−
1

C(θ,δ) [CLV21, Lemma 2.7]. Using the same analysis as that for (25) but replacing χ2-divergence
with KL-divergence, we have for any distribution ν over {−,+}VL∪VR ,

DKL (νDB ∥ µDB) ≤
(

1− 1
C(θ, δ)

)
DKL (ν ∥ µ) .

The above contraction of KL-divergence implies the following factorization of entropy

∀ f : Ω(µ)→ R≥0, Entµ [ f ] ≤ C(θ, δ)

(nL
ℓ )

∑
S∈(VL

ℓ
)

µ[EntS∪VR [ f ]].

Consider a subset S ⊆ VL. Let C(S ∪VR) denote the set of connected components graph G[S ∪
VR]. Given any τ ∈ {−,+}VL\S, in the conditional distribution µτ, all components in C(S∪VR) are
mutually independent. By [Ces01, CMT15] (also see [CLV21, Lemma 4.1]),

µ[EntS∪VR [ f ]] ≤ ∑
U∈C(S∪VR)

µ[EntU [ f ]]. (30)

For any U, any ξ ∈ {−,+}(VL∪VR)\U , by [CLV21, Lemma 4.2],

Entµξ [ f ] ≤ 3|U|2log(1/b)
2b2|U|+2 ∑

v∈U
µξ [Entv [ f ]], (31)

where b is defined in (27). Finally, we prove the following lemma for bounding the size of compo-
nents, which is similar to [CLV21, Lemma 4.3].

Lemma 50. If we sample S ∈ (VL
ℓ ) uniformly at random, where ℓ = ⌈αnL⌉, then for any vertex v ∈ VL ∪VR,

Pr [|Sv| ≥ k] ≤ (e(∆L + ∆R))
k(2α)(k−1)/∆L ,

where Sv is the component in G[S ∪VR] containing v and Sv = ∅ if v /∈ S ∪VR.

Proof. Fix a vertex v ∈ VL ∪VR. The maximum degree ∆ of the graph is max{∆L, ∆R}. The number
of U ⊆ VL ∪ VR such v ∈ U, G[U] is connected and |U| = k is at most (e∆)k [BCKL13]. Note that
G[U] has at least k − 1 edges because it is connected. Then, G[U] has at least ℓk = ⌈(k − 1)/∆L⌉
vertices from VL, because every edge has one vertex in VL. By a union bound,

Pr [|Sv| ≥ k] ≤ (e∆)k
(nL−ℓk
ℓ−ℓk

)

(nL
ℓ )
≤ (e∆)k ℓ

nL
· ℓ− 1

nL − 1
· . . . · ℓ− ℓk + 1

nL − ℓk + 1
≤ (e∆)k(2α)ℓk .

The lemma holds because ∆ ≤ ∆L + ∆R and α < 1/2.
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Hence, we can bound the entropy of f as follows

Entµ [ f ] ≤ C(θ, δ)

(nL
ℓ )

∑
S∈(VL

ℓ
)

µ[EntS∪VR [ f ]]

(by (30)) ≤ C(θ, δ)

(nL
ℓ )

∑
S∈(VL

ℓ
)

∑
U∈C(S∪VR)

µ[EntU [ f ]]

(by (31)) ≤ C(θ, δ)

(nL
ℓ )

∑
S∈(VL

ℓ
)

∑
U∈C(S∪VR)

3|U|2log(1/b)
2b2|U|+2 ∑

v∈U
µ[Entv [ f ]]

≤ 3C(θ, δ) log(1/b)
2b2 ∑

v∈VL∪VR

µ[Entv [ f ]] ∑
k≥0

PrS∼(nL
ℓ
) [|Sv| = k]

3k2

b2k

(by Lemma 50) ≤ 3C(θ, δ) log(1/b)
2b2 ∑

v∈VL∪VR

µ[Entv [ f ]] ∑
k≥0

(e(∆L + ∆R))
k(2α)(k−1)/∆L

3k2

b2k .

Note that both C, b, ∆L, ∆R are constants depending on δ and θ. By the definition of α in (28),

(e(∆L + ∆R))
k−1(2α)(k−1)/∆L =

(
b2

50

)k−1

.

We have

Entµ [ f ] = Oθ,δ(1) ∑
v∈VL∪VR

µ[Entv [ f ]] ∑
k≥0

(
1
50

)k−1

k2 = Oθ,δ(1) ∑
v∈VL∪VR

µ[Entv [ f ]].

The above inequality is the approximate tensorization of entropy for µ, which implies Oθ,δ(n) re-
laxation time and Oθ,δ(n log n) mixing time for Glauber dynamics [CLV21, Fact 3.5], where n =
|VL ∪VR|.
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