
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Instance: colour set 𝑞 = {1,2, … , 𝑞} and a hypergraph graph 𝐻 = (𝑉, 𝐸)
• number of vertices 𝑛 = |𝑉|;
• each edge contains 𝑘 vertices;
• each vertex belongs to at most Δ edges.

Colouring: 𝑋 ∈ 𝑞 ! s.t. no edge is monochromatic
Total number of colourings: 𝑍
Uniform distribution over all colourings: 𝜇

Construction: find an arbitrary colouring
Sampling: draw approximate sample 𝑋 s.t. 𝑋 − 𝜇 "! ≤ 𝜖
Randomised approximate counting: output 9𝑍 s.t. Pr 1 − 𝜖 𝑍 ≤ 9𝑍 ≤ 1 + 𝜖 𝑍 ≥ 2/3
Deterministic approximate counting: output 9𝑍 s.t. 1 − 𝜖 𝑍 ≤ 9𝑍 ≤ 1 + 𝜖 𝑍

The Problem

Our Results and Related Works

The Local Uniformity Property
If 𝑞 ≳ Δ#/%, the projected distribution 𝜋 satisfies for all 𝑣 ∈ 𝑉, all 𝜎 ∈ 𝑠 !&'

∀𝑏 ∈ 𝑠 , 𝜋' 𝑏 ∣ 𝜎 ∈ 1 ± 𝑂
1
𝑠

ℎ&(𝑏
𝑞 ≈ 1 ± 𝑂

1
𝑠

1
𝑠 .

Intuition: 𝜋 is “similar” to a product distribution

Derandomisation Techinique for Counting

Technical challenges for sampling and approximate counting
• MCMC cannot be used directly as solution space is disconnected [Frizez,Melsted 2009].
• Correlation decay method [Weitz06] can not be used directly as strong spatial mixing fails.

Poster Presenter: Weiming Feng1

Based on joint works with Heng Guo1, Kun He2, Jiaheng Wang1, Chunyang Wang3 and Yitong Yin3

Sampling and Counting Hypergraph Colourings

1 University of Edinburgh 2 Renmin University of China 3 Nanjing University

Problem Work Condition Running Time

Construction Moser Tardos 2009 𝑞 ≳ Δ(/% poly Δ𝑘 𝑛

Sampling
Randomised Counting

F. He, Yin 2021
Jain, Pham, Vuong 2021 𝑞 ≳ Δ#/% poly Δ𝑘 Q𝑂 𝑛(.**(

Deterministic Counting
Moitra2016

Guo, Liao, Lu, Zhang 2017
Jain, Pham, Vuong 2021

𝑞 ≳ Δ+/% 𝑛,-./(1%)

Deterministic Counting He, Yin, Wang 2022
F., Guo, Wang, Wang, Yin 2022 𝑞 ≳ Δ#/% 𝑛,-./(1%)

Hardness for
Sampling and Counting Galanis, Guo, Wang 2022 𝑞 ≲ Δ3/% -

Projection Technique for Sampling

the set of 𝑞 colours

Bucket #1 Bucket #2 Bucket # 𝑠

the set of 𝑠 buckets

Projection from colours to buckets

ℎ: 𝑞 → [𝑠]

• number of buckets 𝑠 ≈ 𝑞3/#

• for each bucket 𝑏 ∈ [𝑠]

ℎ&(𝑐 =
𝑞
𝑠
𝑜𝑟

𝑞
𝑠

Projected distribution 𝝅 over the configurations of the buckets 𝒔 𝑽

ℎ 𝑋 = ℎ 𝑋' '∈! ∼ 𝜋, 𝑤ℎ𝑒𝑟𝑒 𝑋 ∼ 𝜇

• different colourings 𝑋, 𝑋′ may be projected to the same state ℎ 𝑋 = ℎ(𝑋6);
projection compresses space of colourings

• 𝜋 is not a Gibbs distribution (distribution defined by local interactions).

Run the Systematic Scan on 𝜋 to draw an approximate sample 𝑌 ∈ 𝑠 !

Draw sample 𝑋 ∼ 𝜇 conditional on ℎ 𝑋 = 𝑌

Start from a uniform random 𝑌 ∈ 𝑠 !

For each 𝑡 from 1 to 𝑇 = 𝑂(𝑛 log𝑛)
• Pick 𝑣 ∈ 𝑉 with label 𝑡 mod 𝑛
• Resample 𝑌' ∼ 𝜋'(⋅ |𝑌7\')

Return 𝑌

Properties of the above sampling algorithm
• Systematic scan on 𝜋 is rapid mixing

the projection makes a substantial compression, so the projected space is well-connected.

