
An FPRAS for two-terminal reliability in directed acyclic graphs

Weiming Feng (ETH Zürich)

Joint work with Heng Guo (University of Edinburgh)

ICALP
12th July 2024
Tallinn, Estonia

s-t network reliability

Two-terminal network reliability
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡

Output: the probability that 𝑠𝑠 →𝐺𝐺(𝑝𝑝) 𝑡𝑡 if each edge 𝑒𝑒 ∈ 𝐸𝐸 fails independently with prob. 𝑞𝑞𝑒𝑒
𝑠𝑠 can reach 𝑡𝑡 in the remaining graph

s-t network reliability

Two-terminal network reliability
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡

Output: the probability that 𝑠𝑠 →𝐺𝐺(𝑝𝑝) 𝑡𝑡 if each edge 𝑒𝑒 ∈ 𝐸𝐸 fails independently with prob. 𝑞𝑞𝑒𝑒
𝑠𝑠 can reach 𝑡𝑡 in the remaining graph

Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡 = �
𝑅𝑅⊆𝐸𝐸:

𝑠𝑠→𝑡𝑡 in graph (𝑉𝑉,𝑅𝑅)

�
𝑒𝑒∈𝑅𝑅

(1 − 𝑞𝑞𝑒𝑒)�
𝑒𝑒∉𝑅𝑅

𝑞𝑞𝑒𝑒

s-t network reliability

Two-terminal network reliability
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡

Output: the probability that 𝑠𝑠 →𝐺𝐺(𝑝𝑝) 𝑡𝑡 if each edge 𝑒𝑒 ∈ 𝐸𝐸 fails independently with prob. 𝑞𝑞𝑒𝑒
𝑠𝑠 can reach 𝑡𝑡 in the remaining graph

Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡 = �
𝑅𝑅⊆𝐸𝐸:

𝑠𝑠→𝑡𝑡 in graph (𝑉𝑉,𝑅𝑅)

�
𝑒𝑒∈𝑅𝑅

(1 − 𝑞𝑞𝑒𝑒)�
𝑒𝑒∉𝑅𝑅

𝑞𝑞𝑒𝑒

Exact computing is #P-complete for directed / undirected / DAG / planar DAG graphs

Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation
Input: a DAG (direct acyclic graph) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡
 an error bound 𝜀𝜀 > 0

Output: a random number �̂�𝑝 approximating s-t network reliability 𝑝𝑝 = Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡

Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation
Input: a DAG (direct acyclic graph) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡
 an error bound 𝜀𝜀 > 0

Output: a random number �̂�𝑝 approximating s-t network reliability 𝑝𝑝 = Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡

Pr �̂�𝑝 ∈ 1 ± 𝜀𝜀 𝑝𝑝 ≥
2
3

Approximate s-t network reliability in DAGs

Two-terminal network reliability approximation
Input: a DAG (direct acyclic graph) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡
 an error bound 𝜀𝜀 > 0

Output: a random number �̂�𝑝 approximating s-t network reliability 𝑝𝑝 = Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡

Pr �̂�𝑝 ∈ 1 ± 𝜀𝜀 𝑝𝑝 ≥
2
3

Two-terminal network unreliability approximation
Output: a random number �𝑞𝑞 approximating s-t network unreliability 1 − 𝑝𝑝

Pr �𝑞𝑞 ∈ 1 ± 𝜀𝜀 (1 − 𝑝𝑝) ≥
2
3

Previous works
Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if 𝑝𝑝 = 1
poly(𝑚𝑚)

 (e.g. 𝑞𝑞𝑒𝑒 = 𝑂𝑂 log𝑚𝑚
𝑚𝑚

 is small, where 𝑚𝑚 = |𝐸𝐸|)

Previous works
Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if 𝑝𝑝 = 1
poly(𝑚𝑚)

 (e.g. 𝑞𝑞𝑒𝑒 = 𝑂𝑂 log𝑚𝑚
𝑚𝑚

 is small, where 𝑚𝑚 = |𝐸𝐸|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]
• Improve the lower bound of reliability for some special DAGs

Previous works
Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if 𝑝𝑝 = 1
poly(𝑚𝑚)

 (e.g. 𝑞𝑞𝑒𝑒 = 𝑂𝑂 log𝑚𝑚
𝑚𝑚

 is small, where 𝑚𝑚 = |𝐸𝐸|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]
• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)
• Given 𝑛𝑛-state NFA, count #{distinct accepting strings} of length ℓ
• FPRAS in time �𝑂𝑂(𝑛𝑛ℓ 17) [Arenas, Croquevielle, Jayaram, Riveros, 21]

