Sampling and Counting Hypergraph Colourings

Poster Presenter: Weiming Feng ${ }^{1}$
Based on joint works with Heng Guo ${ }^{1}$, Kun He^{2}, Jiaheng Wang ${ }^{1}$, Chunyang Wang ${ }^{3}$ and Yitong Yin ${ }^{3}$
1 University of Edinburgh 2 Renmin University of China 3 Nanjing University

The Problem

Instance: colour set $[q]=\{1,2, \ldots, q\}$ and a hypergraph graph $H=(V, E)$

- number of vertices $n=|V|$;
- each edge contains k vertices;
- each vertex belongs to at most Δ edges.

Colouring: $X \in[q]^{V}$ s.t. no edge is monochromatic Total number of colourings: Z
Uniform distribution over all colourings: μ
Construction: find an arbitrary colouring
Sampling: draw approximate sample X s.t. $\|X-\mu\|_{T V} \leq \epsilon$
Randomised approximate counting: output \hat{Z} s.t. $\operatorname{Pr}[(1-\epsilon) Z \leq \hat{Z} \leq(1+\epsilon) Z] \geq 2 / 3$
Deterministic approximate counting: output \hat{Z} s.t. $(1-\epsilon) Z \leq \hat{Z} \leq(1+\epsilon) Z$
Our Results and Related Works

Problem	Work	Condition	Running Time
Construction	Moser Tardos 2009	$q \gtrsim \Delta^{1 / k}$	poly $(\Delta k) n$
Sampling Randomised Counting	F. He, Yin 2021 Jain, Pham, Vuong 2021	$q \gtrsim \Delta^{3 / k}$	$\operatorname{poly}(\Delta k) \tilde{O}\left(n^{1.001}\right)$
Deterministic Counting	Moitra2016 Guo, Liao, Lu, Zhang 2017 Jain, Pham, Vuong 2021	$q \gtrsim \Delta^{7 / k}$	$n^{\text {poly }(\Delta k)}$
Deterministic Counting	He, Yin, Wang 2022 F., Guo, Wang, Wang, Yin 2022	$q \gtrsim \Delta^{3 / k}$	$n^{\text {poly(} \Delta k)}$
Hardness for Sampling and Counting	Galanis, Guo, Wang 2022	$q \lesssim \Delta^{2 / k}$	-

Technical challenges for sampling and approximate counting

- MCMC cannot be used directly as solution space is disconnected [Frizez,Melsted 2009].
- Correlation decay method [Weitz06] can not be used directly as strong spatial mixing fails.

Projection Technique for Sampling

Projection from colours to buckets

$$
h:[q] \rightarrow[s]
$$

- number of buckets $s \approx q^{2 / 3}$
- for each bucket $b \in[s]$

$$
\left.\left|h^{-1}(c)\right|=\left\lvert\, \frac{q}{S}\right.\right\rfloor \text { or }\left\lceil\frac{q}{S}\right\rceil
$$

Projected distribution π over the configurations of the buckets $[s]^{V}$

$$
h(X)=\left(h\left(X_{v}\right)\right)_{v \in V} \sim \pi, \quad \text { where } X \sim \mu
$$

- different colourings X, X^{\prime} may be projected to the same state $h(X)=h\left(X^{\prime}\right)$;
\longrightarrow projection compresses space of colourings
- π is not a Gibbs distribution (distribution defined by local interactions).

Run the Systematic Scan on π to draw an approximate sample $Y \in[s]^{V}$

Start from a uniform random $Y \in[s]^{V}$	$\theta \theta \theta \theta$
For each t from 1 to $T=O(n \log n)$	$\theta \theta \theta$
- Pick $v \in V$ with label $t \bmod n$	$\theta \theta \theta$
- Resample $Y_{v} \sim \pi_{v}\left(\cdot \mid Y_{S \backslash v}\right)$	$0 \theta \theta \theta$
Return Y	

Draw sample $X \sim \mu$ conditional on $h(X)=Y$

Properties of the above sampling algorithm

- Systematic scan on π is rapid mixing
the projection makes a substantial compression, so the projected space is well-connected.
- The algorithm can be implemented efficiently: fast sampling for conditional distributions of π the projection does not compress too much, so π is "similar" to a Gibbs distribution

