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s-t network reliability

Two-terminal network reliability
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
         a source node 𝑠𝑠 and a sink node 𝑡𝑡

Output:  the probability that 𝑠𝑠 →𝐺𝐺(𝑝𝑝) 𝑡𝑡 if each edge 𝑒𝑒 ∈ 𝐸𝐸 fails independently with prob. 𝑞𝑞𝑒𝑒 
𝑠𝑠 can reach 𝑡𝑡 in the remaining graph
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Exact computing is #P-complete for directed / undirected / DAG / planar DAG graphs



Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation
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Two-terminal network unreliability approximation
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Very recently, improved FPRAS for #NFA [Meel, Chakraborty and Mathur 24]

• An FPRAS for s-t reliability in time �𝑂𝑂(𝑚𝑚19) for 𝑞𝑞𝑒𝑒 = 1
2
 via standard black-box reduction
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• running time can be further reduced by combining our technique with very recent 
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There is no FPRAS for two-terminal network unreliability in DAGs 
       unless there is an FPRAS for #BIS problem

 #BIS: counting the number of independent sets in bipartite graphs
         conjectured to has no FPRAS
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Assumption
For any edge 𝑒𝑒 ∈ 𝐸𝐸, 𝑞𝑞𝑒𝑒 = 1

2
general 𝑞𝑞𝑒𝑒 ∈ (0,1) can be solved with very small tweaks

𝑝𝑝 =
#{subgraphs such that 𝑠𝑠 can reach 𝑡𝑡}

2𝑚𝑚

counting 
problem
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Ω = {subgraphs of 𝐺𝐺 such that 𝑠𝑠 can reach 𝑡𝑡}

• Counting Problem (network reliability): estimate the size #Ω
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Our algorithm

• Decompose the input two-terminal reliability instance into many sub-instances

• Solve the sampling / counting problems recursively in sub-instances
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Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖
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Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻
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Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random
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• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

𝔼𝔼 𝑋𝑋 =
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Pr 𝑍𝑍𝑣𝑣 ∈ 1 ± poly
𝜀𝜀
𝑚𝑚

|Ω𝑣𝑣| ≥
2
3

• Apply median-trick to boost the successful prob.
2/3 → 1 − exp(−poly(𝑚𝑚))

• Higher accuracy and higher successful probability require more samples in set 𝑆𝑆𝑣𝑣𝑖𝑖 

• Different vertices 𝑣𝑣, 𝑣𝑣𝑣 may have the same neighbor 𝑣𝑣𝑖𝑖 , we reuse 𝑆𝑆𝑣𝑣𝑖𝑖 when computing 𝑍𝑍𝑣𝑣 and 𝑍𝑍𝑣𝑣′ 
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Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1  with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

•  Repeat the processing for poly 𝑚𝑚/𝜖𝜖  times to generate poly 𝑚𝑚/𝜖𝜖  samples



Generate the samples via self-reduction
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• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering
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approximate counting 
via Karp-Luby 

(reusing samples)

estimate conditional 
marginal probability

Generate samples by 
sampling edges 

one-by-one 

Sampling Algorithm at Each Node

also used for compute the count estimate 𝒁𝒁𝒗𝒗 at each node

• Sort all vertices in topological ordering 𝑡𝑡 = 𝑣𝑣1 ≺ 𝑣𝑣2 ≺ ⋯ ≺ 𝑣𝑣𝑛𝑛 = 𝑠𝑠

• 𝐺𝐺𝑣𝑣 : subgraph containing all vertices that can be reached from 𝑣𝑣 ∈ 𝑉𝑉
Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣  such that 𝑣𝑣 can reach 𝑡𝑡}

• 𝑍𝑍𝑣𝑣: a count estimate of the size #Ω𝑣𝑣
• 𝑆𝑆𝑣𝑣: a set of samples, where each 𝐻𝐻 ∈ 𝑆𝑆𝑣𝑣 is uniform random sample from Ω𝑣𝑣
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Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

approximate counting 
via Karp-Luby 

(reusing samples)

estimate conditional 
marginal prob. p

Generate samples by 
sampling edges 

one-by-one 

use fresh randomness to sample 𝑋𝑋(𝑒𝑒) with Pr 𝑋𝑋 𝑒𝑒 = 1 = 𝑝𝑝 

• The algorithm is correct if random samples correctly estimate counts or marginal prob.

poly(𝑚𝑚) number samples
estimation is correct

with prob. 1 − exp(−𝑚𝑚)
Chernoff + median trick

• Conditional on estimate is correctly only bias random samples with exp-small error
• Show the whole algorithm is correct by an induction proof
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Thank you
Q&A
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