FS

1

10/1

0/10

0

1 1

0

0 1

1

1

0 0100/1

An NFA

Previous works
Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if 𝑝𝑝 = 1
poly(𝑚𝑚)

 (e.g. 𝑞𝑞𝑒𝑒 = 𝑂𝑂 log𝑚𝑚
𝑚𝑚

 is small, where 𝑚𝑚 = |𝐸𝐸|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]
• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)
• Given 𝑛𝑛-state NFA, count #{distinct accepting strings} of length ℓ
• FPRAS in time �𝑂𝑂(𝑛𝑛ℓ 17) [Arenas, Croquevielle, Jayaram, Riveros, 21]
• s-t reliability in DAGs can be reduced to #NFA [implied by Burtschick 95] [explicitly in Amarilli, Bremen and Meel 24]

 An FPRAS for s-t reliability in DAG (running time is a huge polynomial)

Previous works
Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if 𝑝𝑝 = 1
poly(𝑚𝑚)

 (e.g. 𝑞𝑞𝑒𝑒 = 𝑂𝑂 log𝑚𝑚
𝑚𝑚

 is small, where 𝑚𝑚 = |𝐸𝐸|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]
• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)
• Given 𝑛𝑛-state NFA, count #{distinct accepting strings} of length ℓ
• FPRAS in time �𝑂𝑂(𝑛𝑛ℓ 17) [Arenas, Croquevielle, Jayaram, Riveros, 21]
• s-t reliability in DAGs can be reduced to #NFA [implied by Burtschick 95] [explicitly in Amarilli, Bremen and Meel 24]

 An FPRAS for s-t reliability in DAG (running time is a huge polynomial)

Previous works
Direct Monte Carlo method (sample random subgraph and check reachability)

• the estimation is efficient if 𝑝𝑝 = 1
poly(𝑚𝑚)

 (e.g. 𝑞𝑞𝑒𝑒 = 𝑂𝑂 log𝑚𝑚
𝑚𝑚

 is small, where 𝑚𝑚 = |𝐸𝐸|)

Improved analysis on lower bound of s-t reliability [Zenklusen and Laumanns 10]
• Improve the lower bound of reliability for some special DAGs

Approximate count accepting strings of NFA (nondeterministic finite automaton)
• Given 𝑛𝑛-state NFA, count #{distinct accepting strings} of length ℓ
• FPRAS in time �𝑂𝑂(𝑛𝑛ℓ 17) [Arenas, Croquevielle, Jayaram, Riveros, 21]
• s-t reliability in DAGs can be reduced to #NFA [implied by Burtschick 95] [explicitly in Amarilli, Bremen and Meel 24]

 An FPRAS for s-t reliability in DAG (running time is a huge polynomial)

Very recently, improved FPRAS for #NFA [Meel, Chakraborty and Mathur 24]

• An FPRAS for s-t reliability in time �𝑂𝑂(𝑚𝑚19) for 𝑞𝑞𝑒𝑒 = 1
2
 via standard black-box reduction

Our results

There is an FPRAS for two-terminal network reliability in DAGs in time
�𝑂𝑂 𝑛𝑛6𝑚𝑚4 max 𝑚𝑚4, 𝜀𝜀−4 , where 𝑛𝑛 = 𝑉𝑉 and 𝑚𝑚 = |𝐸𝐸|

• technique inspired by [Arenas, Croquevielle, Jayaram and Riveros 21]

• running time can be further reduced by combining our technique with very recent
technique for #NFA [Meel, Chakraborty and Mathur 24]

Our results

There is an FPRAS for two-terminal network reliability in DAGs in time
�𝑂𝑂 𝑛𝑛6𝑚𝑚4 max 𝑚𝑚4, 𝜀𝜀−4 , where 𝑛𝑛 = 𝑉𝑉 and 𝑚𝑚 = |𝐸𝐸|

• technique inspired by [Arenas, Croquevielle, Jayaram and Riveros 21]

• running time can be further reduced by combining our technique with very recent
technique for #NFA [Meel, Chakraborty and Mathur 24]

There is no FPRAS for two-terminal network unreliability in DAGs
 unless there is an FPRAS for #BIS problem

 #BIS: counting the number of independent sets in bipartite graphs
 conjectured to has no FPRAS

Some basic settings for this talk

Two-terminal network reliability approximation
Input: a DAG (direct acyclic graph) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡
 an error bound 𝜀𝜀 > 0

Output: a random number �̂�𝑝 approximating s-t network reliability 𝑝𝑝 = Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡

Some basic settings for this talk

Two-terminal network reliability approximation
Input: a DAG (direct acyclic graph) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and parameters 𝑞𝑞𝑒𝑒 ∈ (0,1)
 a source node 𝑠𝑠 and a sink node 𝑡𝑡
 an error bound 𝜀𝜀 > 0

Output: a random number �̂�𝑝 approximating s-t network reliability 𝑝𝑝 = Pr 𝑠𝑠 →𝐺𝐺 𝑝𝑝 𝑡𝑡

Assumption
For any edge 𝑒𝑒 ∈ 𝐸𝐸, 𝑞𝑞𝑒𝑒 = 1

2
general 𝑞𝑞𝑒𝑒 ∈ (0,1) can be solved with very small tweaks

𝑝𝑝 =
#{subgraphs such that 𝑠𝑠 can reach 𝑡𝑡}

2𝑚𝑚

counting
problem

Sampling and counting

Two-terminal network reliability in DAGs

Ω = {subgraphs of 𝐺𝐺 such that 𝑠𝑠 can reach 𝑡𝑡}

• Counting Problem (network reliability): estimate the size #Ω

• Sampling Problem: draw random subgraphs from Ω uniformly at random

Sampling and counting

Two-terminal network reliability in DAGs

Ω = {subgraphs of 𝐺𝐺 such that 𝑠𝑠 can reach 𝑡𝑡}

• Counting Problem (network reliability): estimate the size #Ω

• Sampling Problem: draw random subgraphs from Ω uniformly at random

SamplingApprox.
Counting

Self-Reducibility
[Jerrum, Valiant, Vazirani 86]

Sampling and counting

Two-terminal network reliability in DAGs

Ω = {subgraphs of 𝐺𝐺 such that 𝑠𝑠 can reach 𝑡𝑡}

• Counting Problem (network reliability): estimate the size #Ω

• Sampling Problem: draw random subgraphs from Ω uniformly at random

SamplingApprox.
Counting

Self-Reducibility
[Jerrum, Valiant, Vazirani 86]

Our algorithm

• Decompose the input two-terminal reliability instance into many sub-instances

• Solve the sampling / counting problems recursively in sub-instances

Our Algorithm

s t

sort all vertices according to topological order 𝑠𝑠 = 𝑣𝑣𝑛𝑛 ≻ 𝑣𝑣𝑛𝑛−1 ≻ ⋯ ≻ 𝑣𝑣1 = 𝑡𝑡

Our Algorithm

s

v

t

sort all vertices according to topological order 𝑠𝑠 = 𝑣𝑣𝑛𝑛 ≻ 𝑣𝑣𝑛𝑛−1 ≻ ⋯ ≻ 𝑣𝑣1 = 𝑡𝑡

• 𝐺𝐺𝑣𝑣: subgraph containing all vertices that can be reached from 𝑣𝑣 ∈ 𝑉𝑉
Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 such that 𝑣𝑣 can reach 𝑡𝑡}

• 𝑍𝑍𝑣𝑣: a counting estimate of the size #Ω𝑣𝑣
• 𝑆𝑆𝑣𝑣: a set of samples, where each 𝐻𝐻 ∈ 𝑆𝑆𝑣𝑣 is uniform random sample from Ω𝑣𝑣

Our Algorithm

s

v

t

sort all vertices according to topological order 𝑠𝑠 = 𝑣𝑣𝑛𝑛 ≻ 𝑣𝑣𝑛𝑛−1 ≻ ⋯ ≻ 𝑣𝑣1 = 𝑡𝑡

• 𝐺𝐺𝑣𝑣: subgraph containing all vertices that can be reached from 𝑣𝑣 ∈ 𝑉𝑉
Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 such that 𝑣𝑣 can reach 𝑡𝑡}

• 𝑍𝑍𝑣𝑣: a counting estimate of the size #Ω𝑣𝑣
• 𝑆𝑆𝑣𝑣: a set of samples, where each 𝐻𝐻 ∈ 𝑆𝑆𝑣𝑣 is uniform random sample from Ω𝑣𝑣

Our Algorithm

s t

• 𝐺𝐺𝑣𝑣: subgraph containing all vertices that can be reached from 𝑣𝑣 ∈ 𝑉𝑉
Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 such that 𝑣𝑣 can reach 𝑡𝑡}

