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Abstract. Probabilistic graphical models, such as Markov random fields (MRFs), are useful for describ-
ing high-dimensional distributions in terms of local dependence structures. The probabilistic inference
is a fundamental problem related to graphical models, and sampling is a main approach for the problem.
In this paper, we study the probabilistic inference problems when the graphical model itself is changing
dynamically with time. Such dynamic inference problems arise naturally in today’s application, e.g. mul-
tivariate time-series data and practical learning procedures.

We give a dynamic algorithm for sampling-based probabilistic inferences in MRFs, where each dy-
namic update can change the underlying graph and all parameters of the MRF simultaneously, as long as
the total amount of changes is bounded. Suppose that the MRF has n variables and bounded maximum
degree, and N (n) independent samples are sufficient for the inference for a polynomial function N (·).
Our algorithm dynamically maintains an answer to the inference problem using Õ(nN (n)) space cost,
and Õ(N (n)+n) incremental time cost upon each update to the MRF, as long as the Dobrushin-Shlosman
condition is satisfied by the MRFs. This well-known condition has long been used for guaranteeing the
efficiency of Markov chain Monte Carlo (MCMC) sampling in the traditional static setting. Compared
to the static case, which requires Ω(nN (n)) time cost for redrawing all N (n) samples whenever the MRF
changes, our dynamic algorithm gives a significant Ω̃(min{n,N (n)})-factor speedup. Our approach relies
on a novel dynamic sampling technique, which transforms traditional local Markov chains (a.k.a. single-
site dynamics) to dynamic sampling algorithms, in a scenario where all parameters of the graphical model
are subject to simultaneous update at each time.
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1. Introduction

The probabilistic graphical models provide a rich language for describing high-dimensional dis-
tributions in terms of the dependence structures between random variables. The Markov random filed
(MRF) is a basic graphical model that encodes pairwise interactions of complex systems. Given a graph
G = (V , E), each vertex v ∈ V is associated with a function φv : Q → R, called the vertex potential, on
a finite domain Q = [q] of q spin states, and each edge e ∈ E is associated with a symmetric function
φe : Q2 → R, called the edge potential, which describes a pairwise interaction. Together, these induce
a probability distribution µ over all configurations σ ∈ QV :

µ(σ ) ∝ exp(H (σ )) = exp
( ∑
v ∈V

φv (σv ) +
∑

e={u ,v }∈E
φe (σu ,σv )

)
.

This distribution µ is known as the Gibbs distribution and H (σ ) is the Hamiltonian. It arises naturally
from various physical models, statistics or learning problems, and combinatorial problems in computer
science [MM09, KFB09].

The probabilistic inference is one of the most fundamental computational problems in graphical
model. Some basic inference problems ask to calculate the marginal distribution, conditional distri-
bution, or maximum-a-posteriori probabilities of one or several random variables [WJ08]. Sampling
is perhaps the most widely used approach for probabilistic inference. Given a graphical model, inde-
pendent samples are drawn from the Gibbs distribution and certain statistics are computed using the
samples to give estimates for the inferred quantity. For most typical inference problems, such statistics
are easy to compute once the samples are given, for instance, for estimating the marginal distribution
on a variable subset S , the statistics is the frequency of each configuration in QS among the samples,
thus the cost for inference is dominated by the cost for generating random samples [JVV86, ŠVV09].

The classic probabilistic inference assumes a static setting, where the input graphical model is fixed.
In today’s application, dynamically changing graphical models naturally arise in many scenarios. In
various practical algorithms for learning graphical models, e.g. the contrastive divergence algorithm
for leaning the restricted Boltzmann machine [Hin12] and the iterative proportional fitting algorithm
for maximum likelihood estimation of graphical models [WJ08], the optimal model I∗ is obtained by
updating the parameters of the graphical model iteratively (usually by gradient descent), which gen-
erates a sequence of graphical models I1,I2, · · · ,IM , with the goal that IM is a good approximation
of I∗. Also in the study of the multivariate time-series data, the dynamic Gaussian graphical mod-
els [CW+07], multiregression dynamic model [QS93], dynamic graphical model [QS92], and dynamic
chain graph models [AQ+17], are all dynamically changing graphical models and have been used in
a variety of applications. Meanwhile, with the advent of Big Data, scalable machine learning systems
need to deal with continuously evolving graphical models (see e.g. [RKD+19] and [SWA09]).

The theoretical studies of probabilistic inference in dynamically changing graphical models are lack-
ing. In the aforementioned scenarios in practice, it is common that a sequence of graphical models is
presented with time, where any two consecutive graphical models can differ from each other in all
potentials but by a small total amount. Recomputing the inference problem from scratch at every time
when the graphical model is changed, can give correct solution, but is very wasteful. A fundamental
question is whether probabilsitic inference can be solved dynamically and efficiently.

In this paper, we study the problem of probabilistic inference in an MRF when the MRF itself is
changing dynamically with time. At each time, the whole graphical model, including all vertices and
edges as well as their potentials, are subject to changes. Such non-local updates are very general
and cover all applications mentioned above. The problem of dynamic inference then asks to maintain a
correct answer to the inference in a dynamically changingMRFwith low incremental cost proportional
to the amount of changes made to the graphical model at each time.

1.1. Our results. We give a dynamic algorithm for sampling-based probabilistic inferences. Given
an MRF instance with n vertices, suppose that N (n) independent samples are sufficient to give an
approximate solution to the inference problem, where N : N+ → N+ is a polynomial function. We
give dynamic algorithms for general inference problems on dynamically changing MRF.
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Suppose that the current MRF has n vertices and bounded maximum degree, and each update to the
MRF may change the underlying graph or all vertex/edge potentials, as long as the total amount of
changes is bounded. Our algorithm maintains an approximate solution to the inference with Õ(nN (n))
space cost, and with Õ(N (n)+n) incremental time cost upon each update, assuming that the MRFs sat-
isfy the Dobrushin-Shlosman condition [DS85a, DS85b, DS87]. The condition has been widely used to
imply the efficiency of Markov chain Monte Carlo (MCMC) sampling (e.g. see [Hay06, DGJ08]). Com-
pared to the static algorithm, which requires Ω(nN (n)) time for redrawing all N (n) samples each time,
our dynamic algorithm significantly improves the time cost with an Ω̃(min{n,N (n)})-factor speedup.

On specific models, the Dobrushin-Shlosman condition has been established in the literature, which
directly gives us following efficient dynamic inference algorithms, with Õ (nN (n)) space cost and
Õ (N (n) + n) time cost per update, on graphs with n vertices and maximum degree ∆ = O(1):

• for Ising model with temperature β satisfying e−2 |β | > 1− 2
∆+1 , which is close to the uniqueness

threshold e−2 |βc | = 1 − 2
∆ , beyond which the static versions of sampling or marginal inference

problem for anti-ferromagnetic Ising model is intractable [GŠV16, GŠV15];
• for hardcore model with fugacity λ < 2

∆−2 , which matches the best bound known for sam-
pling algorithm with near-linear running time on general graphs with bounded maximum de-
gree [Vig99, LV99, DG00];
• for proper q-coloring with q > 2∆, which matches the best bound known for sampling algo-
rithmwith near-linear running time on general graphs with bounded maximum degree [Jer95].

Our dynamic inference algorithm is based on a dynamic sampling algorithm, which efficiently main-
tains N (n) independent samples for the current MRF while the MRF is subject to changes. More specif-
ically, we give a dynamic version of the Gibbs sampling algorithm, a local Markov chain for sampling
from the Gibbs distribution that has been studied extensively. Our techniques are based on: (1) cou-
plings for dynamic instances of graphical models; and (2) dynamic data structures for representing
single-site Markov chains so that the couplings can be realized algorithmically in sub-linear time. Both
these techniques are of independent interests, and can be naturally extended to more general settings
with multi-body interactions.

Our results show that on dynamically changing graphical models, sampling-based probabilistic in-
ferences can be solved significantly faster than rerunning the static algorithm at each time. This has
practical significance in speeding up the iterative procedures for learning graphical models.

1.2. Related work. The problem of dynamic sampling from graphical models was introduced very
recently in [FVY19]. There, a dynamic sampling algorithm was given for sampling from graphical
models with soft constraints, and can only deal with local updates that change a single vertex or edge
at each time. And the regimes for such dynamic sampling algorithm to be efficient with small incre-
mental cost, are much more restrictive than the conditions for the rapid mixing of Markov chains.
Our algorithm greatly improves the regimes for efficient dynamic sampling for the Ising and hardcore
models in [FVY19], and for the first time, can handle non-local updates that change all vertex/edge
potentials simultaneously. Besides, the dynamic/online sampling from log-concave distributions was
also studied in [NR17, LMV19].

Another related topic is the dynamic graph problems, which ask to maintain a solution (e.g. span-
ners [FG19, NSWN17, WN17] or shortest paths [BC16, HKN16, HKN14]) while the input graph is dy-
namically changing. More recently, important progresses have beenmade on dynamically maintaining
structures that are related to graph random walks, such as spectral sparsifier [DGGP19, ADK+16] or
effective resistances [DGGP18, GHP18]. Instead of one particular solution, dynamic inference prob-
lems ask to maintain a statistics of an exponential-sized probability space described by a dynamically
changing graphical model.

1.3. Organization of the paper. In Section 2, we formally introduce the dynamic inference problem.
In Section 3, we formally state the main results. Preliminaries are given in Section 4. In Section 5, we
outline our dynamic inference algorithm. In Section 6, we present the algorithms for dynamic Gibbs
sampling. The analyses of these dynamic sampling algorithms are given in Section 7. The proof of the
main theorem on dynamic inference is given in Section 8. The conclusion is given in Section 9.
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2. Dynamic inference problem

2.1. Markov random fields. An instance of Markov random field (MRF) is specified by a tuple I =
(V , E,Q,Φ), where G = (V , E) is an undirected simple graph; Q is a domain of q = |Q | spin states, for
some finite q > 1; and Φ = (φa)a∈V∪E associates each v ∈ V a vertex potential φv : Q → R and each
e ∈ E an edge potential φe : Q2 → R, where φe is symmetric.

A configuration σ ∈ QV maps each vertex v ∈ V to a spin state in Q , so that each vertex can be
interpreted as a variable. And the Hamiltonian of a configuration σ ∈ QV is defined as:

H (σ ) ≜
∑
v ∈V

φv (σv ) +
∑

e={u ,v }∈E
φe (σu ,σv ).

