An FPRAS for two-terminal reliability in directed acyclic graphs

Weiming Feng (ETH Zürich)

Joint work with Heng Guo (University of Edinburgh)

ICALP 12th July 2024 Tallinn, Estonia

s-t network reliability

Two-terminal network reliability

Input: a graph G = (V, E) and parameters $q_e \in (0, 1)$

a source node s and a sink node t

Output: the probability that $S \rightarrow_{G(p)} t$ if each edge $e \in E$ fails independently with prob. q_e

s can reach t in the remaining graph

s-t network reliability

Two-terminal network reliability

Input: a graph G = (V, E) and parameters $q_e \in (0, 1)$

a source node s and a sink node t

Output: the probability that $S \rightarrow_{G(p)} t$ if each edge $e \in E$ fails independently with prob. q_e

s can reach t in the remaining graph

$$\Pr[s \to_{G(p)} t] = \sum_{\substack{R \subseteq E:\\s \to t \text{ in graph } (V,R)}} \prod_{e \in R} (1-q_e) \prod_{e \notin R} q_e$$

s-t network reliability

Two-terminal network reliability

Input: a graph G = (V, E) and parameters $q_e \in (0, 1)$

a source node s and a sink node t

Output: the probability that $S \rightarrow_{G(p)} t$ if each edge $e \in E$ fails independently with prob. q_e

s can reach t in the remaining graph

$$\Pr[s \to_{G(p)} t] = \sum_{\substack{R \subseteq E:\\s \to t \text{ in graph } (V,R)}} \prod_{e \in R} (1-q_e) \prod_{e \notin R} q_e$$

Exact computing is #P-complete for directed / undirected / DAG / planar DAG graphs

Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation

Input: a **DAG (direct acyclic graph)** G = (V, E) and parameters $q_e \in (0,1)$

a source node s and a sink node t

an error bound $\varepsilon > 0$

Output: a *random* number \hat{p} approximating s-t network reliability $p = \Pr[s \rightarrow_{G(p)} t]$

Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation

Input: a **DAG (direct acyclic graph)** G = (V, E) and parameters $q_e \in (0,1)$

a source node s and a sink node t

an error bound $\varepsilon > 0$

Output: a *random* number \hat{p} approximating s-t network reliability $p = \Pr[s \rightarrow_{G(p)} t]$

$$\Pr[\hat{p} \in (1 \pm \varepsilon)p] \ge \frac{2}{3}$$

Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation

Input: a **DAG (direct acyclic graph)** G = (V, E) and parameters $q_e \in (0,1)$

a source node s and a sink node t

an error bound $\varepsilon > 0$

Output: a *random* number \hat{p} approximating s-t network reliability $p = \Pr[s \rightarrow_{G(p)} t]$

$$\Pr[\hat{p} \in (1 \pm \varepsilon)p] \ge \frac{2}{3}$$

Two-terminal network unreliability approximation

Output: a *random* number \hat{q} approximating s-t network unreliability 1 - p

$$\Pr[\hat{q} \in (1 \pm \varepsilon)(1 - p)] \ge \frac{2}{3}$$

Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if $p = \frac{1}{\operatorname{poly}(m)}$ (e.g. $q_e = O\left(\frac{\log m}{m}\right)$ is small, where m = |E|)

Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if $p = \frac{1}{\operatorname{poly}(m)}$ (e.g. $q_e = O\left(\frac{\log m}{m}\right)$ is small, where m = |E|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]

• Improve the lower bound of reliability for some special DAGs

Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if $p = \frac{1}{\operatorname{poly}(m)}$ (e.g. $q_e = O\left(\frac{\log m}{m}\right)$ is small, where m = |E|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]

• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)

• Given *n*-state NFA, count #{distinct accepting strings} of length ℓ

An NFA

Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if $p = \frac{1}{\operatorname{poly}(m)}$ (e.g. $q_e = O\left(\frac{\log m}{m}\right)$ is small, where m = |E|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]

• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)

- Given *n*-state NFA, count #{distinct accepting strings} of length ℓ
- FPRAS in time $\tilde{O}((n\ell)^{17})$ [Arenas, Croquevielle, Jayaram, Riveros, 21]

Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if $p = \frac{1}{\operatorname{poly}(m)}$ (e.g. $q_e = O\left(\frac{\log m}{m}\right)$ is small, where m = |E|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]

• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)

- Given *n*-state NFA, count #{distinct accepting strings} of length ℓ
- FPRAS in time $\tilde{O}((n\ell)^{17})$ [Arenas, Croquevielle, Jayaram, Riveros, 21]
- s-t reliability in DAGs can be reduced to #NFA [implied by Burtschick 95] [explicitly in Amarilli, Bremen and Meel 24]
 An FPRAS for s-t reliability in DAG (running time is a huge polynomial)

Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if $p = \frac{1}{\operatorname{poly}(m)}$ (e.g. $q_e = O\left(\frac{\log m}{m}\right)$ is small, where m = |E|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]

• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)

- Given *n*-state NFA, count #{distinct accepting strings} of length ℓ
- FPRAS in time $\tilde{O}((n\ell)^{17})$ [Arenas, Croquevielle, Jayaram, Riveros, 21]
- s-t reliability in DAGs can be reduced to #NFA [implied by Burtschick 95] [explicitly in Amarilli, Bremen and Meel 24]
 An FPRAS for s-t reliability in DAG (running time is a huge polynomial)

Very recently, improved FPRAS for #NFA [Meel, Chakraborty and Mathur 24]

• An FPRAS for s-t reliability in time $\tilde{O}(m^{19})$ for $q_e = \frac{1}{2}$ via standard black-box reduction

Our results

There is an **FPRAS** for two-terminal network **reliability** in DAGs in time $\tilde{O}(n^6m^4\max\{m^4,\varepsilon^{-4}\})$, where n = |V| and m = |E|

- technique inspired by [Arenas, Croquevielle, Jayaram and Riveros 21]
- running time can be further reduced by combining our technique with very recent technique for #NFA [Meel, Chakraborty and Mathur 24]

Our results

There is an **FPRAS** for two-terminal network **reliability** in DAGs in time $\tilde{O}(n^6m^4\max\{m^4,\varepsilon^{-4}\})$, where n = |V| and m = |E|

- technique inspired by [Arenas, Croquevielle, Jayaram and Riveros 21]
- running time can be further reduced by combining our technique with very recent technique for #NFA [Meel, Chakraborty and Mathur 24]

There is **no FPRAS** for two-terminal network **unreliability** in DAGs unless there is an FPRAS for **#BIS** problem

#BIS: counting the number of independent sets in bipartite graphs conjectured to has no FPRAS

Some basic settings for this talk

Two-terminal network reliability approximation

Input: a **DAG** (direct acyclic graph) G = (V, E) and parameters $q_e \in (0,1)$

a source node s and a sink node t

an error bound $\varepsilon > 0$

Output: a *random* number \hat{p} approximating s-t network reliability $p = \Pr[s \rightarrow_{G(p)} t]$

Some basic settings for this talk

Two-terminal network reliability approximation

Input: a **DAG (direct acyclic graph)** G = (V, E) and parameters $q_e \in (0,1)$

a source node s and a sink node t

an error bound $\varepsilon > 0$

Output: a *random* number \hat{p} approximating s-t network reliability $p = \Pr[s \rightarrow_{G(p)} t]$

Assumption

For any edge $e \in E$, $q_e = \frac{1}{2}$ general $q_e \in (0,1)$ can be solved with very small tweaks $p = \frac{\#\{\text{subgraphs such that } s \text{ can reach } t\}}{2^m}$

counting problem

Sampling and counting

Two-terminal network reliability in DAGs

 $\Omega = \{ \text{subgraphs of } G \text{ such that } s \text{ can reach } t \}$

- **Counting Problem (network reliability)**: estimate the size $\#\Omega$
- Sampling Problem: draw random subgraphs from Ω uniformly at random

Sampling and counting

Two-terminal network reliability in DAGs

 $\Omega = \{ \text{subgraphs of } G \text{ such that } s \text{ can reach } t \}$

- **Counting Problem (network reliability)**: estimate the size $\#\Omega$
- Sampling Problem: draw random subgraphs from Ω uniformly at random