• The algorithm can be implemented efficiently: fast sampling for conditional distributions of 𝜋
the projection does not compress too much, so 𝜋 is “similar” to a Gibbs distribution

local uniformity rapid mixing of systematic scan
information percolation

[Jain, Pham, Vuong, 2021]

Sampling from the conditional distribution 𝜋'(⋅∣ 𝜎), where 𝑣 ∈ 𝑉 and 𝜎 ∈ 𝑠 !&'

• sample 𝑋 ∼ 𝜇 s.t. ℎ 𝑋9 = 𝜎9 for 𝑢 ≠ 𝑣 (𝑋 is a uniform list colouring)
• return 𝑌' = ℎ(𝑋')

Observation: for any 𝑒 ∈ 𝐸, if there exists 𝑢, 𝑣 ∈ 𝑒 s.t. 𝜎9 ≠ 𝜎', then 𝑒 can be removed

𝒗

𝒗 𝒗

Only sample list colouring in
the component containing 𝑣

each 𝜎9 is an almost uniformly at random from [𝑠]

local uniformity property

Pr 𝑒 is removed ≈ 𝑠
1
𝑠

%

= 𝑂
1
𝑑3

with high probability, size of component is 𝑂(log 𝑛)
sample list colouring via naïve rejection sampling

Step I: Jerrum-Valiant-Vazirani self-reduction

𝐺! 𝐺" = 𝐺! + 𝑒" 𝐺# = 𝐺" + 𝑒# 𝐺$ = 𝐺$ + 𝑒$

𝑍* = 𝑞: and approx. each ;!"#
;!

, where
𝑍<=(
𝑍<

= Pr
>!
[𝑒<=(is	𝒏𝒐𝒕	monochromatic]

Remark: 𝑒<=(∉ 𝐺<
Abstract problem: given 𝐺 = (𝑉, 𝐸), [𝑞] and 𝑆 ⊆ 𝑉 with 𝑆 = 𝑂(1), approx. distribution 𝜇7.

Step III: providing local access to huge random object via coupling towards the past

Step II: Sampling from 𝜇" via sampling from marginal distributions of 𝜋
Input: 𝑆 ⊆ 𝑉 and the access to a random sample 𝑌 ∼ 𝜋 (query 𝑣 ∈ 𝑉 and return 𝑌' ∈ [𝑠])
Output: a random sample 𝑋7 ∈ 𝑞 7 from 𝜇7

BFS
𝑆𝑆

Use BFS to find components Λ s.t.
• 𝑆 ⊆ Λ
• each component in Λ is monochromatic in 𝑌
the BFS only reveal local value 𝑌' around 𝑆

Use brute-force algorithm on the list colouring in
𝐺[𝛬] with colour lists ℎ&((𝑌?) to sample 𝜇7

Systematic Scan on 𝝅
For 𝑡 = −∞ to 0
• Pick the vertex 𝑣 with label 𝑡 mod 𝑛
• Sample a random value 𝑟@ ∼ 𝜋AB
• If 𝑟@ ≠⊥, then let 𝑌' ← 𝑟@
• If 𝑟@ =⊥, then

• Compute 𝜋'
C$%& by a local BFS

• 𝑌' ← 𝑝@ ∼ 𝜋'
,DE,C$%&

Local Uniformity: ∀𝜎 ∈ 𝑠 !&', 𝑐 ∈ [𝑠],
𝜋'G 𝑐 ≥ 𝑝AB ≈ 1 − 𝑂 1/𝑠 1/𝑠

∀𝑐 ∈ 𝑠 , 𝜋AB 𝑐 = 𝑝AB and 𝜋AB ⊥ = 1 − 𝑠𝑝AB
(guess the value from local uniformity)

∀𝑐 ∈ 𝑠 , 𝜋'
,DE,C!"# 𝑐 =

𝜋'
C!"# 𝑐 − 𝑝AB
1 − 𝑠𝑝AB

(sample from padding distribution if guess fails)

Step IV: brute-force derandomisation by enumerating all possible values of 𝑟# and 𝑝#

Coupling towards the past for sampling 𝝅𝒗
• Let 𝑌@ &I

* be the systematic scan on 𝜋 and 𝑌* ∼ 𝜋
• Find the last time 𝑡 < 0 s.t. 𝑣 is picked
• Reveal the value of 𝑟@ ∼ 𝜋AB
• If 𝑟@ ≠⊥, then return 𝑟@
• If 𝑟@ ≠⊥, then

• Compute 𝜋'
C'(!&') by a local BFS, access 𝑌@(𝑢) by using this algorithm recursively

• Return 𝑝@ ∼ 𝜋'
,DE,C$%&

If 𝑞 ≳ Δ#/%, with probability at least 1 − 1/poly(𝑛)
the algorithm sample 𝑟@ , 𝑝@ for poly(Δ𝑘) log 𝑛 times, and the running time is 𝑛,-./(1%)

−∞ 0
𝑡: last time updating 𝑣

return
𝑟@if 𝑟@ ≠⊥if 𝑟@ =⊥

find the last time before 𝑡 s.t. 𝑢 is updated,
where 𝑌((𝑢) is queried by the BFS