The Local Uniformity Property

If $q \gtrsim \Delta^{3 / k}$, the projected distribution π satisfies for all $v \in V$, all $\sigma \in[s]^{V-v}$

$$
\forall b \in[s], \quad \pi_{v}(b \mid \sigma) \in\left(1 \pm O\left(\frac{1}{s}\right)\right) \frac{\left|h^{-1}(b)\right|}{q} \approx\left(1 \pm O\left(\frac{1}{s}\right)\right) \frac{1}{s}
$$

Intuition: π is "similar" to a product distribution

Sampling from the conditional distribution $\pi_{v}(\cdot \mid \sigma)$, where $v \in V$ and $\sigma \in[s]^{V-v}$

- sample $X \sim \mu$ s.t. $h\left(X_{u}\right)=\sigma_{u}$ for $u \neq v$ (X is a uniform list colouring)
- return $Y_{v}=h\left(X_{v}\right)$

Observation: for any $e \in E$, if there exists $u, v \in e$ s.t. $\sigma_{u} \neq \sigma_{v}$, then e can be removed

Only sample list colouring in the component containing v
local uniformity property
each σ_{u} is an almost uniformly at random from $[s]$ $\operatorname{Pr}[e$ is removed $] \approx s\left(\frac{1}{s}\right)^{k}=O\left(\frac{1}{d^{2}}\right)$
with high probability, size of component is $O(\log n)$ sample list colouring via naïve rejection sampling

Derandomisation Techinique for Counting

Step I: Jerrum-Valiant-Vazirani self-reduction

$$
\begin{aligned}
& \circ 00 \circ 00000000 \text { 0000 } Z_{0}=q^{n} \text { and approx. each } \frac{Z_{i+1}}{z_{i}} \text {, where }
\end{aligned}
$$

$$
\begin{aligned}
& G_{0} \quad G_{1}=G_{0}+e_{1} \quad G_{2}=G_{1}+e_{2} \quad G_{3}=G_{3}+e_{3} \quad \text { Remark: } e_{i+1} \notin G_{i}
\end{aligned}
$$

Abstract problem: given $G=(V, E),[q]$ and $S \subseteq V$ with $|S|=O(1)$, approx. distribution μ_{S}.
Step II: Sampling from μ_{S} via sampling from marginal distributions of π
Input: $S \subseteq V$ and the access to a random sample $Y \sim \pi$ (query $v \in V$ and return $Y_{v} \in[s]$)
Output: a random sample $X_{S} \in[q]^{S}$ from μ_{S}

Step III: providing local access to huge random object via coupling towards the past

Systematic Scan on π

For $t=-\infty$ to 0

- Pick the vertex v with label $t \bmod n$
- Sample a random value $r_{t} \sim \pi_{L B}$
- If $r_{t} \neq \perp$, then let $Y_{v} \leftarrow r_{t}$
- If $r_{t}=\perp$, then
- Compute $\pi_{v}^{Y_{V-v}}$ by a local BFS
- $Y_{v} \leftarrow p_{t} \sim \pi_{v}^{\mathrm{pad}, Y_{V-v}}$

Coupling towards the past for sampling π_{v}

- Let $\left(Y_{t}\right)_{-\infty}^{0}$ be the systematic scan on π and $Y_{0} \sim \pi$
- Find the last time $t<0$ s.t. v is picked
- Reveal the value of $r_{t} \sim \pi_{L B}$
- If $r_{t} \neq \perp$, then return r_{t}
- If $r_{t} \neq \perp$, then
- Compute $\pi_{v}^{Y_{t}(V-v)}$ by a local BFS, access $Y_{t}(u)$ by using this algorithm recursively
- Return $p_{t} \sim \pi_{v}^{\text {pad, } Y_{V-v}}$

t : last time updating v
If $q \gtrsim \Delta^{3 / k}$, with probability at least $1-1 / \operatorname{poly}(n)$
the algorithm sample r_{t}, p_{t} for poly $(\Delta k) \log n$ times, and the running time is $n^{\text {poly }(\Delta k)}$
Step IV: brute-force derandomisation by enumerating all possible values of r_{t} and p_{t}