Sampling and counting

Two-terminal network reliability in DAGs

 $\Omega = \{ \text{subgraphs of } G \text{ such that } s \text{ can reach } t \}$

- **Counting Problem (network reliability)**: estimate the size $\#\Omega$
- **Sampling Problem**: draw random subgraphs from Ω **uniformly** at random

Our algorithm

- Decompose the input two-terminal reliability instance into many *sub-instances*
- Solve the *sampling / counting* problems recursively in sub-instances

sort all vertices according to topological order $s = v_n > v_{n-1} > \cdots > v_1 = t$

sort all vertices according to topological order $s = v_n > v_{n-1} > \cdots > v_1 = t$

• G_v : subgraph containing all vertices that can be reached from $v \in V$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ such that } v \text{ can reach } t \}$

sort all vertices according to topological order $s = v_n > v_{n-1} > \cdots > v_1 = t$

• G_v : subgraph containing all vertices that can be reached from $v \in V$

 $\Omega_{v} = \{ \text{subgraphs of } G_{v} \text{ such that } v \text{ can reach } t \}$

- Z_v : a **counting estimate** of the size $\#\Omega_v$
- S_v : a set of **samples**, where each $H \in S_v$ is **uniform random sample** from Ω_v

sort all vertices according to topological order $s = v_n > v_{n-1} > \cdots > v_1 = t$

• G_v : subgraph containing all vertices that can be reached from $v \in V$

 $\Omega_{v} = \{ \text{subgraphs of } G_{v} \text{ such that } v \text{ can reach } t \}$

- Z_v : a **counting estimate** of the size $\#\Omega_v$
- S_v : a set of samples, where each $H \in S_v$ is uniform random sample from Ω_v

Compute (Z_v, S_v) for v from v_1 to v_n via **dynamic programming + Monte Carlo**

Framework appeared in [Gore, Jerrum, Kannan, Sweedyk, and Mahaney 97] [Arenas, Croquevielle, Jayaram and Riveros 21]

sort all vertices according to topological order $s = v_n > v_{n-1} > \cdots > v_1 = t$

- G_v : subgraph containing all vertices that can be reached from $v \in V$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ such that } v \text{ can reach } t \}$
- Z_v : a **counting estimate** of the size $\#\Omega_v$
- S_v : a set of samples, where each $H \in S_v$ is uniform random sample from Ω_v

Compute (Z_v, S_v) for v from v_1 to v_n via **dynamic programming + Monte Carlo**

Framework appeared in [Gore, Jerrum, Kannan, Sweedyk, and Mahaney 97] [Arenas, Croquevielle, Jayaram and Riveros 21]

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \bigcup_{i=1}^d \Omega_i$

- A vertex $v \in V$ and a set of *neighbors* $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

Karp-Luby's method for estimating the size of union [Karp and Luby 83]

• Sample an index $i \in [d]$ with prob $\propto |\Omega_i|$

- A vertex $v \in V$ and a set of *neighbors* $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i|$
- Sample a subgraph H from Ω_i uniformly at random

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i|$
- Sample a subgraph H from Ω_i uniformly at random
- $X \in \{0,1\}$ indicate whether *i* is the first set containing *H*

- A vertex $v \in V$ and a set of *neighbors* $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i|$
- Sample a subgraph H from Ω_i uniformly at random
- $X \in \{0,1\}$ indicate whether *i* is the first set containing *H*

$$\mathbb{E}[X] = \frac{|\Omega_{\nu}|}{\sum_{i=1}^{d} |\Omega_{i}|} \ge \frac{1}{d} \qquad |\Omega_{\nu}| = \left(\sum_{i=1}^{d} |\Omega_{i}|\right) \mathbb{E}[X]$$

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i| \implies \text{estimate } |\Omega_i| \text{ using } Z_{v_i} \approx |\Omega_{v_i}|$
- Sample a subgraph H from Ω_i uniformly at random
- $X \in \{0,1\}$ indicate whether *i* is the first set containing *H*

$$\mathbb{E}[X] = \frac{|\Omega_{\nu}|}{\sum_{i=1}^{d} |\Omega_{i}|} \ge \frac{1}{d} \qquad |\Omega_{\nu}| = \left(\sum_{i=1}^{d} |\Omega_{i}|\right) \mathbb{E}[X]$$