This defines the Gibbs distribution µI , which is a probability distribution over QV such that

∀σ ∈ QV , µI(σ ) =
1
Z
exp(H (σ )),

where the normalizing factor Z ≜
∑

σ ∈QV exp(H (σ )) is called the partition function.
The Gibbs measure µ(σ ) can be 0 as the functions φv ,φe can take the value −∞. A configuration

σ is called feasible if µ(σ ) > 0. To trivialize the problem of constructing a feasible configuration, we
further assume the following natural condition for the MRF instances considered in this paper:1

∀v ∈ V , ∀σ ∈ QΓG (v) :
∑
c ∈Q

exp

(
φv (c) +

∑
u ∈Γv

φuv (σu , c)
)
> 0.(1)

where ΓG (v) ≜ {u ∈ V | {u,v} ∈ E} denotes the neighborhood of v in graph G = (V , E).
Some well studied typical MRFs indclude:
• Ising model: The domain of each spin is Q = {−1,+1}. Each edge e ∈ E is associated with a
temperature βe ∈ R; and each vertex v ∈ V is associated with a local field hv ∈ R. For each
configuration σ ∈ {−1,+1}V , µI(σ ) ∝ exp

(∑
{u ,v }∈E βeσuσv +

∑
v ∈V hvσv

)
.

• Hardcoremodel: The domain isQ = {0, 1}. Each configurationσ ∈ QV indicates an independent
set in G = (V , E), and µI(σ ) ∝ λ ‖σ ‖ , where λ > 0 is the fugacity parameter.
• proper q-coloring: uniform distribution over all proper q-colorings of G = (V , E).

2.2. Probabilistic inference and sampling. In graphical models, the task of probabilistic inference
is to derive the probabilities regarding one or more random variables of the model. Abstractly, this is
described by a function θ : M → RK that maps each graphical model I ∈ M to a targetK-dimensional
probability vector, where M is the class of graphical models containing the random variables we are
interested in and the K-dimensional vector describes the probabilities we want to derive. Given θ (·)
and an MRF instance I ∈ M, the inference problem asks to estimate the probability vector θ (I).

Here are some fundamental inference problems [WJ08] for MRF instances. Let I = (V , E,Q,Φ) be a
MRF instance and A,B ⊆ V two disjoint sets where A ] B ⊆ V .

• Marginal inference: estimate the marginal distribution µA,I(·) of the variables in A, where

∀σA ∈ QA, µA,I(σA) ≜
∑

τ ∈QV \A

µI(σA, τ ).

• Posterior inference: given any τB ∈ QB , estimate the posterior distribution µA,I(· | τB) for the
variables in A, where

∀σA ∈ QA, µA,I(σA | τB) ≜
µA∪B,I(σA, τB)

µB,I(τB)
.

1This condition guarantees that the marginal probabilities are always well-defined, and the problem of constructing a
feasible configuration σ , where µI (σ ) > 0, is trivial. The condition holds for all MRFs with soft constraints, or with hard
constraints where there is a permissive spin, e.g. the hardcore model. For MRFs with truly repulsive hard constraints such
as proper q-coloring, the condition may translate to the condition q ≥ ∆ + 1 where ∆ is the maximum degree of graph G,
which is necessary for the irreducibility of local Markov chains for q-colorings.
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• Maximum-a-posteriori (MAP) inference: find the maximum-a-posteriori (MAP) probabilities
P∗A,I(·) for the configurations over A, where

∀σA ∈ QA, P∗A,I(σA) ≜ max
τB ∈QB

µA∪B,I(σA, τB).

All these fundamental inference problems can be described abstractly by a function θ : M → RK . For
instances, for marginal inference, M contains all MRF instances where A is a subset of the vertices,
K = |Q | |A | , and θ (I) = (µA,I(σA))σA∈QA ; and for posterior or MAP inference, M contains all MRF
instances where A ] B is a subset of the vertices, K = |Q | |A | and θ (I) = (µA,I(σA | τB))σA∈QA (for
posterior inference) or θ (I) = (P∗A,I(σA))σA∈QA (for MAP inference).

One canonical approach for probabilistic inference is by sampling: sufficiently many independent
samples are drawn (approximately) from the Gibbs distribution of the MRF instance and an estimate
of the target probabilities is calculated from these samples. Given a probabilistic inference problem
θ (·), we use Eθ (·) to denote an estimating function that approximates θ (I) using independent samples
drawn approximately from µI . For the aforementioned problems of marginal, posterior and MAP
inferences, such estimating function Eθ (·) simply counts the frequency of the samples that satisfy
certain properties.

The sampling cost of an estimator is captured in two aspects: the number of samples it uses and the
accuracy of each individual sample it requires.

Definition 2.1 ((N , ϵ)-estimator for θ ). Let θ : M → RK be a probabilistic inference problem and
Eθ (·) an estimating function for θ (·) that for each instance I = (V , E,Q,Φ) ∈ M, maps samples in QV

to an estimate of θ (I). Let N : N+ → N+ and ϵ : N+ → (0, 1). For any instance I = (V , E,Q,Φ) ∈ M
where n = |V |, the random variable Eθ (X (1), . . . ,X (N (n))) is said to be an (N , ϵ)-estimator for θ (I)
if X (1), . . . ,X (N (n)) ∈ QV are N (n) independent samples drawn approximately from µI such that
dTV

(
X (j), µI

)
≤ ϵ(n) for all 1 ≤ j ≤ N (n).

2.3. Dynamic inference problem. We consider the inference problem where the input graphical
model is changed dynamically: at each step, the current MRF instance I = (V , E,Q,Φ) is updated to
a new instance I ′ = (V ′, E ′,Q,Φ′). We consider general update operations for MRFs that can change
both theunderlying graph and all edge/vertex potentials simultaneously, where the update request
is made by a non-adaptive adversary independently of the randomness used by the inference algorithm.
Such updates are general enough and cover many applications, e.g. analyses of time series network
data [CW+07, QS93, QS92, AQ+17], and learning algorithms for graphical models [Hin12, WJ08].

The difference between the original and the updated instances is measured as follows.

Definition 2.2 (difference between MRF instances). The difference between two MRF instances
I = (V , E,Q,Φ) and I ′ = (V ′, E ′,Q,Φ′), where Φ = (φa)a∈V∪E and Φ′ = (φ ′a)a∈V ′∪E′ , is defined as

(2) d(I,I ′) ≜
∑

v ∈V∩V ′



φv − φ ′v

1 + ∑
e ∈E∩E′



φe − φ ′e

1 + |V ⊕ V ′ | + |E ⊕ E ′ |,
where A ⊕ B = (A \ B) ∪ (B \ A) stands for the symmetric difference between two sets A and B,

φv − φ ′v

1 ≜ ∑

c ∈Q
��φv (c) − φ ′v (c)��, and 

φe − φ ′e

1 ≜ ∑

c ,c ′∈Q
��φe (c, c ′) − φ ′e (c, c ′)��.

Given a probability vector specified by the function θ : M → RK , the dynamic inference problem
asks to maintain an estimator θ̂ (I) of θ (I) for the current MRF instance I = (V , E,Q,Φ) ∈ M, with
a data structure, such that when I is updated to I ′ = (V ′, E ′,Q,Φ′) ∈ M, the algorithm updates θ̂ (I)
to an estimator θ̂ (I ′) of the new vector θ (I ′), or equivalently, outputs the difference between the
estimators θ̂ (I) and θ̂ (I ′).

It is desirable to have the dynamic inference algorithmwhich maintains an (N , ϵ)-estimator for θ (I)
for the current instanceI. However, the dynamic algorithm cannot be efficient ifN (n) and ϵ(n) change
drastically with n (so that significantly more samples or substantially more accurate samples may be
needed when a new vertex is added), or if recalculating the estimating function Eθ (·) itself is expensive.
We introduce a notion of dynamical efficiency for the estimators that are suitable for dynamic inference.
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Definition 2.3 (dynamical efficiency). Let N : N+ → N+ and ϵ : N+ → (0, 1). Let E(·) be an
estimating function for some K-dimensional probability vector of MRF instances. An tuple (N , ϵ, E) is
said to be dynamically efficient if it satisfies:

• (bounded difference) there exist constants C1,C2 > 0 such that for any n ∈ N+,

|N (n + 1) − N (n)| ≤ C1 · N (n)
n

and |ϵ(n + 1) − ϵ(n)| ≤ C2 · ϵ(n)
n

;

• (small incremental cost) there is a deterministic algorithm that maintains E(X (1), . . . ,X (m))
using (mn + K) · polylog(mn) bits where X (1), . . . ,X (m) ∈ QV and n = |V |, such that when
X (1), . . . ,X (m) ∈ QV are updated to Y (1), . . . ,Y (m

′) ∈ QV ′ , where n′ = |V ′ |, the algorithm
updates E(X (1), . . . ,X (m)) to E(Y (1), . . . ,Y (m′)) within time cost D · polylog(mm′nn′) +O(m +
m′), where D is the size of the difference between two sample sequences defined as:

D ≜
∑

i≤max{m,m′ }

∑
v ∈V∪V ′

1
[
X (i)(v) , Y (i)(v)

]
,(3)

where an unassigned X (i)(v) or Y (i)(v) is not equal to any assigned spin.

The dynamic efficiency basically asks N (·), ϵ(·), and E(·) to have some sort of “Lipschitz” properties.
To satisfy the bounded difference condition, N (n) and 1/ϵ(n) are necessarily polynomially bounded,
and can be any constant, polylogarithmic, or polynomial functions, or multiplications of such func-
tions. The condition with small incremental cost also holds very commonly. In particular, it is satisfied
by the estimating functions for all the aforementioned problems for the marginal, posterior and MAP
inferences as long as the sets of variables have sizes |A| , |B | ∈ O(logn). We remark that the O(logn)
upper bound is somehow necessary for the efficiency of inference, because otherwise the dimension
of θ (I) itself (which is at least q |A |) becomes super-polynomial in n.

3. Main results

Let I = (V , E,Q,Φ) be an MRF instance, whereG = (V , E). Let ΓG (v) denote the neighborhood of v
in G. For any vertex v ∈ V and any configuration σ ∈ QΓG (v), we use µσv ,I(·) = µv ,I(· | σ ) to denote
the marginal distribution on v conditional on σ :

∀c ∈ Q : µσv ,I(c) = µv ,I(c | σ ) ≜
exp

(
φv (c) +

∑
u ∈ΓG (v) φuv (σu , c)

)∑
a∈Q exp

(
φv (a) +

∑
u ∈ΓG (v) φuv (σu ,a)

) .
Due to the assumption in (1), the marginal distribution is always well-defined. The following condition
is the Dobrushin-Shlosman condition [DS85a, DS85b, DS87, Hay06, DGJ08].

Condition 3.1 (Dobrushin-Shlosman condition). Let I = (V , E,Q,Φ) be an MRF instance with
Gibbs distribution µ = µI . Let AI ∈ RV×V≥0 be the influence matrix which is defined as

AI(u,v) ≜
{
max(σ ,τ )∈Bu ,v dTV

(
µσv , µ

τ
v
)
, {u,v} ∈ E,

0 {u,v} < E,

where the maximum is taken over the set Bu ,v of all (σ , τ ) ∈ QΓG (v) × QΓG (v) that differ only at u,
and dTV

(
µσv , µ

τ
v
)
≜ 1

2

∑
c ∈Q

��µσv (c) − µτv (c)�� is the total variation distance between µσv and µτv . An MRF
instance I is said to satisfy the Dobrushin-Shlosman condition if there is a constant δ > 0 such that

max
u ∈V

∑
v ∈V

AI(u,v) ≤ 1 − δ .