• 𝑍𝑍𝑣𝑣: a counting estimate of the size #Ω𝑣𝑣
• 𝑆𝑆𝑣𝑣: a set of samples, where each 𝐻𝐻 ∈ 𝑆𝑆𝑣𝑣 is uniform random sample from Ω𝑣𝑣

sort all vertices according to topological order 𝑠𝑠 = 𝑣𝑣𝑛𝑛 ≻ 𝑣𝑣𝑛𝑛−1 ≻ ⋯ ≻ 𝑣𝑣1 = 𝑡𝑡

Compute (𝑍𝑍𝑣𝑣, 𝑆𝑆𝑣𝑣) for 𝑣𝑣 from 𝑣𝑣1 to 𝑣𝑣𝑛𝑛 via dynamic programming + Monte Carlo

Framework appeared in [Gore, Jerrum, Kannan, Sweedyk, and Mahaney 97] [Arenas, Croquevielle, Jayaram and Riveros 21]

Our Algorithm

s t

• 𝐺𝐺𝑣𝑣: subgraph containing all vertices that can be reached from 𝑣𝑣 ∈ 𝑉𝑉
Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 such that 𝑣𝑣 can reach 𝑡𝑡}

• 𝑍𝑍𝑣𝑣: a counting estimate of the size #Ω𝑣𝑣
• 𝑆𝑆𝑣𝑣: a set of samples, where each 𝐻𝐻 ∈ 𝑆𝑆𝑣𝑣 is uniform random sample from Ω𝑣𝑣

sort all vertices according to topological order 𝑠𝑠 = 𝑣𝑣𝑛𝑛 ≻ 𝑣𝑣𝑛𝑛−1 ≻ ⋯ ≻ 𝑣𝑣1 = 𝑡𝑡

base case 𝑣𝑣 = 𝑡𝑡 is trivial

Compute (𝑍𝑍𝑣𝑣, 𝑆𝑆𝑣𝑣) for 𝑣𝑣 from 𝑣𝑣1 to 𝑣𝑣𝑛𝑛 via dynamic programming + Monte Carlo

Framework appeared in [Gore, Jerrum, Kannan, Sweedyk, and Mahaney 97] [Arenas, Croquevielle, Jayaram and Riveros 21]

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

𝔼𝔼 𝑋𝑋 =
|Ω𝑣𝑣|

∑𝑖𝑖=1𝑑𝑑 |Ω𝑖𝑖|
≥

1
𝑑𝑑 Ω𝑣𝑣 = �

𝑖𝑖=1

𝑑𝑑
Ω𝑖𝑖 𝔼𝔼[𝑋𝑋]

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

𝔼𝔼 𝑋𝑋 =
|Ω𝑣𝑣|

∑𝑖𝑖=1𝑑𝑑 |Ω𝑖𝑖|
≥

1
𝑑𝑑 Ω𝑣𝑣 = �

𝑖𝑖=1

𝑑𝑑
Ω𝑖𝑖 𝔼𝔼[𝑋𝑋]

estimate |Ω𝑖𝑖| using 𝑍𝑍𝑣𝑣𝑖𝑖 ≈ |Ω𝑣𝑣𝑖𝑖|

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

𝔼𝔼 𝑋𝑋 =
|Ω𝑣𝑣|

∑𝑖𝑖=1𝑑𝑑 |Ω𝑖𝑖|
≥

1
𝑑𝑑 Ω𝑣𝑣 = �

𝑖𝑖=1

𝑑𝑑
Ω𝑖𝑖 𝔼𝔼[𝑋𝑋]

estimate |Ω𝑖𝑖| using 𝑍𝑍𝑣𝑣𝑖𝑖 ≈ |Ω𝑣𝑣𝑖𝑖|

take a sample 𝐻𝐻′ ∈ 𝑆𝑆𝑣𝑣𝑖𝑖 and modify 𝐻𝐻′ → 𝐻𝐻

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

𝔼𝔼 𝑋𝑋 =
|Ω𝑣𝑣|

∑𝑖𝑖=1𝑑𝑑 |Ω𝑖𝑖|
≥

1
𝑑𝑑 Ω𝑣𝑣 = �

𝑖𝑖=1

𝑑𝑑
Ω𝑖𝑖 𝔼𝔼[𝑋𝑋]

estimate |Ω𝑖𝑖| using 𝑍𝑍𝑣𝑣𝑖𝑖 ≈ |Ω𝑣𝑣𝑖𝑖|

take a sample 𝐻𝐻′ ∈ 𝑆𝑆𝑣𝑣𝑖𝑖 and modify 𝐻𝐻′ → 𝐻𝐻

do DFS search in 𝐻𝐻

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

Karp-Luby’s method for estimating the size of union [Karp and Luby 83]