- A vertex $v \in V$ and a set of *neighbors* $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i| \implies \text{estimate } |\Omega_i| \text{ using } Z_{v_i} \approx |\Omega_{v_i}|$
- Sample a subgraph H from Ω_i uniformly at random \implies take a sample $H' \in S_{v_i}$ and modify $H' \rightarrow H$
- $X \in \{0,1\}$ indicate whether *i* is the first set containing *H*

$$\mathbb{E}[X] = \frac{|\Omega_{v}|}{\sum_{i=1}^{d} |\Omega_{i}|} \ge \frac{1}{d} \qquad |\Omega_{v}| = \left(\sum_{i=1}^{d} |\Omega_{i}|\right) \mathbb{E}[X]$$

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i| \implies \text{estimate } |\Omega_i| \text{ using } Z_{v_i} \approx |\Omega_{v_i}|$
- Sample a subgraph H from Ω_i uniformly at random \implies take a sample $H' \in S_{v_i}$ and modify $H' \rightarrow H$
- $X \in \{0,1\}$ indicate whether *i* is the first set containing $H \implies \text{do DFS search in } H$

$$\mathbb{E}[X] = \frac{|\Omega_{\nu}|}{\sum_{i=1}^{d} |\Omega_{i}|} \ge \frac{1}{d} \qquad |\Omega_{\nu}| = \left(\sum_{i=1}^{d} |\Omega_{i}|\right) \mathbb{E}[X]$$

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

- Sample an index $i \in [d]$ with prob $\propto |\Omega_i| \implies \text{estimate } |\Omega_i| \text{ using } Z_{v_i} \approx |\Omega_{v_i}|$
- Sample a subgraph H from Ω_i uniformly at random \implies take a sample $H' \in S_{v_i}$ and modify $H' \rightarrow H$
- $X \in \{0,1\}$ indicate whether *i* is the first set containing $H \implies \text{do DFS search in } H$

$$\mathbb{E}[X] = \frac{|\Omega_{v}|}{\sum_{i=1}^{d} |\Omega_{i}|} \ge \frac{1}{d} \qquad |\Omega_{v}| = \left(\sum_{i=1}^{d} |\Omega_{i}|\right) \mathbb{E}[X] \quad \text{generate ind. } X \text{ and take average}$$

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

• Apply Karp-Luby to compute an estimate Z_v such that

$$\Pr\left[Z_{\nu} \in \left(1 \pm \operatorname{poly}\left(\frac{\varepsilon}{m}\right)\right) |\Omega_{\nu}|\right] \ge \frac{2}{3}$$

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

• Apply Karp-Luby to compute an estimate Z_v such that

$$\Pr\left[Z_{\nu} \in \left(1 \pm \operatorname{poly}\left(\frac{\varepsilon}{m}\right)\right) |\Omega_{\nu}|\right] \ge \frac{2}{3}$$

• Apply *median-trick* to boost the successful prob.

$$2/3 \rightarrow 1 - \exp(-\mathrm{poly}(m))$$

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

• Apply Karp-Luby to compute an estimate Z_v such that

$$\Pr\left[Z_{\nu} \in \left(1 \pm \operatorname{poly}\left(\frac{\varepsilon}{m}\right)\right) |\Omega_{\nu}|\right] \geq \frac{2}{3}$$

• Apply *median-trick* to boost the successful prob.

$$2/3 \rightarrow 1 - \exp(-\mathrm{poly}(m))$$

• Higher accuracy and higher successful probability require more samples in set S_{v_i}

- A vertex $v \in V$ and a set of **neighbors** $v_1, v_2, v_3, ..., v_d$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ s.t. } v \to t \}$
- For any neighbor v_i ,

 $\Omega_i = \{ \text{subgaphs of } G_v \text{ s.t. } v \to v_i \to t \}$

• Vertex v must reach t through some neighbors $\Omega_v = \cup_{i=1}^d \Omega_i$