Our main theorem assumes the following setup: Let θ : M → RK be a probabilistic inference
problem that maps each MRF instance in M to a K-dimensional probability vector, and let Eθ be its
estimating function. Let N : N+ → N+ and ϵ : N+ → (0, 1). We use I = (V , E,Q,Φ) ∈ M, where
n = |V |, to denote the current instance and I ′ = (V ′, E ′,Q,Φ′) ∈ M, where n′ = |V ′ |, to denote the
updated instance.
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Theorem 3.2 (dynamic inference algorithm). Assume that (N , ϵ, Eθ ) is dynamically efficient, both
I and I ′ satisfy the Dobrushin-Shlosman condition, and d(I,I ′) ≤ L = o(n).

There is an algorithm that maintains an (N , ϵ)-estimator θ̂ (I) of the probability vector θ (I) for the
current MRF instance I, using Õ (nN (n) + K) bits, such that when I is updated to I ′, the algorithm
updates θ̂ (I) to an (N , ϵ)-estimator θ̂ (I ′) of θ (I ′) for the new instance I, within expected time cost

Õ
(
∆2LN (n) + ∆n

)
,

where Õ(·) hides a polylog(n) factor, ∆ = max{∆G ,∆G′}, where ∆G and ∆G′ denote the maximum degree
of G = (V , E) and G ′ = (V ′, E ′) respectively.

Typically, the difference between two MRF instances I,I ′ is small2, and the underlying graphs are
sparse [DSOR16] , that is, L,∆ ≤ polylog(n). In such cases, our algorithm updates the estimator within
time cost Õ(N (n)+n), which significantly outperforms static sampling-based inference algorithms that
require time cost Ω(n′N (n′)) = Ω(nN (n)) for redrawing all N (n′) independent samples.

Dynamic sampling. The core of our dynamic inference algorithm is a dynamic algorithm for sam-
pling: Assuming the Dobrushin-Shlosman condition, the algorithm can maintain a sequence of N (n)
independent samples X (1), . . . ,X (N (n)) ∈ QV that are ϵ(n)-close to µI in total variation distance, and
when I is updated to I ′ with difference d(I,I ′) ≤ L = o(n), the algorithm can update the maintained
samples to N (n′) independent samples Y (1), . . . ,Y (N (n′)) ∈ QV ′ that are ϵ(n′)-close to µI′ in total vari-
ation distance, using a time cost Õ

(
∆2LN (n) + ∆n

)
in expectation. This dynamic sampling algorithm

is formally described in Theorem 6.1 and is of independent interests [FVY19].

Applications on specific models. On specific models, we have the following results, where δ > 0 is
an arbitrary constant.

model regime space cost time cost for each update

Ising e−2 |β | ≥ 1 − 2−δ
∆+1 Õ (nN (n) + K) Õ

(
∆2LN (n) + ∆n

)
hardcore λ ≤ 2−δ

∆−2 Õ (nN (n) + K) Õ
(
∆3LN (n) + ∆n

)
q-coloring q ≥ (2 + δ )∆ Õ (nN (n) + K) Õ

(
∆2LN (n) + ∆n

)
Table 1. Dynamic inference for specific models.

The results for Ising model and q-coloring are corollaries of Theorem 3.2. The regime for hardcore
model is better than the Dobrushin-Shlosman condition (which is λ ≤ 1−δ

∆−1 ), because we use the cou-
pling introduced by Vigoda [Vig99] to analyze the algorithm.

4. Preliminaries

Total variation distance and coupling. Let µ and ν be two distributions over Ω. The total variation
distance between µ and ν is defined as

dTV (µ,ν ) ≜
1
2

∑
x ∈Ω
|µ(x) − ν (x)| .

A coupling of µ and ν is a joint distribution (X ,Y ) ∈ Ω × Ω such that marginal distribution of X is µ
and the marginal distribution of Y is ν . The following coupling lemma is well-known.

2In multivariate time-series data analysis, the MRF instances of two sequential times are similar. In the iterative algo-
rithms for learning graphical models, the difference between two sequential MRF instances generated by gradient descent
are bounded to prevent oscillations. Specifically, the difference is very small when the iterative algorithm is close to con-
verge [Hin12, WJ08].
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Proposition 4.1 (coupling lemma). For any coupling (X ,Y ) of µ and ν , it holds that

Pr[X , Y ] ≥ dTV (µ,ν ) .
Furthermore, there is an optimal coupling that achieves equality.

Local neighborhood. Let G = (V , E) be a graph. For any vertex v ∈ V , let ΓG (v) ≜ {u ∈ V | {u,v} ∈
E} denote the neighborhood ofv , and Γ+G (v) ≜ ΓG (v)∪ {v} the inclusive neighborhood ofv . We simply
write Γv = Γ(v) = ΓG (v) and Γ+v = Γ+(v) = Γ+G (v) for short when G is clear in the context. We use
∆ = ∆G ≜ maxv ∈V |Γv | to denote the maximum degree of graph G.

A notion of local neighborhood for MRF is frequently used. Let I = (V , E,Q,Φ) be an MRF
instance. For v ∈ V , we denote by Iv ≜ I[Γ+v ] the restriction of I on the inclusive neighborhood Γ+v
of v , i.e. Iv = (Γ+v , Ev ,Q,Φv ), where Ev = {{u,v} ∈ E} and Φv = (φa)a∈Γ+v∪Ev .

Gibbs sampling. The Gibbs sampling (a.k.a. heat-bath, Glauber dynamics), is a classic Markov chain
for sampling from Gibbs distributions. Let I = (V , E,Q,Φ) be an MRF instance and µ = µI its Gibbs
distribution. The chain of Gibbs sampling (Algorithm 1) is on the space Ω ≜ QV , and has the stationary
distribution µI [LP17, Chapter 3].

Algorithm 1: Gibbs sampling
Initialization: an initial state X0 ∈ Ω (not necessarily feasible);

1 for t = 1, 2, . . . ,T do
2 pick vt ∈ V uniformly at random;
3 draw a random value c ∈ Q from the marginal distribution µvt (· | Xt−1(Γvt ));
4 Xt (vt ) ← c and Xt (u) ← Xt−1(u) for all u ∈ V \ {vt };

Marginal distributions. Here µv (· | σ (Γv )) = µv ,I(· | σ (Γv )) denotes the marginal distribution at
v ∈ V conditioning on σ (Γv ) ∈ QΓv , which is computed as:

∀c ∈ Q : µv (c | σ (Γv )) =
φv (c)

∏
u ∈Γv φuv (σu , c)∑

c ′∈Q φv (c ′)
∏

u ∈Γv φuv (σu , c ′)
.(4)

Due to the assumption (1), this marginal distribution is always well defined, and its computation uses
only the information of Iv .

Coupling for mixing time. Consider a chain (Xt )∞t=0 on space Ω with stationary distribution µI for
MRF instance I. The mixing rate is defined as: for ϵ > 0,

τmix(I, ϵ) ≜ max
X0

min {t | dTV (Xt , µI)} ,

where dTV (Xt , µI) denotes the total variation distance between µI and the distribution of Xt .
A coupling of a Markov chain is a joint process (Xt ,Yt )t ≥0 such that (Xt )t ≥0 and (Yt )t ≥0 marginally

follow the same transition rule as the original chain. Consider the following type of couplings.

Definition 4.2 (one-step optimal coupling for Gibbs sampling). A coupling (Xt ,Yt )t ≥0 of Gibbs
sampling on an MRF instance I = (V , E,Q,Φ) is a one-step optimal coupling if it is constructed as
follows: For t = 1, 2, . . .,

(1) pick the same random vt ∈ V , and let (Xt (u),Yt (u)) ← (Xt−1(u),Yt−1(u)) for all u , vt ;
(2) sample (Xt (vt ),Yt (vt )) from an optimal coupling Dσ ,τ

opt,Ivt
(·, ·) of the marginal distributions

µvt (· | σ ) and µvt (· | τ ) where σ = Xt−1(Γvt ) and τ = Yt−1(Γvt ).
The coupling Dσ ,τ

opt,Ivt
(·, ·) is an optimal coupling of µvt (· | σ ) and µvt (· | τ ) that attains the maximum

Pr[x = y] for all couplings (x,y) of x ∼ µvt (· | σ ) and y ∼ µvt (· | τ ). The coupling Dσ ,τ
opt,Ivt

(·, ·) is
determined by the local information Iv and σ , τ ∈ Qdeg(v).

With such a coupling, we can establish the following relation between the Dobrushin-Shlosman
condition and the rapid mixing of the Gibbs sampling [DS85a, DS85b, DS87, BD97, Hay06, DGJ08].
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Proposition 4.3 ([Hay06]). Let I = (V , E,Q,Φ) be an MRF instance with n = |V |, and Ω = QV the state
space. Let H (σ , τ ) ≜ |{v ∈ V | σv , τv }| denote the Hamming distance between σ ∈ Ω and τ ∈ Ω. If I
satisfies the Dobrushin-Shlosman condition (Condition 3.1) with constant δ > 0, then the one-step optimal
coupling (Xt ,Yt )t ≥0 for Gibbs sampling (Definition 4.2) satisfies

∀σ , τ ∈ Ω : E [H (Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] ≤
(
1 − δ

n

)
· H (σ , τ ),

then the mixing rate of Gibbs sampling on I is bounded as τmix(I, ϵ) ≤
⌈n
δ log n

ϵ

⌉
.

5. Outlines of algorithm

Let θ : M → RK be a probabilistic inference problem that maps each MRF instance in M to a
K-dimensional probability vector, and let Eθ be its estimating function. Le I = (V , E,Q,Φ) ∈ M be
the current instance, where n = |V |. Our dynamic inference algorithm maintains a sequence of N (n)
independent samples X (1), . . . ,X (N (n)) ∈ QV which are ϵ(n)-close to the Gibbs distribution µI in total
variation distance and an (N , ϵ)-estimator θ̂ (I) of θ (I) such that

θ̂ (I) = Eθ (X (1),X (2), . . . ,X (N (n))).
Upon an update request that modifies I to a new instance I ′ = (V ′, E ′,Q,Φ′) ∈ M, where n′ = |V ′ |,
our algorithm does the followings:

• Update the sample sequence. Update X (1), . . . ,X (N (n)) to a new sequence of N (n′) independent
samplesY (1), . . . ,Y (N (n′)) ∈ QV ′ that are ϵ(n′)-close to µI′ in total variation distance, and output
the difference between two sample sequences.
• Update the estimator. Given the difference between the two sample sequences, update θ̂ (I) to
θ̂ (I ′) = Eθ (Y (1), . . . ,Y (N (n

′))) by accessing the oracle in Definition 2.3.
Obviously, the updated estimator θ̂ (I ′) is an (N , ϵ)-estimator for θ (I ′).