• Sample an index 𝑖𝑖 ∈ [𝑑𝑑] with prob ∝ |Ω𝑖𝑖|
• Sample a subgraph 𝐻𝐻 from Ω𝑖𝑖 uniformly at random

• 𝑋𝑋 ∈ {0,1} indicate whether 𝑖𝑖 is the first set containing 𝐻𝐻

𝔼𝔼 𝑋𝑋 =
|Ω𝑣𝑣|

∑𝑖𝑖=1𝑑𝑑 |Ω𝑖𝑖|
≥

1
𝑑𝑑 Ω𝑣𝑣 = �

𝑖𝑖=1

𝑑𝑑
Ω𝑖𝑖 𝔼𝔼[𝑋𝑋]

estimate |Ω𝑖𝑖| using 𝑍𝑍𝑣𝑣𝑖𝑖 ≈ |Ω𝑣𝑣𝑖𝑖|

take a sample 𝐻𝐻′ ∈ 𝑆𝑆𝑣𝑣𝑖𝑖 and modify 𝐻𝐻′ → 𝐻𝐻

do DFS search in 𝐻𝐻

generate ind. 𝑋𝑋 and take average

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

• Apply Karp-Luby to compute an estimate 𝑍𝑍𝑣𝑣 such that

Pr 𝑍𝑍𝑣𝑣 ∈ 1 ± poly
𝜀𝜀
𝑚𝑚

|Ω𝑣𝑣| ≥
2
3

• Apply median-trick to boost the successful prob.
2/3 → 1 − exp(−poly(𝑚𝑚))

• Higher accuracy and higher successful probability require more samples in set 𝑆𝑆𝑣𝑣𝑖𝑖

• Different vertices 𝑣𝑣, 𝑣𝑣𝑣 may have the same neighbor 𝑣𝑣𝑖𝑖 , we reuse 𝑆𝑆𝑣𝑣𝑖𝑖 when computing 𝑍𝑍𝑣𝑣 and 𝑍𝑍𝑣𝑣′

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

• Apply Karp-Luby to compute an estimate 𝑍𝑍𝑣𝑣 such that

Pr 𝑍𝑍𝑣𝑣 ∈ 1 ± poly
𝜀𝜀
𝑚𝑚

|Ω𝑣𝑣| ≥
2
3

• Apply median-trick to boost the successful prob.
2/3 → 1 − exp(−poly(𝑚𝑚))

• Higher accuracy and higher successful probability require more samples in set 𝑆𝑆𝑣𝑣𝑖𝑖

• Different vertices 𝑣𝑣, 𝑣𝑣𝑣 may have the same neighbor 𝑣𝑣𝑖𝑖 , we reuse 𝑆𝑆𝑣𝑣𝑖𝑖 when computing 𝑍𝑍𝑣𝑣 and 𝑍𝑍𝑣𝑣′

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

• Apply Karp-Luby to compute an estimate 𝑍𝑍𝑣𝑣 such that

Pr 𝑍𝑍𝑣𝑣 ∈ 1 ± poly
𝜀𝜀
𝑚𝑚

|Ω𝑣𝑣| ≥
2
3

• Apply median-trick to boost the successful prob.
2/3 → 1 − exp(−poly(𝑚𝑚))

• Higher accuracy and higher successful probability require more samples in set 𝑆𝑆𝑣𝑣𝑖𝑖

• Different vertices 𝑣𝑣, 𝑣𝑣𝑣 may have the same neighbor 𝑣𝑣𝑖𝑖 , we reuse 𝑆𝑆𝑣𝑣𝑖𝑖 when computing 𝑍𝑍𝑣𝑣 and 𝑍𝑍𝑣𝑣′

Estimate the count via Karp-Luby
• A vertex 𝑣𝑣 ∈ 𝑉𝑉 and a set of neighbors 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑑𝑑

Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 s. t. 𝑣𝑣 → 𝑡𝑡}
• For any neighbor 𝑣𝑣𝑖𝑖 ,

 Ω𝑖𝑖 = {subgaphs of 𝐺𝐺𝑣𝑣 s. t.𝑣𝑣 → 𝑣𝑣𝑖𝑖 → 𝑡𝑡 }

• Vertex 𝑣𝑣 must reach 𝑡𝑡 through some neighbors
Ω𝑣𝑣 =∪𝑖𝑖=1𝑑𝑑 Ω𝑖𝑖

𝑣𝑣

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣5

𝑡𝑡

• Apply Karp-Luby to compute an estimate 𝑍𝑍𝑣𝑣 such that

Pr 𝑍𝑍𝑣𝑣 ∈ 1 ± poly
𝜀𝜀
𝑚𝑚

|Ω𝑣𝑣| ≥
2
3

• Apply median-trick to boost the successful prob.
2/3 → 1 − exp(−poly(𝑚𝑚))

