Sampling and Counting Hypergraph Colourings

Poster Presenter: Weiming Feng¹

Based on joint works with Heng Guo¹, Kun He², Jiaheng Wang¹, Chunyang Wang³ and Yitong Yin³

1 University of Edinburgh 2 Renmin University of China 3 Nanjing University

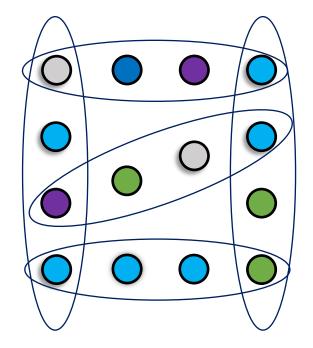
The Problem

Instance: colour set $[q] = \{1, 2, ..., q\}$ and a hypergraph graph H = (V, E)

- number of vertices n = |V|;
- each edge contains k vertices;
- each vertex belongs to at most Δ edges.

Colouring: $X \in [q]^V$ s.t. no edge is monochromatic **Total number** of colourings: Z**Uniform distribution** over all colourings: μ

Construction: find an arbitrary colouring **Sampling**: draw approximate sample X s.t. $||X - \mu||_{TV} \le \epsilon$ **Randomised** approximate counting: output \hat{Z} s.t. $\Pr[(1 - \epsilon)Z \le \hat{Z} \le (1 + \epsilon)Z] \ge 2/3$



The Local Uniformity Property

If $q \ge \Delta^{3/k}$, the projected distribution π satisfies for all $v \in V$, all $\sigma \in [s]^{V-v}$

$$\forall b \in [s], \quad \pi_v(b \mid \sigma) \in \left(1 \pm O\left(\frac{1}{s}\right)\right) \frac{|h^{-1}(b)|}{q} \approx \left(1 \pm O\left(\frac{1}{s}\right)\right) \frac{1}{s}$$

Intuition: π is "similar" to a product distribution

rapid mixing of systematic scan

Sampling from the conditional distribution $\pi_v(\cdot | \sigma)$, where $v \in V$ and $\sigma \in [s]^{V-v}$

• sample $X \sim \mu$ s.t. $h(X_u) = \sigma_u$ for $u \neq v$ (X is a uniform list colouring)

• return $Y_v = h(X_v)$

Deterministic approximate counting: output \hat{Z} s.t. $(1 - \epsilon)Z \leq \hat{Z} \leq (1 + \epsilon)Z$

Our Results and Related Works

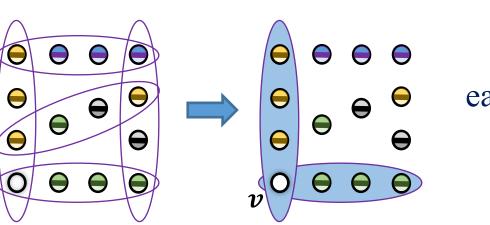
Problem	Work	Condition	Running Time
Construction	Moser Tardos 2009	$q \gtrsim \Delta^{1/k}$	$poly(\Delta k)n$
Sampling Randomised Counting	F. He, Yin 2021 Jain, Pham, Vuong 2021	$q \gtrsim \Delta^{3/k}$	$\operatorname{poly}(\Delta k) \tilde{O}(n^{1.001})$
Deterministic Counting	Moitra2016 Guo, Liao, Lu, Zhang 2017 Jain, Pham, Vuong 2021	$q \gtrsim \Delta^{7/k}$	$n^{\operatorname{poly}(\Delta k)}$
Deterministic Counting	He, Yin, Wang 2022 F., Guo, Wang, Wang, Yin 2022	$q \gtrsim \Delta^{3/k}$	$n^{\operatorname{poly}(\Delta k)}$
Hardness for Sampling and Counting	Galanis, Guo, Wang 2022	$q \lesssim \Delta^{2/k}$	-

Technical challenges for sampling and approximate counting

- MCMC cannot be used directly as solution space is *disconnected* [Frizez, Melsted 2009].
- Correlation decay method [Weitz06] can not be used directly as *strong spatial mixing fails*.

Projection Technique for Sampling

Projection from colours to buckets $h: [q] \rightarrow [s]$ **Observation**: for any $e \in E$, if there exists $u, v \in e$ s.t. $\sigma_u \neq \sigma_v$, then *e* can be *removed*



each σ_u is an almost uniformly at random from [s] Pr[e is removed] $\approx s \left(\frac{1}{s}\right)^k = O\left(\frac{1}{d^2}\right)$

Only sample list colouring in the *component* containing *v*

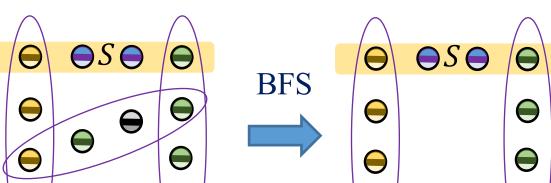
with high probability, size of component is $O(\log n)$ sample list colouring via naïve rejection sampling