Our main technical contribution is to give an algorithm that dynamically maintains a sequence
of N (n) independent samples for µI , while I itself is dynamically changing. The dynamic sampling
problem was recently introduced in [FVY19]. The dynamical sampling algorithm given there only
handles update of a single vertex or edge and works only for graphical models with soft constraints.

In contrast, our dynamic sampling algorithm maintains a sequence of N (n) independent samples
for µI within total variation distance ϵ(n), while the entire specification of the graphical model I
is subject to dynamic update (to a new I ′ with difference d(I,I ′) ≤ L = o(n)). Specifically, the
algorithm updates the sample sequence within expected time O(∆2N (n)L log3 n + ∆n). Note that the
extraO(∆n) cost is necessary for just editing the current MRF instance I to I ′ because a single update
may change all the vertex and edge potentials simultaneously. This incremental time cost dominates
the time cost of the dynamic inference algorithm, and is efficient for maintaining N (n) independent
samples, especially when N (n) is sufficiently large, e.g. N (n) = Ω(n/L), in which case the average
incremental cost for updating each sample is O(∆2L log3 n + ∆n/N (n)) = O(∆2L log3 n).

We illustrate the main idea by explaining how to maintain one sample. The idea is to represent the
trace of the Markov chain for generating the sample by a dynamic data structure, and when the MRF
instance is changed, this trace is modified to that of the new chain for generating the sample for the
updated instance. This is achieved by both a set of efficient dynamic data structures and the coupling
between the two Markov chains.

Specifically, let (Xt )Tt=0 be the Gibbs sampler chain for distribution µI . When the chain is rapidly
mixing, starting from an arbitrary initial configuration X0 ∈ QV , after suitably many steps X = XT is
an accurate enough sample for µI . At each step, Xt−1 and Xt may differ only at a vertex vt which is
picked from V uniformly and independently at random. The evolution of the chain is fully captured
by the initial state X0 and the sequence of pairs 〈vt ,Xt (vt ) 〉, from t = 1 to t = T , which is called the
execution log of the chain in the paper.

Now suppose that the current instanceI is updated toI ′. We construct such a coupling between the
original chain (Xt )Tt=0 and the new chain (Yt )Tt=0, such that (Yt )Tt=0 is a faithful Gibbs sampling chain
for the updated instance I ′ given that (Xt )Tt=0 is a faithful chain for I, and the difference between
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the two chains is small, in the sense that they have almost the same execution logs except for about
O(TL/n) steps, where L is the difference between I and I ′.

To simplify the exposition of such coupling, for now we restrict ourselves to the cases where the
update to the instance I does not change the set of variables. Without loss of generality, we only
consider the following two basic update operations that modifies I to I ′.

• Graph update. The update only adds or deletes some edges, while all vertex potentials and the
potentials of unaffected edges are not changed.
• Hamiltonian update. The update changes (possibly all) potentials of vertices and edges, while
the underlying graph remains unchanged.

The general update of graphical model can be obtained by combining these two basic operations.
Then the new chain (Yt )Tt=0 can be coupled with (Xt )Tt=0 by using the same initial configuration

Y0 = X0 and the same sequencev1,v2, . . . ,vT ∈ V of randomly picked vertices. And for t = 1, 2, . . . ,T ,
the transition 〈vt ,Yt (vt ) 〉 of the new chain can be generated using the same vertexvt as in the original
(Xt )Tt=0 chain, and a random Yt (vt ) generated according to a coupling of the marginal distributions of
Xt (vt ) and Yt (vt ), conditioning respectively on the current states of the neighborhood of vt in (Xt )Tt=0
and (Yt )Tt=0. Note that these two marginal distributions must be identical unless (I)Xt−1 andYt−1 differ
from each other over the neighborhood of vt or (II) the vt itself is incident to where the models I and
I ′ differ. The event (II) occurs rarely due to the following reasons.

• For graph update, the event (II) occurs only if vt is incident to an updated edge. Since only L
edges are updated, the event occurs in at most O(TL/n) steps.
• For Hamiltonian update, all the potentials of vertices and edges can be changed, thus I,I ′may
differ everywhere. The key observation is that, as the total difference between the current and
updated potentials is bounded by L, we can apply a filter to first select all candidate steps where
the coupling may actually fail due to the difference between I and I ′, which can be as small as
O(TL/n), and the actual coupling between (Xt )∞t=0 and (Yt )∞t=0 is constructed with such prior.

Finally, when I and I ′ both satisfy the Dobrushin-Shlosman condition, the percolation of disagree-
ments between (Xt )Tt=0 and (Yt )Tt=0 is bounded, and we show that the two chains are almost always
identically coupled as 〈vt ,Xt (vt ) 〉 = 〈vt ,Yt (vt ) 〉, with exceptions at onlyO(TL/n) steps. The original
chain (Xt )Tt=0 can then be updated to the new chain (Yt )Tt=0 by only editing these O(TL/n) local tran-
sitions 〈vt ,Yt (vt ) 〉 which are different from 〈vt ,Xt (vt ) 〉. This is aided by the dynamic data structure
for the execution log of the chain, which is of independent interests.

6. Dynamic Gibbs sampling

In this section, we give the dynamic sampling algorithm that updates the sample sequences.
In the following theorem, we useI = (V , E,Q,Φ), wheren = |V |, to denote the currentMRF instance

and I ′ = (V ′, E ′,Q,Φ′), where n′ = |V ′ |, to denote the updated MRF instance. And define
dgraph(I,I ′) ≜ |V ⊕ V ′ | + |E ⊕ E ′ |

dHamil(I,I ′) ≜
∑

v ∈V∩V ′



φv − φ ′v

1 + ∑
e ∈E∩E′



φe − φ ′e

1 .
Note that d(I,I ′) = dgraph(I,I ′) + dHamil(I,I ′), where d(I,I ′) is defined in (2).

Theorem 6.1 (dynamic sampling algorithm). Let N : N+ → N+ and ϵ : N+ → (0, 1) be two
functions satisfying the bounded difference condition in Definition 2.3. Assume that I and I ′ both satisfy
Dobrushin-Shlosman condition, dgraph(I,I ′) ≤ Lgraph = o(n) and dHamil(I,I ′) ≤ LHamil.

There is an algorithm that maintains a sequence of N (n) independent samples X (1), . . . ,X (N (n)) ∈ QV

where dTV
(
µI,X

(i)) ≤ ϵ(n) for all 1 ≤ i ≤ N (n), using O (nN (n) logn) memory words, each of O(logn)
bits, such that when I is updated to I ′, the algorithm updates the sequence to N (n′) independent samples
Y (1), . . . ,Y (N (n

′)) ∈ QV ′ where dTV
(
µI′,Y

(i)) ≤ ϵ(n′) for all 1 ≤ i ≤ N (n′), within expected time cost

O
(
∆2(Lgraph + LHamil)N (n) log3 n + ∆n

)
,(5)

where ∆ = max{∆G ,∆G′}, and ∆G ,∆G′ denote the maximum degree of G = (V , E) and G ′ = (V ′, E ′).
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Our algorithm is based on the Gibbs sampling algorithm. Let N : N+ → N+ and ϵ : N+ → (0, 1)
be two functions in Theorem 6.1. We first give the single-sample dynamic Gibbs sampling algorithm
(Algorithm 2) that maintains a single sample X ∈ QV for the current MRF instance I = (V , E,Q,Φ)
where n = |V | such that dTV (X , µI) ≤ ϵ(n). We then use this algorithm to obtain the multi-sample
dynamic Gibbs sampling algorithm that maintains N (n) independent samples for the current instance.

Given the error function ϵ : N+ → (0, 1), suppose that T (I) is an easy-to-compute integer-valued
function that upper bounds the mixing time on instance I, such that

T (I) ≥ τmix(I, ϵ(n)),(6)

where τmix(I, ϵ(n)) denotes the mixing rate for the Gibbs sampling chain (Xt )t ≥0 on instance I. By
Proposition 4.3, if the Dobrushin-Shlosman condition is satisfied, we can set

T (I) =
⌈
n

δ
log

n

ϵ(n)

⌉
.(7)

Our algorithm for single-sample dynamic Gibbs sampling maintains a random process (Xt )Tt=0,
which is a Gibbs sampling chain on instance I of length T = T (I), where T (I) satisfies (6). Clearly
XT is a sample for µI with dTV (XT , µI) ≤ ϵ(n).

When the current instance I is updated to a new instance I ′ = (V ′, E ′,Q,Φ′) where n′ = |V ′ |, the
original process (Xt )Tt=0 is transformed to a new process (Yt )T

′
t=0 such that the following holds as an

invariant: (Yt )T
′

t=0 is a Gibbs sampling chain on I ′ with T ′ = T (I ′). Hence YT is a sample for the new
instance I ′ with dTV (YT , µI′) ≤ ϵ(n′). This is achieved through the following two steps:

(1) We construct couplings between (Xt )Tt=0 and (Yt )T
′

t=0, so that the new process (Yt )T
′

t=0 for I ′ can
be obtained by making small changes to the original process (Xt )Tt=0 for I.

(2) We give a data structure which represents (Xt )Tt=0 incrementally and supports various updates
and queries to (Xt )Tt=0 so that the above coupling can be generated efficiently.

6.1. Coupling for dynamic instances. The Gibbs sampling chain (Xt )Tt=0 can be uniquely and fully
recovered from: the initial state X0 ∈ QV , and the pairs 〈vt ,Xt (vt )〉Tt=1 that record the transitions. We
call 〈vt ,Xt (vt )〉Tt=1 the execution-log for the chain (Xt )Tt=0, and denote it with

Exe-Log(I,T ) ≜ 〈vt ,Xt (vt )〉Tt=1 .

The following invariants are assumed for the random execution-log with an initial state.

Condition 6.2 (invariants for Exe-Log). Fixed an initial state X0 ∈ QV , the followings hold for
the random execution-log Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for the Gibbs sampling chain (Xt )Tt=0 on
instance I = (V , E,Q,Φ):

• T = T (I) where T (I) satisfies (6);
• the random process (Xt )Tt=0 uniquely recovered from the transitions 〈vt ,Xt (vt )〉Tt=1 and the
initial state X0, is identically distributed as the Gibbs sampling (Algorithm 1) on instance I
starting from initial state X0 with vt as the vertex picked at the t-th step.

Such invariants guarantee that XT provides a sample for µI with dTV (XT , µI) ≤ ϵ(|V |).
Suppose the current instanceI is updated to a new instanceI ′. We construct couplings between the

execution-log Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 with initial state X0 ∈ QV for I and the execution-log
Exe-Log(I ′,T ′) =

〈
v ′t ,Yt (v ′t )

〉T ′
t=1 with initial state Y0 ∈ QV ′ for I ′. Our goal is as follows: assum-

ing Condition 6.2 for X0 and Exe-Log(I,T ), the same condition should hold invariantly for Y0 and
Exe-Log(I ′,T ′).