• Apply Karp-Luby to compute an estimate Z_v such that

$$\Pr\left[Z_{\nu} \in \left(1 \pm \operatorname{poly}\left(\frac{\varepsilon}{m}\right)\right) |\Omega_{\nu}|\right] \geq \frac{2}{3}$$

• Apply *median-trick* to boost the successful prob.

$$2/3 \rightarrow 1 - \exp(-\mathrm{poly}(m))$$

- Higher accuracy and higher successful probability require more samples in set S_{v_i}
- Different vertices v, v' may have the same neighbor v_i , we reuse S_{v_i} when computing Z_v and $Z_{v'}$

• Go through all edges e_1, e_2, \dots, e_m in graph G_v in some ordering

- Go through all edges e_1, e_2, \dots, e_m in graph G_v in some ordering
- For each edge e_i , sample $X(e_i) \in \{0,1\}$ that indicates whether e_i in random subgraph

- Go through all edges e_1, e_2, \dots, e_m in graph G_v in some ordering
- For each edge e_i , sample $X(e_i) \in \{0,1\}$ that indicates whether e_i in random subgraph
- Compute the **conditional marginal probability**

 $p(e_i) = \Pr[X(e_i) = 1 \mid X(e_1), X(e_2), \dots, X(e_{i-1})]$

- Go through all edges e_1, e_2, \dots, e_m in graph G_v in some ordering
- For each edge e_i , sample $X(e_i) \in \{0,1\}$ that indicates whether e_i in random subgraph
- Compute the **conditional marginal probability**

 $p(e_i) = \Pr[X(e_i) = 1 \mid X(e_1), X(e_2), \dots, X(e_{i-1})]$

• Set $X(e_i) = 1$ with prob. $p(e_i)$ and set $X(e_i) = 0$ with prob. $1 - p(e_i)$

- Go through all edges e_1, e_2, \dots, e_m in graph G_v in some ordering
- For each edge e_i , sample $X(e_i) \in \{0,1\}$ that indicates whether e_i in random subgraph
- Compute the **conditional marginal probability**

 $p(e_i) = \Pr[X(e_i) = 1 \mid X(e_1), X(e_2), \dots, X(e_{i-1})]$

- Set $X(e_i) = 1$ with prob. $p(e_i)$ and set $X(e_i) = 0$ with prob. $1 p(e_i)$
- Repeat the processing for $poly(m/\epsilon)$ times to generate $poly(m/\epsilon)$ samples

- Go through all edges e_1, e_2, \dots, e_m in graph G_v in some ordering
- For each edge e_i , sample $X(e_i) \in \{0,1\}$ that indicates whether e_i in random subgraph
- Compute the **conditional marginal probability**

 $p(e_i) = \Pr[X(e_i) = 1 \mid X(e_1), X(e_2), \dots, X(e_{i-1})]$

- Set $X(e_i) = 1$ with prob. $p(e_i)$ and set $X(e_i) = 0$ with prob. $1 p(e_i)$
- Repeat the processing for $poly(m/\epsilon)$ times to generate $poly(m/\epsilon)$ samples

- Suppose we have sampled $X(e_i)$ for $i \leq \ell$
- Let \mathcal{E} be set of edges e_i s.t. $X(e_i) = 1$
- $\Lambda = \{ w \in V : v \to w \text{ through edges in } \mathcal{E} \}$

 Λ the set of vertices v can reach

- Suppose we have sampled $X(e_i)$ for $i \leq \ell$
- Let \mathcal{E} be set of edges e_i s.t. $X(e_i) = 1$
- $\Lambda = \{ w \in V : v \to w \text{ through edges in } \mathcal{E} \}$

 Λ the set of vertices v can reach

• Pick the edge e = (u, w) from Λ to the **out-boundary** $\partial \Lambda$ where w has the largest topological order

 $\partial \Lambda = \{ w \notin \Lambda : \exists u \in \Lambda \ s. \ t. \ (u, w) \in E \}$

- Suppose we have sampled $X(e_i)$ for $i \leq \ell$
- Let \mathcal{E} be set of edges e_i s.t. $X(e_i) = 1$
- $\Lambda = \{ w \in V : v \to w \text{ through edges in } \mathcal{E} \}$