• Higher accuracy and higher successful probability require more samples in set 𝑆𝑆𝑣𝑣𝑖𝑖

• Different vertices 𝑣𝑣, 𝑣𝑣𝑣 may have the same neighbor 𝑣𝑣𝑖𝑖 , we reuse 𝑆𝑆𝑣𝑣𝑖𝑖 when computing 𝑍𝑍𝑣𝑣 and 𝑍𝑍𝑣𝑣′

𝑣𝑣𝑣

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

• Repeat the processing for poly 𝑚𝑚/𝜖𝜖 times to generate poly 𝑚𝑚/𝜖𝜖 samples

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

• Repeat the processing for poly 𝑚𝑚/𝜖𝜖 times to generate poly 𝑚𝑚/𝜖𝜖 samples

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

• Repeat the processing for poly 𝑚𝑚/𝜖𝜖 times to generate poly 𝑚𝑚/𝜖𝜖 samples

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

• Repeat the processing for poly 𝑚𝑚/𝜖𝜖 times to generate poly 𝑚𝑚/𝜖𝜖 samples

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

• Repeat the processing for poly 𝑚𝑚/𝜖𝜖 times to generate poly 𝑚𝑚/𝜖𝜖 samples

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡

graph 𝐺𝐺𝑣𝑣 random subgraph of 𝐺𝐺𝑣𝑣 s.t. 𝑣𝑣 → 𝑡𝑡

• Go through all edges 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 in graph 𝐺𝐺𝑣𝑣 in some ordering

• For each edge 𝑒𝑒𝑖𝑖, sample 𝑋𝑋 𝑒𝑒𝑖𝑖 ∈ {0,1} that indicates whether 𝑒𝑒𝑖𝑖 in random subgraph

• Compute the conditional marginal probability

𝑝𝑝(𝑒𝑒𝑖𝑖) = Pr 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 𝑋𝑋 𝑒𝑒1 ,𝑋𝑋 𝑒𝑒2 , … ,𝑋𝑋 𝑒𝑒𝑖𝑖−1

• Set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1 with prob. 𝑝𝑝(𝑒𝑒𝑖𝑖) and set 𝑋𝑋 𝑒𝑒𝑖𝑖 = 0 with prob. 1 − 𝑝𝑝(𝑒𝑒𝑖𝑖)

• Repeat the processing for poly 𝑚𝑚/𝜖𝜖 times to generate poly 𝑚𝑚/𝜖𝜖 samples

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡

• Suppose we have sampled 𝑋𝑋(𝑒𝑒𝑖𝑖) for 𝑖𝑖 ≤ ℓ

• Let ℰ be set of edges 𝑒𝑒𝑖𝑖 s.t. 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1

• Λ = {𝑤𝑤 ∈ 𝑉𝑉:𝑣𝑣 → 𝑤𝑤 through edges in ℰ}

Λ the set of vertices 𝑣𝑣 can reach

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡

• Suppose we have sampled 𝑋𝑋(𝑒𝑒𝑖𝑖) for 𝑖𝑖 ≤ ℓ

• Let ℰ be set of edges 𝑒𝑒𝑖𝑖 s.t. 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1

• Λ = {𝑤𝑤 ∈ 𝑉𝑉:𝑣𝑣 → 𝑤𝑤 through edges in ℰ}

Λ the set of vertices 𝑣𝑣 can reach

• Pick the edge 𝑒𝑒 = (𝑢𝑢,𝑤𝑤) from Λ to the out-boundary 𝜕𝜕Λ where 𝑤𝑤 has the largest topological order

𝜕𝜕Λ = {𝑤𝑤 ∉ Λ:∃𝑢𝑢 ∈ Λ 𝑠𝑠. 𝑡𝑡. 𝑢𝑢,𝑤𝑤 ∈ 𝐸𝐸}

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡

• Suppose we have sampled 𝑋𝑋(𝑒𝑒𝑖𝑖) for 𝑖𝑖 ≤ ℓ

• Let ℰ be set of edges 𝑒𝑒𝑖𝑖 s.t. 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1

• Λ = {𝑤𝑤 ∈ 𝑉𝑉:𝑣𝑣 → 𝑤𝑤 through edges in ℰ}

Λ the set of vertices 𝑣𝑣 can reach

• Pick the edge 𝑒𝑒 = (𝑢𝑢,𝑤𝑤) from Λ to the out-boundary 𝜕𝜕Λ where 𝑤𝑤 has the largest topological order