Unlike traditional coupling of Markov chains for the analysis of mixing time, where the two chains
start from arbitrarily distinct initial states but proceed by the same transition rule, here the two chains
(Xt )Tt=0 and (Yt )Tt=0 start from similar states but have to obey different transition rules due to differences
between instances I and I ′.
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Due to the technical reason, we divide the update from I = (V , E,Q,Φ) to I ′ = (V ′, E ′,Q,Φ′) into
two steps: we first update I = (V , E,Q,Φ) to

Imid = (V , E,Q,Φmid),(8)

where the potentials Φmid = (φmid
a )a∈V∪E in the middle instance Imid are defined as

∀a ∈ V ∪ E, φmid
a ≜

{
φ ′a if a ∈ V ′ ∪ E ′
φa if a < V ′ ∪ E ′;

then we update Imid = (V , E,Q,Φmid) to I ′ = (V ′, E ′,Q,Φ′). In other words, the update from I to Imid
is only caused by updating the potentials of vertices and edges, while the underlying graph remains
unchanged; and the update fromImid toI ′ is only caused by updating the underlying graph, i.e. adding
vertices, deleting vertices, adding edges and deleting edges.

The dynamic Gibbs sampling algorithm can be outlined as follows.
• UpdateHamiltonian: update X0 and 〈vt ,Xt (vt )〉Tt=1 to a new initial state Z0 and a new execu-
tion log Exe-Log(Imid,T ) = 〈ut ,Zt (ut )〉Tt=1 such that the random process (Zt )Tt=0 is the Gibbs
sampling on instance Imid.
• UpdateGraph: update Z0 and 〈ut ,Zt (ut )〉Tt=1 to a new initial state Y0 and a new execution log

Exe-Log(I ′,T ) =
〈
v ′t ,Yt (v ′t )

〉T
t=1 such that the random process (Yt )Tt=0 is the Gibbs sampling

on instance I ′.
• LengthFix: change the length of the execution log

〈
v ′t ,Yt (v ′t )

〉T
t=1 from T to T ′, where T ′ =

T (I ′) and T (I ′) satisfies (6).
The dynamic Gibbs sampling algorithm is given in Algorithm 2.

Algorithm 2: Dynamic Gibbs sampling
Data : X0 ∈ QV and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for current I = (V , E,Q,Φ).
Update: an update that modifies I to I ′ = (V ′, E ′,Q,Φ′).

1 compute T ′ = T (I ′) satisfying (6) and construct Imid = (V ′, E ′,Q,Φmid) as in (8);
2

(
Z0, 〈ut ,Zt (ut )〉Tt=1

)
← UpdateHamiltonian

(
I,Imid,X0, 〈vt ,Xt (vt )〉Tt=1

)
;

// update the potentials: I → Imid

3
(
Y0,

〈
v ′t ,Yt (v ′t )

〉T
t=1

)
← UpdateGraph

(
Imid,I ′,Z0, 〈ut ,Zt (ut )〉Tt=1

)
;

// update the underlying graph: Imid → I ′

4
(
Y0,

〈
v ′t ,Yt (v ′t )

〉T ′
t=1

)
← LengthFix

(
I ′,Y0,

〈
v ′t ,Yt (v ′t )

〉T
t=1 ,T

′
)
, where T ′ = T (I ′) ;

// change the length of the execution log from T to T ′ = T (I ′)
5 update the data to Y0 and Exe-Log(I ′,T ′) =

〈
v ′t ,Yt (v ′t )

〉T ′
t=1;

Algorithm 3: LengthFix
(
I,X0, 〈vt ,Xt (vt )〉Tt=1 ,T ′

)
Data : X0 ∈ QV and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for current I = (V , E,Q,Φ).
Input : the new length T ′ > 0.

1 if T ′ < T then
2 truncate 〈vt ,Xt (vt )〉Tt=1 to 〈vt ,Xt (vt )〉T

′
t=1;

3 else
4 extend 〈vt ,Xt (vt )〉Tt=1 to 〈vt ,Xt (vt )〉T

′
t=1 by simulating the Gibbs sampling chain on I for

T −T ′ more steps;
5 update the data to X0 and Exe-Log(I,T ′) = 〈vt ,Xt (vt )〉T

′
t=1
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The subroutine LengthFix is given in Algorithm 3. We then describe UpdateHamiltonian (Sec-
tion 6.1.1) and UpdateGraph (Section 6.1.2).

6.1.1. Coupling for Hamiltonian update. We consider the update of changing potentials of vertices and
edges. The update do not change the underlying graph. Let I = (V , E,Q,Φ) be the current MRF
instance. LetX0 and 〈vt ,Xt (vt )〉Tt=1 be the current initial state and execution log such that the random
process (Xt )Tt=0 is the Gibbs sampling on instance I. Upon such an update, the new instance becomes
I ′ = (V , E,Q,Φ′). The algorithm UpdateHamiltonian(I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1) updates the data to Y0

and
〈
v ′t ,Yt (v ′t )

〉T
t=1 such that the random process (Yt )Tt=0 is the Gibbs sampling on instance I ′.

We transform the pair of X0 ∈ QV and 〈vt ,Xt (vt )〉Tt=1 to a new pair of Y0 ∈ QV and 〈vt ,Yt (vt )〉Tt=1
for I ′. This is achieved as follows: the vertex sequence (vt )Tt=1 is identically coupled and the chain
(Xt )Tt=0 is transformed to (Yt )Tt=0 by the following one-step local coupling between X and Y .

Definition 6.3 (one-step local coupling for Hamiltonian update). The two chains (Xt )∞t=0 on
instance I = (V , E,Q,Φ) and (Yt )∞t=0 on instance I ′ = (V , E,Q,Φ′) are coupled as:

• Initially X0 = Y0 ∈ QV ;
• for t = 1, 2, . . ., the two chains X and Y jointly do:

(1) pick the same vt ∈ V , and let (Xt (u),Yt (u)) ← (Xt−1(u),Yt−1(u)) for all u ∈ V \ {vt };
(2) sample (Xt (vt ),Yt (vt )) from a coupling Dσ ,τ

Ivt ,I′vt
(·, ·) of the marginal distributions µvt ,I(· |

σ ) and µvt ,I′(· | τ ) with σ = Xt−1(ΓG (vt )) and τ = Yt−1(ΓG (vt )), where G = (V , E).

The local coupling Dσ ,τ
Iv ,I′v
(·, ·) for Hamiltonian update is specified as follows.

Definition 6.4 (local coupling Dσ ,τ
Iv ,I′v
(·, ·) for Hamiltonian update). Let v ∈ V be vertex and

σ , τ ∈ QΓG (v) two configurations, where G = (V , E). We say a random pair (c, c ′) ∈ Q2 is drawn from
the coupling Dσ ,τ

Iv ,I′v
(·, ·) if (c, c ′) is generated by the following two steps:

• sampling step: sample (c, c ′) ∈ Q2 jointly from an optimal coupling Dσ ,τ
opt,Iv of the marginal

distributions µv ,I(· | σ ) and µv ,I(· | τ ), such that c ∼ µv ,I(· | σ ) and c ′ ∼ µv ,I(· | τ );
• resampling step: flip a coin independently with the probability of HEADS being

pτIv ,I′v (c
′) ≜

{
0 if µv ,I(c ′ | τ ) ≤ µv ,I′(c ′ | τ ),
µv ,I (c ′ |τ )−µv ,I′ (c ′ |τ )

µv ,I (c ′ |τ ) otherwise ;
(9)

if the outcome of coin flipping is HEADS, resample c ′ from the distribution ντIv ,I′v
indepen-

dently, where the distribution ντIv ,I′v is defined as

∀b ∈ Q : ντIv ,I′v (b) ≜
max

{
0, µv ,I′(b | τ ) − µv ,I(b | τ )

}∑
x ∈Q max

{
0, µv ,I(x | τ ) − µv ,I′(x | τ )

} .(10)

Lemma 6.5. Dσ ,τ
Iv ,I′v
(·, ·) in Definition 6.4 is a valid coupling between µv ,I(· | σ ) and µv ,I′(· | τ ).

By Lemma 6.5, the resulting (Yt )Tt=0 is a faithful copy of the Gibbs sampling on instanceI ′, assuming
that (Xt )Tt=0 is such a chain on instance I.

Next we give an upper bound for the probability pτIv ,I′v (·) defined in (9).

Lemma 6.6. For any two instances I = (V , E,Q,Φ) and I ′ = (V , E,Q,Φ′) of MRF model, and any
v ∈ V , c ∈ Q and σ ∈ QΓG (v), it holds that

pτIv ,I′v (c) ≤ 2
©­«‖φv − φ ′v ‖1 +

∑
e={u ,v }∈E

‖φe − φ ′e ‖1
ª®¬ ,(11)

where ‖φv − φ ′v ‖1 =
∑
c ∈Q |φv (c) − φ ′v (c)| and ‖φe − φ ′e ‖1 =

∑
c ,c ′∈Q |φe (c, c ′) − φ ′e (c, c ′)|.
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By Lemma 6.6, for each vertex v ∈ V , we define an upper bound of the probability p ·Iv ,I′v (·) as

pup
v ≜ min

2 ©­«‖φv − φ ′v ‖1 +
∑

e={u ,v }∈E
‖φe − φ ′e ‖1

ª®¬ , 1
 .(12)

With pup
v , we can implement the one-step local coupling in Definition 6.3 as follows. We first sample

each vi ∈ V for 1 ≤ i ≤ T uniformly and independently. For each vertex v ∈ V , let Tv ≜ {1 ≤ t ≤
T | vt = v} be the set of all the steps that pick the vertex v . We select each t ∈ Tv independently with
probability pup

v to construct a random subset Pv ⊆ Tv , and let

P ≜
⋃
v ∈V
Pv .(13)

We then couple the two chains (Xt )Tt=0 and (Yt )Tt=0. First set X0 = Y0. For each 1 ≤ t ≤ T , we set
(Xt (u),Yt (u)) ← (Xt−1(u),Yt−1(u)) for all u ∈ V \ {vt }; then generate the random pair (Xt (vt ),Yt (vt ))
by the following procedure.

• sampling step: Let σ = Xt−1(ΓG (vt )) and τ = Yt−1(ΓG (vt )). We draw a random pair (c, c ′) ∈ Q2

from the optimal coupling Dσ ,τ
opt,Iv of the marginal distributions µv ,I(· | σ ) and µv ,I(· | τ ) such

that c ∼ µv ,I(· | σ ) and c ′ ∼ µv ,I(· | τ );
• resampling step: If t < P, set Xt (vt ) = c and Yt (vt ) = c ′. Otherwise, set Xt (vt ) = c and

Yt (vt ) =
{
b ∼ ντIvt ,I′vt with probability pτIvt ,I′vt (c

′)/pup
vt

c ′ with probability 1 − pτIvt ,I′vt (c
′)/pup

vt .
(14)

Note that pup
vt > 0 if t ∈ P. By Lemma 6.6, it must hold that pτIvt ,I′vt (c

′) ≤ pup
vt . Hence, the probability

pτIvt ,I′vt
(c ′)/pup

vt is valid. Note that the probability that Yt (vt ) is set as b is

Pr[Yt (vt ) is set as b] = Pr [t ∈ P] ·
pτIvt ,I′vt

(c ′)

pup
vt

= pup
vt ·

pτIvt ,I′vt
(c ′)

pup
vt

= pτIvt ,I′vt
(c ′).