 Λ the set of vertices v can reach

• Pick the edge e = (u, w) from Λ to the **out-boundary** $\partial \Lambda$ where w has the largest topological order

Prob \propto # {subgraphs v can reach t}

 $\partial \Lambda = \{ w \notin \Lambda : \exists u \in \Lambda \ s. \ t. \ (u, w) \in E \}$

OR

Prob \propto # {subgraphs v cannot reach t}

- Suppose we have sampled $X(e_i)$ for $i \leq \ell$
- Let \mathcal{E} be set of edges e_i s.t. $X(e_i) = 1$
- $\Lambda = \{ w \in V : v \to w \text{ through edges in } \mathcal{E} \}$

 Λ the set of vertices v can reach

• Pick the edge e = (u, w) from Λ to the **out-boundary** $\partial \Lambda$ where w has the largest topological order

$$\Omega = \bigcup_{u \in \partial \Lambda} \Omega_u$$

- $\Omega = \{ \text{subgraphs s.t. } \Lambda \text{ can reach } t \} \text{ is the set we want to count } t \}$
- $\Omega_u = \{ \text{subgraphs s.t. } \Lambda \text{ can reach } t \text{ through } u \}$

$$\Omega = \bigcup_{u \in \partial \Lambda} \Omega_u$$

- $\Omega = \{ \text{subgraphs s.t. } \Lambda \text{ can reach } t \} \text{ is the set we want to count}$
- $\Omega_u = \{ \text{subgraphs s.t. } \Lambda \text{ can reach } t \text{ through } u \}$
- Run Karp-Luby algorithm by reusing the samples in nodes at $\partial \Lambda$

Sampling Algorithm at Each Node

Sampling Algorithm at Each Node

also used for compute the **count estimate** Z_v at each node

Sampling Algorithm at Each Node

- Sort all vertices in topological ordering $t = v_1 \prec v_2 \prec \cdots \prec v_n = s$
- G_v : subgraph containing all vertices that can be reached from $v \in V$ $\Omega_v = \{ \text{subgraphs of } G_v \text{ such that } v \text{ can reach } t \}$
- Z_{v} : a **count estimate** of the size $\#\Omega_{v}$
- S_v : a set of samples, where each $H \in S_v$ is uniform random sample from Ω_v

Challenge: *reusing* samples introduces complicated *correlations*

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

Challenge: *reusing* samples introduces complicated *correlations*

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

Challenge: *reusing* samples introduces complicated *correlations*

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

use **fresh randomness** to sample X(e) with Pr[X(e) = 1] = p

Challenge: *reusing* samples introduces complicated *correlations*

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

use **fresh randomness** to sample X(e) with Pr[X(e) = 1] = p

• The algorithm is correct if random samples correctly estimate counts or marginal prob.

poly(m) number samples

Chernoff + median trick

estimation is correct with prob. $1 - \exp(-m)$

Challenge: *reusing* samples introduces complicated *correlations*

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

use **fresh randomness** to sample X(e) with Pr[X(e) = 1] = p

• The algorithm is correct if random samples correctly estimate counts or marginal prob.

poly(m) number samples

Chernoff + median trick

estimation is correct with prob. $1 - \exp(-m)$

- Conditional on estimate is correctly only bias random samples with exp-small error
- Show the whole algorithm is correct by an induction proof

Open Problems

- Faster algorithm for s-t reliability in DAGs
- **Simple** algorithm for s-t reliability in DAGs
- FPTAS (deterministic) algorithm for s-t reliability in DAGs

Open Problems

- Faster algorithm for s-t reliability in DAGs
- **Simple** algorithm for s-t reliability in DAGs
- FPTAS (deterministic) algorithm for s-t reliability in DAGs
- Algorithm or hardness for approximating s-t reliability in **undirected / directed** graphs
- Simple or faster FPRAS/FPTAS for **#NFA**

Open Problems

- Faster algorithm for s-t reliability in DAGs
- **Simple** algorithm for s-t reliability in DAGs
- FPTAS (deterministic) algorithm for s-t reliability in DAGs
- Algorithm or hardness for approximating s-t reliability in **undirected / directed** graphs
- Simple or faster FPRAS/FPTAS for **#NFA**

Thank you Q&A