𝜕𝜕Λ = {𝑤𝑤 ∉ Λ:∃𝑢𝑢 ∈ Λ 𝑠𝑠. 𝑡𝑡. 𝑢𝑢,𝑤𝑤 ∈ 𝐸𝐸}

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡
OR𝑋𝑋 𝑒𝑒 = 1 𝑋𝑋 𝑒𝑒 = 0

Prob ∝ # {subgraphs v can reach t} Prob ∝ # {subgraphs v cannot reach t}

Generate the samples via self-reduction

𝑣𝑣 𝑡𝑡

• Suppose we have sampled 𝑋𝑋(𝑒𝑒𝑖𝑖) for 𝑖𝑖 ≤ ℓ

• Let ℰ be set of edges 𝑒𝑒𝑖𝑖 s.t. 𝑋𝑋 𝑒𝑒𝑖𝑖 = 1

• Λ = {𝑤𝑤 ∈ 𝑉𝑉:𝑣𝑣 → 𝑤𝑤 through edges in ℰ}

Λ the set of vertices 𝑣𝑣 can reach

• Pick the edge 𝑒𝑒 = (𝑢𝑢,𝑤𝑤) from Λ to the out-boundary 𝜕𝜕Λ where 𝑤𝑤 has the largest topological order

𝜕𝜕Λ = {𝑤𝑤 ∉ Λ:∃𝑢𝑢 ∈ Λ 𝑠𝑠. 𝑡𝑡. 𝑢𝑢,𝑤𝑤 ∈ 𝐸𝐸}

𝑣𝑣 𝑡𝑡 𝑣𝑣 𝑡𝑡
OR𝑋𝑋 𝑒𝑒 = 1 𝑋𝑋 𝑒𝑒 = 0

Prob ∝ # {subgraphs v can reach t} Prob ∝ # {subgraphs v cannot reach t}

𝑣𝑣 𝑡𝑡𝑣𝑣 Λ

using edges 𝑒𝑒 with 𝑋𝑋 𝑒𝑒 = 1

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝜕𝜕Λ

𝑡𝑡

Approx. count # {subgraphs s.t. Λ can reach 𝑡𝑡 through 𝜕𝜕Λ}

sub-graphs is fixed

𝑣𝑣 𝑡𝑡𝑣𝑣 Λ

using edges 𝑒𝑒 with 𝑋𝑋 𝑒𝑒 = 1

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝜕𝜕Λ

𝑡𝑡

Approx. count # {subgraphs s.t. Λ can reach 𝑡𝑡 through 𝜕𝜕Λ}

sub-graphs is fixed

𝑣𝑣 𝑡𝑡𝑣𝑣 Λ

using edges 𝑒𝑒 with 𝑋𝑋 𝑒𝑒 = 1

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝜕𝜕Λ

𝑡𝑡

Ω = �
𝑢𝑢∈𝜕𝜕Λ

Ω𝑢𝑢

• Ω = {subgraphs s.t. Λ can reach 𝑡𝑡} is the set we want to count

• Ω𝑢𝑢 = {subgraphs s.t. Λ can reach 𝑡𝑡 through u}

• Run Karp-Luby algorithm by reusing the samples in nodes at 𝜕𝜕Λ

Approx. count # {subgraphs s.t. Λ can reach 𝑡𝑡 through 𝜕𝜕Λ}

sub-graphs is fixed

𝑣𝑣 𝑡𝑡𝑣𝑣 Λ

using edges 𝑒𝑒 with 𝑋𝑋 𝑒𝑒 = 1

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝜕𝜕Λ

𝑡𝑡

Ω = �
𝑢𝑢∈𝜕𝜕Λ

Ω𝑢𝑢

• Ω = {subgraphs s.t. Λ can reach 𝑡𝑡} is the set we want to count

• Ω𝑢𝑢 = {subgraphs s.t. Λ can reach 𝑡𝑡 through u}

• Run Karp-Luby algorithm by reusing the samples in nodes at 𝜕𝜕Λ

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal probability

Generate samples by
sampling edges

one-by-one

Sampling Algorithm at Each Node

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal probability

Generate samples by
sampling edges

one-by-one

Sampling Algorithm at Each Node

also used for compute the count estimate 𝒁𝒁𝒗𝒗 at each node

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal probability

Generate samples by
sampling edges

one-by-one

Sampling Algorithm at Each Node

also used for compute the count estimate 𝒁𝒁𝒗𝒗 at each node

• Sort all vertices in topological ordering 𝑡𝑡 = 𝑣𝑣1 ≺ 𝑣𝑣2 ≺ ⋯ ≺ 𝑣𝑣𝑛𝑛 = 𝑠𝑠

• 𝐺𝐺𝑣𝑣 : subgraph containing all vertices that can be reached from 𝑣𝑣 ∈ 𝑉𝑉
Ω𝑣𝑣 = {subgraphs of 𝐺𝐺𝑣𝑣 such that 𝑣𝑣 can reach 𝑡𝑡}