Hence, our implementation perfectly simulates the coupling in Definition 6.3.
Let Dt denote the set of disagreements between Xt and Yt . Formally,

Dt ≜ {v ∈ V | Xt (v) , Yt (v)}.(15)

Note that ifvt < ΓG (Dt−1), the random pair (c, c ′) drawn from the coupling Dσ ,τ
opt,Iv must satisfy c = c ′.

Thus it is easy to make the following observation for the (Xt )Tt=0 and (Yt )Tt=0 coupled as above.

Observation 6.7. For any integer t ∈ [1,T ], if vt < Γ+G (Dt−1) and t < P, then Xt (vt ) = Yt (vt ) and
Dt = Dt−1.

With this observation, the new Y0 and Exe-Log(I ′,T ) = 〈vt ,Yt (vt )〉Tt=1 can be generated from X0

and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 as Algorithm 4.
Observation 6.7 says that the nontrivial coupling between Xt (vt ) and Yt (vt ) is only needed when

vt ∈ Γ+G (Dt−1) or t ∈ P, which occurs rarely as long as Dt−1 and P are small. This is a key to ensure
the small incremental time cost of Algorithm 4. For the (Xt )Tt=0 and (Yt )Tt=0 coupled as above and any
1 ≤ t ≤ T , let γt indicate whether the event t ∈ P ∨vt ∈ Γ+G (Dt−1) occurs:

γt ≜ 1
[
t ∈ P ∨vt ∈ Γ+G (Dt−1)

]
,(16)

and RHamil denote the number of occurrences of such bad events:

RHamil ≜
T∑
t=1

γt .(17)

The following lemma bounds the expectation of RHamil.
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Algorithm 4: UpdateHamiltonian
(
I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1

)
Data : X0 ∈ QV and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for I = (V , E,Q,Φ).
Update: an update that modifies I to I ′ = (V , E,Q,Φ′).

1 t0 ← 0, D ← �, and construct a Y0 ← X0;
2 for each v ∈ V , construct a random subset Pv ⊆ Tv ≜ {1 ≤ t ≤ T | vt = v} such that each

element in Tv is selected independently with probability pup
v defined in (12);

3 construct the set P ← ⋃
v ∈V Pv ;

4 while ∃ t0 < t ≤ T such that vt ∈ Γ+G (D) or t ∈ P do
5 find the smallest t > t0 such that vt ∈ Γ+G (D) or t ∈ P;
6 for all t0 < i < t , let Yi (vi ) = Xi (vi );
7 sample Yt (vt ) ∈ Q conditioning on Xt (vt ) according to the optimal coupling between

µvt ,I(· | Xt−1(ΓG (vt ))) and µvt ,I(· | Yt−1(ΓG (vt )));
8 if t ∈ P then
9 with probability pτIvt ,I′vt

(Yt (vt ))/pup
vt where τ = Yt−1(ΓG (vt )) do

10 resample Yt (vt ) ∼ ντIvt ,I′vt , where ν
τ
Ivt ,I′vt

is defined in (10) ;

11 if Xt (vt ) , Yt (vt ) then D ← D ∪ {vt } else D ← D \ {vt };
12 t0 ← t ;
13 for all remaining t0 < i ≤ T : let Yi (vi ) = Xi (vi );
14 update the data to Y0 and Exe-Log(I ′,T ) = 〈vt ,Yt (vt )〉Tt=1;

Lemma 6.8 (cost of the coupling for UpdateHamiltonian). Let I = (V , E,Q,Φ) be the current
MRF instance and I ′ = (V , E,Q,Φ′) the updated instance. Assume that I satisfies Dobrushin-Shlosman
condition (Condition 3.1) with constant δ > 0, anddHamil(I,I ′) =

∑
v ∈V



φv − φ ′v

1+∑e ∈E


φe − φ ′e

1 ≤

L. It holds that E [RHamil] = O
(
∆T L
nδ

)
, where n = V , ∆ is the maximum degree of graph G = (V , E).

6.1.2. Coupling for graph update. Let I = (V , E,Q,Φ) be an MRF instance, where Φ = (φa)a∈V∪E .
Let X0 and 〈vt ,Xt (vt )〉Tt=1 be the current initial state and execution log such that the random process
(Xt )Tt=0 is the Gibbs sampling on instance I. Let I ′ = (V ′, E ′,Q,Φ′) be the new instance obtained by
updating the underlying graph, where Φ′ = (φa)a∈V ′∪E′ satisfies

∀a ∈ (V ∩V ′) ∩ (E ∩ E ′), φa = φ ′a .

Given the update from I to I ′, the subroutine UpdateGraph
(
I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1

)
updates the

data to a new initial state Y0 and a new execution-log
〈
v ′t ,Yt (v ′t )

〉T
t=1 such that the random process

(Yt )Tt=0 is the Gibbs sampling on instance I ′.
The subroutine UpdateGraph does as the following three steps.
• AddVertex: add isolated vertices in V ′ \V with potentials (φv )v ∈V ′\V , and update the instance
I = (V , E,Q,Φ) to a new instance

I1 = I1(I,I ′) ≜
(
V ∪V ′, E,Q,Φ ∪ (φv )v ∈V ′\V

)
;(18)

then update X0 and 〈vt ,Xt (vt )〉Tt=1 to Z0 and Exe-Log(I1,T ) =
〈
ut ,Zt (ut )

〉T
t=1 such that the

random process (Zt )Tt=0 is the Gibbs sampling on instance I1.
• UpdateEdge: add new edges in E ′ \ E with potentials (φe )e ∈E′\E , delete edges in E \ E ′ , and
update the instance I1 to a new instance

I2 = I2(I,I ′) ≜
(
V ∪V ′, E ′,Q,Φ ∪ (φv )v ∈V ′\V ∪ (φe )e ∈E′\E \ (φe )e ∈E\E′

)
=

(
V ∪V ′, E ′,Q,Φ′ ∪ (φv )v ∈V \V ′

)
;(19)
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then update Z0 and
〈
ut ,Zt (ut )

〉T
t=1 to Z

′
0 and Exe-Log(I2,T ) =

〈
wt ,Z

′
t (wt )

〉T
t=1 such that the

random process (Z ′t )Tt=0 is the Gibbs sampling on instance I2.
• DeleteVertex: delete isolated vertices inV \V ′, and update the instanceI2 toI ′ = (V ′, E ′,Q,Φ′);
then update Z ′0 and

〈
wt ,Z

′
t (wt )

〉T
t=1 to Y0 and Exe-Log(I ′,T ) =

〈
v ′t ,Yt (v ′t )

〉T
t=1 such that the

random process (Yt )Tt=0 is the Gibbs sampling on instance I ′.
The algorithm UpdateGraph is given in Algorithm 5.

Algorithm 5: UpdateGraph
(
I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1

)
Data : X0 ∈ QV and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for current I = (V , E,Q,Φ).
Update: an update of the underlying graph that modifies I to I ′ = (V ′, E ′,Q,Φ′).

1 construct instances I1 and I2 as in (18) and (19);
2

(
Z0, 〈ut ,Zt (ut )〉Tt=1

)
← AddVertex

(
I,I1,X0, 〈vt ,Xt (vt )〉Tt=1

)
;

// add isolated vertices to update I to I1
3

(
Z ′0,

〈
wt ,Z

′
t (wt )

〉T
t=1

)
← UpdateEdge

(
I1,I2,Z0, 〈ut ,Zt (ut )〉Tt=1

)
;

// add and delete edges to update I1 to I2
4

(
Y0,

〈
v ′t ,Yt (v ′t )

〉T
t=1

)
← DeleteVertex

(
I2,I ′,Z ′0,

〈
wt ,Z

′
t (wt )

〉T
t=1

)
;

// delete isolated vertices to update I2 to I ′

5 update the data to Y0 and Exe-Log(I ′) =
〈
v ′t ,Yt (v ′t )

〉T
t=1;

The subroutines AddVertex and DeleteVertex are simple, because they only deal with isolated vari-
ables. We first describe the main subroutine UpdateEdge, then describe AddVertex and DeleteVertex.

Thecoupling forUpdateEdge.Wefirst consider the update of adding and deleting edges. The update
does not change the set of variables. Let I = (V , E,Q,Φ) be the current MRF instance. Let X0 and
〈vt ,Xt (vt )〉Tt=1 be the current initial state and execution log such that the random process (Xt )Tt=0 is
the Gibbs sampling on instance I. Upon such an update, the new instance becomes I ′ = (V , E ′,Q,Φ′),
where φ ′a = φa for all a ∈ V ∪ (E ∩ E ′). The subroutine UpdateEdge(I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1) updates
the data toY0 and

〈
v ′t ,Yt (v ′t )

〉T
t=1 such that the randomprocess (Yt )Tt=0 is the Gibbs sampling on instance

I ′.
We use S ⊆ V to denote the set of vertices affected by the update from I to I ′:

S ≜
⋃

(u ,v)∈E⊕E′
{u,v},(20)

where E ⊕ E ′ is the symmetric difference between E and E ′.
We transform this pair of X0 ∈ QV and 〈vt ,Xt (vt )〉Tt=1 to a new pair of Y0 ∈ QV and 〈vt ,Yt (vt )〉Tt=1

for I ′. This is achieved as follows: the vertex sequence (vt )Tt=1 is identically coupled and the chain
(Xt )Tt=0 is transformed to (Yt )Tt=0 by the following one-step local coupling between X and Y .

Definition 6.9 (one-step local coupling for UpdateEdge). The two chains (Xt )∞t=0 on instance
I = (V , E,Q,Φ) and (Yt )∞t=0 on instance I ′ = (V , E ′,Q,Φ′) are coupled as:

• Initially X0 = Y0 ∈ QV ;
• for t = 1, 2, . . ., the two chains X and Y jointly do:

(1) pick the same vt ∈ V , and let (Xt (u),Yt (u)) ← (Xt−1(u),Yt−1(u)) for all u ∈ V \ {vt };
(2) sample (Xt (vt ),Yt (vt )) from a coupling Dσ ,τ

Ivt ,I′vt
(·, ·) of the marginal distributions µvt ,I(· |

σ ) and µvt ,I′(· | τ ) with σ = Xt−1(ΓG (vt )) and τ = Yt−1(ΓG′(vt )), where G = (V , E) and
G ′ = (V , E ′).
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The local coupling Dσ ,τ
Iv ,I′v
(·, ·) for UpdateEdge is specified as follows.