Derandomisation Techinique for Counting

Step I: Jerrum-Valiant-Vazirani self-reduction

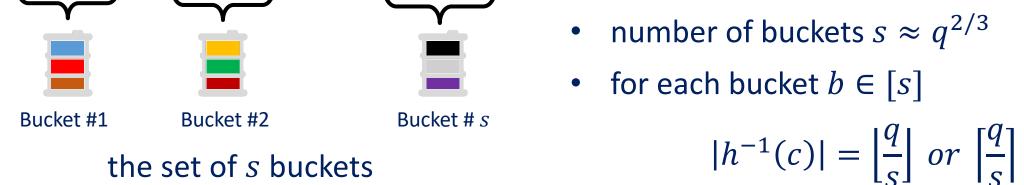
Abstract problem: given G = (V, E), [q] and $S \subseteq V$ with |S| = O(1), approx. distribution μ_S . Step II: Sampling from μ_S via sampling from marginal distributions of π

Input: $S \subseteq V$ and the *access* to a random sample $Y \sim \pi$ (query $v \in V$ and return $Y_v \in [s]$) **Output**: a random sample $X_S \in [q]^S$ from μ_S



Use *BFS* to find components Λ s.t. • $S \subseteq \Lambda$

• each component in Λ is monochromatic in *Y* the BFS only reveal **local value** Y_v around S



Projected distribution π over the configurations of the buckets $[s]^V$

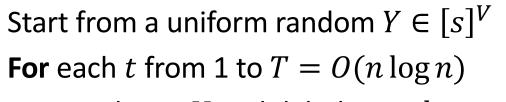
 $h(X) = (h(X_v))_{v \in V} \sim \pi, \quad where X \sim \mu$

• different colourings X, X' may be projected to the same state h(X) = h(X');

projection compresses space of colourings

• π is not a Gibbs distribution (distribution defined by local interactions).

Run the Systematic Scan on π to draw an approximate sample $Y \in [s]^V$



• Resample $Y_{v} \sim \pi_{v}(\cdot | Y_{S \setminus v})$

Return Y

Draw sample $X \sim \mu$ conditional on h(X) = Y

Properties of the above sampling algorithm

• Systematic scan on π is rapid mixing

the projection makes *a substantial compression,* so the projected space is *well-connected*.

• The algorithm can be implemented efficiently: fast sampling for *conditional distributions* of π

Use brute-force algorithm on the list colouring in $G[\Lambda]$ with colour lists $h^{-1}(Y_{\Lambda})$ to sample μ_S

Step III: providing local access to huge random object via coupling towards the past

Systematic Scan on $m{\pi}$

For $t = -\infty$ to 0

- Pick the vertex v with label $t \mod n$
- Sample a random value $r_t \sim \pi_{LB}$
- If $r_t \neq \perp$, then let $Y_v \leftarrow r_t$
- If $r_t = \perp$, then
 - Compute $\pi_v^{Y_V-v}$ by a local BFS
 - $Y_v \leftarrow p_t \sim \pi_v^{\mathrm{pad}, Y_{V-v}}$

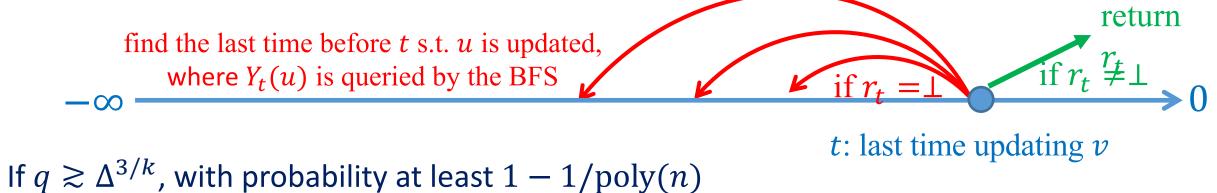
Local Uniformity: $\forall \sigma \in [s]^{V-\nu}, c \in [s],$ $\pi_{\nu}^{\sigma}(c) \ge p_{LB} \approx (1 - O(1/s))1/s$

 $\forall c \in [s], \pi_{LB}(c) = p_{LB} \text{ and } \pi_{LB}(\bot) = 1 - sp_{LB}$ (guess the value from local uniformity)

 $\forall c \in [s], \quad \pi_{v}^{\text{pad}, Y_{V-v}}(c) = \frac{\pi_{v}^{Y_{V-v}}(c) - p_{LB}}{1 - sp_{LB}}$ (sample from padding distribution if guess fails)

Coupling towards the past for sampling π_v

- Let $(Y_t)^0_{-\infty}$ be the systematic scan on π and $Y_0 \sim \pi$
- Find the last time t < 0 s.t. v is picked
- Reveal the value of $r_t \sim \pi_{LB}$
- If $r_t \neq \perp$, then return r_t
- If $r_t \neq \perp$, then
 - Compute $\pi_v^{Y_t(V-v)}$ by a local BFS, access $Y_t(u)$ by using this algorithm recursively
 - Return $p_t \sim \pi_v^{\mathrm{pad}, Y_{V-v}}$



the algorithm sample r_t , p_t for $poly(\Delta k) \log n$ times, and the running time is $n^{poly(\Delta k)}$

the projection *does not compress too much,* so π is "similar" to a Gibbs distribution

Step IV: brute-force derandomisation by enumerating all possible values of r_t and p_t

RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com