• 𝑍𝑍𝑣𝑣: a count estimate of the size #Ω𝑣𝑣
• 𝑆𝑆𝑣𝑣: a set of samples, where each 𝐻𝐻 ∈ 𝑆𝑆𝑣𝑣 is uniform random sample from Ω𝑣𝑣

High-level analysis of the algorithm
Challenge: reusing samples introduces complicated correlations

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

High-level analysis of the algorithm
Challenge: reusing samples introduces complicated correlations

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal prob. p

Generate samples by
sampling edges

one-by-one

High-level analysis of the algorithm
Challenge: reusing samples introduces complicated correlations

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal prob. p

Generate samples by
sampling edges

one-by-one

use fresh randomness to sample 𝑋𝑋(𝑒𝑒) with Pr 𝑋𝑋 𝑒𝑒 = 1 = 𝑝𝑝

High-level analysis of the algorithm
Challenge: reusing samples introduces complicated correlations

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal prob. p

Generate samples by
sampling edges

one-by-one

use fresh randomness to sample 𝑋𝑋(𝑒𝑒) with Pr 𝑋𝑋 𝑒𝑒 = 1 = 𝑝𝑝

• The algorithm is correct if random samples correctly estimate counts or marginal prob.

poly(𝑚𝑚) number samples
estimation is correct

with prob. 1 − exp(−𝑚𝑚)
Chernoff + median trick

High-level analysis of the algorithm
Challenge: reusing samples introduces complicated correlations

Key Property: the algorithm only use samples for approx. counting (estimate marginal prob.)

approximate counting
via Karp-Luby

(reusing samples)

estimate conditional
marginal prob. p

Generate samples by
sampling edges

one-by-one

use fresh randomness to sample 𝑋𝑋(𝑒𝑒) with Pr 𝑋𝑋 𝑒𝑒 = 1 = 𝑝𝑝

• The algorithm is correct if random samples correctly estimate counts or marginal prob.

poly(𝑚𝑚) number samples
estimation is correct

with prob. 1 − exp(−𝑚𝑚)
Chernoff + median trick

• Conditional on estimate is correctly only bias random samples with exp-small error
• Show the whole algorithm is correct by an induction proof

Open Problems

• Faster algorithm for s-t reliability in DAGs

• Simple algorithm for s-t reliability in DAGs

• FPTAS (deterministic) algorithm for s-t reliability in DAGs

• Algorithm or hardness for approximating s-t reliability in undirected / directed graphs

• Simple or faster FPRAS/FPTAS for #NFA

Open Problems

• Faster algorithm for s-t reliability in DAGs

• Simple algorithm for s-t reliability in DAGs

• FPTAS (deterministic) algorithm for s-t reliability in DAGs

• Algorithm or hardness for approximating s-t reliability in undirected / directed graphs

• Simple or faster FPRAS/FPTAS for #NFA

Open Problems

• Faster algorithm for s-t reliability in DAGs

• Simple algorithm for s-t reliability in DAGs

• FPTAS (deterministic) algorithm for s-t reliability in DAGs

• Algorithm or hardness for approximating s-t reliability in undirected / directed graphs

• Simple or faster FPRAS/FPTAS for #NFA

Thank you
Q&A

	An FPRAS for two-terminal reliability in directed acyclic graphs
	s-t network reliability
	s-t network reliability
	s-t network reliability
	Approximate s-t network reliability in DAGs
	Approximate s-t network reliability in DAGs
	Approximate s-t network reliability in DAGs
	Previous works
	Previous works
	Previous works
	Previous works
	Previous works
	Previous works
	Our results
	Our results
	Some basic settings for this talk
	Some basic settings for this talk
	Sampling and counting
	Sampling and counting
	Sampling and counting
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Estimate the count via Karp-Luby
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Generate the samples via self-reduction
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	High-level analysis of the algorithm
	High-level analysis of the algorithm
	High-level analysis of the algorithm
	High-level analysis of the algorithm
	High-level analysis of the algorithm
	Open Problems
	Open Problems
	Open Problems