∀σ ∈ QΓG (v), τ ∈ QΓG′ (v) : Dσ ,τ
Iv ,I′v
(·, ·) =

{
Dσ ,τ

opt,Iv (·, ·) if v < S,
µv ,I(· | σ ) × µv ,I′(· | τ ) if v ∈ S,

(21)

where Dσ ,τ
opt,Iv is an optimal coupling of marginal distributions µv ,I(· | σ ) and µv ,I(· | τ ). Recall

Iv = (Γ+v , Ev ,Q,Φv ) where Ev = {{u,v} ∈ E} and Φv = (φa)a∈Γ+v∪Ev . Obviously, Dσ ,τ
Iv ,I′v

is a valid
coupling of µv ,I(· | σ ) and µv ,I′(· | τ ). Because for any v < S, we have Iv = Iv ′ and hence µv ,I(· | σ )
and µv ,I′(· | τ ) are the same, both defined by (4) on Iv . Thus they can be coupled by Dσ ,τ

opt,Iv .
Obviously the resulting (Yt )Tt=0 is a faithful copy of the Gibbs sampling on instance I ′, assuming

that (Xt )Tt=0 is such a chain on instance I.
Recall Dt ≜ {v ∈ V | Xt (v) , Yt (v)} is set of disagreements between Xt and Yt . The following

observation is easy to make for the (Xt )Tt=0 and (Yt )Tt=0 coupled as above.

Observation 6.10. For any t ∈ [1,T ], if vt < S ∪ Γ+G (Dt−1) then Xt (vt ) = Yt (vt ) and Dt = Dt−1.

With this observation, the new Y0 and Exe-Log(I ′,T ) = 〈vt ,Yt (vt )〉Tt=1 can be generated from X0

and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 as in Algorithm 6.

Algorithm 6: UpdateEdge(I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1)
Data : X0 ∈ QV and Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for current I = (V , E,Q,Φ).
Update: an update of adding and deleting edges that modifies I to I ′ = (V , E ′,Q,Φ′).

1 t0 ← 0, D ← �, Y0 ← X0 and construct S ← ⋃
(u ,v)∈E⊕E′{u,v} ;

2 while ∃ t0 < t ≤ T such that vt ∈ S ∪ Γ+G (D) do
3 find the smallest t > t0 such that vt ∈ S ∪ Γ+G (D);
4 for all t0 < i < t , let Yi (vi ) = Xi (vi );
5 sample Yt (vt ) conditioning on Xt (vt ) according to the coupling Dσ ,τ

vt (·, ·) (constructed in
(21)), where σ = Xt−1(ΓG (vt )) and τ = Yt−1(ΓG′(vt ));

6 if Xt (vt ) , Yt (vt ) then D ← D ∪ {vt } else D ← D \ {vt };
7 t0 ← t ;
8 for all remaining t0 < i ≤ T : let Yi (vi ) = Xi (vi );
9 update the data to Y0 and Exe-Log(I ′,T ) = 〈vt ,Yt (vt )〉Tt=1;

Observation 6.10 says that the nontrivial coupling between Xt (vt ) and Yt (vt ) is only needed when
vt ∈ S ∪ Γ+G (Dt−1), which occurs rarely as long as Dt−1 remains small. This is a key to ensure the
small incremental time cost of Algorithm 6. Formally, for the (Xt )Tt=0 and (Yt )Tt=0 coupled as above, for
any 1 ≤ t ≤ T , let γt indicate whether this bad event occurs:

γt ≜ 1
[
vt ∈ S ∪ Γ+G (Dt−1)

]
,(22)

and let Rgraph denote the number of occurrences of such bad events:

Rgraph ≜
T∑
t=1

γt .(23)

We will see that Rgraph dominates the cost of Algorithm 6, once a data structure is given to encode the
execution-log and resolve the updates in Line 9 and various queries (in Lines 2, 3 and 5) to the data.

Lemma 6.11 (cost of the coupling forUpdateEdge). LetI = (V , E,Q,Φ) be the currentMRF instance
and I ′ = (V , E ′,Q,Φ′) the updated instance. Assume that I ′ satisfies Dobrushin-Shlosman condition
(Condition 3.1) with constant δ > 0, and |E ⊕ E ′ | ≤ L. It holds that E

[
Rgraph

]
= O

(
∆T L
nδ

)
, where n = V ,

∆ = max{∆G ,∆G′}, and ∆G ,∆G′ denote the maximum degree of G = (V , E) and G ′ = (V , E ′).
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Coupling forAddVertex. LetI = (V , E,Q,Φ) be the currentMRF instance. LetX0 and 〈vt ,Xt (vt )〉Tt=1
be the current initial state and execution log such that the random process (Xt )Tt=0 is the Gibbs sampling
on instanceI. The update adds a set of isolated vertices S with potentials (φa)a∈S . Upon such an update,
the new instance becomes

I ′ = (V ′, E,Q,Φ′) = (V ∪ S, E,Q,Φ ∪ (φa)a∈S ).

The subroutine AddVertex(I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1) updates the data to Y0 and
〈
v ′t ,Yt (v ′t )

〉T
t=1 such

that the random process (Yt )Tt=0 is the Gibbs sampling on instance I ′.
Since the new instanceI ′ is the same asI except the isolated vertices in S , we can constructY0(V ) =

X0 and Y0(S) ∈ QS is arbitrary, and Exe-Log(I ′,T ) =
〈
v ′t ,Yt (v ′t )

〉T
t=1 can be constructed by inserting

random appearances of vertices in S into (vt )Tt=1, while for anyv ∈ S , theYt (v) at the inserted steps t are
sampled i.i.d. from the marginal distribution µv ,I′(·), which is just a distribution overQ proportional to
exp(φv (·)) in the case of Gibbs sampling, sincev is an isolated vertex. Let [T ] ≜ {1, 2, . . . ,T }. Formally:

(1) Let P ⊆ [T ] be a random subset such that each t ∈ [T ] is selected into P independently with
probability |S |

|S∪V | . Let h = |P | and enumerate all elements in P as r1 < r2 < . . . < rh . Let
m = T − h and enumerate all elements in [T ] \ P as ℓ1 < ℓ2 < · · · < ℓm .

(2) For each 1 ≤ i ≤ h, sample ui ∈ S uniformly and independently.
(3) Let 〈vt ,Xt (vt )〉mt=1 ← LengthFix

(
I,X0, 〈vt ,Xt (vt )〉Tt=1 ,m

)
.

(4) Construct
〈
v ′t ,Yt (v ′t )

〉T ′
t=1 as follows:

∀ t = rk ∈ P : v ′t = uk and Yt (v ′t ) ∼ µuk ,I′(·), where µuk ,I′(c) ∝ exp(φuk (c));
∀ t = ℓk ∈ [T ′] \ P : v ′t = vk and Yt (v ′t ) = Xk (v ′t ) = Xk (vk ).

It is easy to see that (Yt )T
′

t=0 is a faithful copy of the Gibbs sampling on instance I ′.

Coupling for DeleteVertex. Let I = (V , E,Q,Φ) be the current MRF instance. The update deletes a
set of isolated variables S ⊆ V . Let X0 and 〈vt ,Xt (vt )〉Tt=1 be the current initial state and execution
log such that the random process (Xt )Tt=0 is the Gibbs sampling on instance I. Upon such update, the
instance is updated to I ′ = (V ′, E,Q,Φ′), where V ′ = V \ S and Φ′ = Φ \ (φv )v ∈S . The subroutine
DeleteVertex(I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1) updates the data toY0 and

〈
v ′t ,Yt (v ′t )

〉T
t=1 such that the random

process (Yt )Tt=0 is the Gibbs sampling on instance I ′.
We can simply construct Y0 = X0(V ′). The new execution-log Exe-Log(I ′, ϵ) =

〈
v ′t ,Yt (v ′t )

〉T
t=1 can

be constructed from the original Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 by simply deleting all appearances of
vertices v ∈ S in (vt )Tt=1 and the corresponding trivial transitions Xt (v), followed by calling LengthFix
on instance I ′ to properly append the chain to the length T .

It is easy to see that (Yt )Tt=0 is a faithful copy of the Gibbs sampling on instance I ′.

6.2. Data structure for Gibbs sampling. We now describe an efficient data structure for Gibbs sam-
pling (Xt )Tt=0. Let I = (V , E,Q,Φ) be anMRF instance. The data structure should provide the following
functionalities.

• Data: an initial stateX0 ∈ QV and an execution-log 〈vt ,Xt (vt )〉Tt=1 ∈ (V ×Q)T that records the
T transitions of the Gibbs sampling (Xt )Tt=0;
• updates:

– Insert(t,v, c), which inserts a transition 〈v, c 〉 after the (t−1)-th transition 〈vt−1,Xt−1(vt−1) 〉;
– Remove(t), which deletes the t-th transition 〈vt ,Xt (vt ) 〉;
– Change(t, c), which changes the t-th transition 〈vt ,Xt (vt ) 〉 to 〈vt , c 〉;

Note that the updates Insert(t,v, c) and Remove(t) change the lengthT of the chain, as well as
the order-numbers of all transitions after the inserted/deleted transition.
• queries:

– Eval(t,v), which returns the value of Xt (v) for arbitrary t and v (not necessarily = vt );
– Succ(t,v), which returns i for the smallest i > t such that vi = v if such i exists, or returns
⊥ if otherwise.
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It is not difficult to realize that the query Eval(t,v) can actually be solved by a predecessor search
defined symmetrically to Succ(t,v). This data structure problem for Gibbs sampling is quite natural
and is of independent interests.

Theorem 6.12 (data structure for Gibbs sampling). There exists a deterministic dynamic data struc-
ture which stores an arbitrary initial state X0 ∈ QV and an execution-log 〈vt ,Xt (vt )〉Tt=1 ∈ (V ×Q)T for
Gibbs sampling using O(T + |V |) memory words, each of O(logT + log |V | + log |Q |) bits, such that each
operation among Insert, Remove, Change, Eval and Succ can be resolved in time O(log2T + log |V |).

Proof. The initial state and execution-log are stored by separate data structures.
The initial state X0 ∈ QV is maintained by a deterministic dynamic dictionary, with (v,X0(v)) for

vertices v ∈ V as the key-value pairs. Such a deterministic data structure answers queries of X0(v)
given any v ∈ V while V is dynamically changing.

The execution-log 〈vt ,Xt (vt )〉Tt=1 ∈ (V ×Q)T is stored by |V | balanced search trees (Tv )v ∈V (e.g., red-
black trees). In each tree Tv , each node in Tv stores a distinct transition 〈vt ,Xt (vt ) 〉 with vt = v , such
that the in-order tree walk of Tv prints all 〈vt ,Xt (vt ) 〉 with vt = v in the order they appear in the
execution-log 〈vt ,Xt (vt )〉Tt=1. Altogether these trees (Tv )v ∈V haveT nodes in total. Besides, these trees
(Tv )v ∈V are indexed by another deterministic dynamic dictionary, with (v,pv ) for vertices v ∈ V as
key-value pairs, where each pv is the pointer to the root of tree Tv . This dictionary provides random
accesses to the trees Tv for all v ∈ V , while V is dynamically changing.

Given any t , we want to answer predecessor (or successor) search for the largest i ≤ t (or smallest
i > t ) such that vi = v . This is achieved with assistance from another data structure, an order-statistic
tree (orOS-tree) T̂ [CLRS09, Section 14]. In T̂ , each node stores the “identity” of an individual transition
〈vt ,Xt (vt )〉Tt=1 (which is actually a pointer to the node storing the transition 〈vt ,Xt (vt ) 〉 in the tree
Tv with vt = v). In particular, the in-order tree walk of T̂ prints all 〈vt ,Xt (vt )〉Tt=1 in that order. Such
a data structure supports two query functions: (1) Select: given any t , returns the identity of the t-th
transition 〈vt ,Xt (vt ) 〉; and (2) Rank: given the identity of any transition 〈vt ,Xt (vt ) 〉, returns its rank
t in the sequence 〈vt ,Xt (vt )〉Tt=1. Besides, the OS-tree T̂ also supports standard insertion (of a new
transition 〈v, c 〉 to a given rank t ) and deletion (of the transition 〈vt ,Xt (vt ) 〉 at a given rank t ). As a
balanced tree, all these queries and updates for the OS-tree T̂ can be resolved in O(logT ) time.

The successor and predecessor searches mentioned above for any v ∈ T and t , can then be resolved
by binary searches in the balanced search tree Tv while querying the OS-tree T̂ as an oracle for order-
ing, which takes time at most O(log2T + log |V |) in total, where the log |V | cost is used for accessing
the root of Tv via the dynamic dictionary that indexes the trees (Tv )v ∈V .

This solves the successor query Succ(t,v) as well as the evaluation query Eval(t,v) for Gibbs sam-
pling, both within time cost O(log2T + log |V |), where the latter is actually solved by the predecessor
search for the largest i ≤ t such that vi = v and returning the value of Xi (vi ) recorded in the i-th
transition 〈vi ,Xi (vi ) 〉 or returning the value of X0(v) if no such i exists.

It is also easy to verify thatwith the above dynamic data structures, all updates, including: Insert(t,v, c),
Remove(t) and Change(t, c), can be implemented with cost at most O(log2T + log |V |), and the data
structures together useO(T + |V |)words in total, where each word consists ofO(logT +log |V |+log |Q |)
bits. □

6.3. Single-sample dynamic Gibbs sampling algorithm. With the data structure for Gibbs sam-
pling stated in Theorem 6.12, the couplings constructed in Section 6.1 can be implemented as the algo-
rithm for dynamic Gibbs sampling. Recall dgraph(·, ·) and dHamil(·, ·) are defined in (2).

Lemma 6.13 (single-sample dynamic Gibbs sampling algorithm). Let ϵ : N+ → (0, 1) be an
error function. Let I = (V , E,Q,Φ) be an MRF instance with n = |V | and I ′ = (V ′, E ′,Q,Φ′) the
updated instance with n′ = |V ′ |. Denote T = T (I), T ′ = T (I ′) and Tmax = max{T ,T ′}. Assume
dgraph(I,I ′) ≤ Lgraph = o(n), dHamil(I,I ′) ≤ LHamil, and T ,T ′ ∈ Ω(n logn). The single-sample dynamic
Gibbs sampling algorithm (Algorithm 2) does the followings:

• (space cost) The algorithmmaintains an explicit copy of a sampleX ∈ QV for the current instance
I, and also a data structure using O(T ) memory words, each of O(logT ) bits, for representing an
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initial stateX0 ∈ QV and an execution-logExe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 for the Gibbs sampling
(Xt )Tt=0 on I generating sample X = XT .
• (correctness) Assuming that Condition 6.2 holds forX0 and Exe-Log(I,T ) for the Gibbs sampling
on I, upon each update that modifies I to I ′, the algorithm updates X to an explicit copy of a
sample Y ∈ QV ′ for the new instance I ′, and correspondingly updates the X0 and Exe-Log(I,T )
represented by the data structure to a Y0 ∈ QV ′ and Exe-Log(I ′,T ′) =

〈
v ′t ,Yt (v ′t )

〉T ′
t=1 for the

Gibbs sampling (Yt )T
′

t=0 on I ′ generating the new sample Y = YT ′ , where Y0 and Exe-Log(I ′,T ′)
satisfy Condition 6.2 for the Gibbs sampling on I ′, therefore,

dTV (Y , µI′) ≤ ϵ(n′).
• (time cost) Assuming Condition 6.2 for X0 and Exe-Log(I,T ) for the Gibbs sampling on I, the
expected time complexity for resolving an update is

O

(
∆n + ∆

(
|T −T ′ | +

Tmax(LHamil + Lgraph)
n

+ E [RHamil] + E
[
Rgraph

] )
log2Tmax

)
,

where ∆ = max{∆G ,∆G′}, ∆G ,∆G′ denote the maximum degrees of G = (V , E) and G ′ = (V ′, E ′),
RHamil is defined in (17) for the subroutineUpdateHamiltonian in Algorithm 2, andRgraph is defined
in (23) for the subroutine UpdateEdge in Algorithm 2.

We remark that theO(∆n) in time cost is necessary because the update from I to I ′ may change all
the potentials of vertices and edges. One can reduce theO(∆n) from the time cost if we further restrict
that one update can only change constant number of vertices, edges, and potentials.

The following result is a corollary from Lemma 6.13.
Corollary 6.14. Assume ϵ : N+ → (0, 1) in Lemma 6.13 satisfies the bounded difference condition in
Definition 2.3. AssumeI andI ′ in Lemma 6.13 both satisfy Dobrushin-Shlosman condition (Condition 3.1)
with constant δ > 0. The single-sample dynamic Gibbs sampling algorithm (Algorithm 2) uses O(n logn)
memory words, each ofO(logn) bits to maintain the sample for current instanceI, and resolves the update
from I to I ′ with expected time cost O

(
∆n + ∆2(Lgraph + LHamil) log3 n

)
.

Proof of Lemma 6.13. Thedynamic Gibbs sampling algorithm is implemented as follows. The algorithm
uses the dynamic data structure in Theorem 6.12 to maintain the initial state X0 and execution-log
Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1. Besides, the algorithm maintains the explicit copy of the sample
X ∈ QV by a deterministic dynamic dictionary, with (v,X (v)) for verticesv ∈ V as the key-value pairs.
The lemma is proved as follows.
Space cost: Note that T = Ω(n logn), |V | = n and |Q | = O(1). We have O(n) = O(T ) and O(logT +
log |V | + log |Q |) = O(logT ). The dynamic dictionary for sample X uses O(n) memory words, each
of O(log |V | + log |Q |) bits. Combining with Theorem 6.12, we have the algorithm uses O(T ) memory
words to maintain the initial state, execution-log and the random sample, each word is of O(logT +
log |V | + log |Q |) = O(logT ) bits.
Correctness: The invariants for execution-log (Condition 6.2) are preserved by the coupling simulated
by the algorithm. The correctness holds as a consequence.
Time cost: Consider the update that modifies I to I ′. We divide the algorithm into two stages.

• Preparation stage: construct the updated instances I ′ and other middle instances Imid,I1,I2
in (8), (18), (19); compute pup

v in (12) for all v ∈ V and construct the random set P ⊆ [T ] =
{1, 2, . . . ,T } in (13).
• Update stage: given P and pup

v for allv ∈ V , update the initial stateX0 toY0, the execution-log
Exe-Log(I,T ) = 〈vt ,Xt (vt )〉Tt=1 to Exe-Log(I ′,T ′) =

〈
v ′t ,Yt (v ′t )

〉T ′
t=1, and the sample X to Y .

We make the following two claims.
Claim 6.15. The expected running time of the preparation stage is

E
[
T

single
preparation

]
= O

(
∆n + E [|P|] log2Tmax

)
,

and the expected size of P is at most 4TmaxLHamil
n .
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Claim 6.16. The expected running time of the update stage is

E
[
T

single
update

]
= O

(
∆

(
|T −T ′ | +

TmaxLgraph
n

+ E [RHamil] + E
[
Rgraph

] )
log2Tmax

)
,(24)

RHamil is defined in (17) for the subroutineUpdateHamiltonian in Algorithm 2, and Rgraph is defined in (23)
for the subroutine UpdateEdge in Algorithm 2.

By the linearity of expectation, the expected time cost of the algorithm isE
[
T

single
preparation

]
+E

[
T

single
update

]
.

This proves the time cost.
□

We introduce the following techinque lemma to prove Corollary 6.14.

Lemma 6.17. Let ϵ : N+ → (0, 1) be a function such that there exists a constant C > 0 such that

∀n ∈ N+ : |ϵ(n + 1) − ϵ(n)| ≤ C

n
ϵ(n).

Then the function N has the following properties
• for any n ∈ N+, it holds that ϵ(n) ≥ 1

poly(n) ;

• let α ≥ 1 be a constant, given any n,n′ ∈ N+ such that 1
α ≤

n′
n ≤ α ,����n log n

ϵ(n) − n
′ log

n′

ϵ(n′)

���� = C ′ |n′ − n | logn.
where C ′ is a constant that depends only on α,C and ϵ(3dCe).

Proof. By the condition, we have ϵ(t) ≤
(
1 + C

t−C
)
ϵ(t + 1) for all t > dC + 1e. Thus for all n > l = 3dCe,

ϵ(l) ≤
n−1∏
i=l

(
1 +

C

i −C

)
ϵ(n) ≤ ϵ(n) exp

(
C

n−1∑
i=2

1
i

)
≤ ϵ(n) exp(C lnn) = ϵ(n)nC .(25)

Thus, we have ϵ(n) ≥ 1
poly(n) .

We then prove the second property. It is loseless to assume that min{n,n′} ≥ l , since otherwise we
can chooseC ′ sufficiently large so that the second property holds. Firstly, we prove for the case n > n′.
We have

��log n
n′

�� ≤ n−n′
n′ . By ϵ(t) ≤

(
1 + C

t−C
)
ϵ(t + 1) for all t > dC + 1e, we also have

ϵ(n′) ≤
n−1∏
i=n′

(
1 +

C

i −C

)
ϵ(n) ≤ ϵ(n) exp

(
C(n − n′)
n′ −C

)
.

Thus, ����log n

ϵ(n) − log
n′

ϵ(n′)

���� ≤ ���log n

n′

��� + ����log ϵ(n)
ϵ(n′)

���� ≤ n − n′
n′
+
C(n − n′)
n′ −C ≤ (2C + 1)(n − n

′)
n′

.(26)

The last equality is due to 2(n′ −C) ≥ n′ + l − 2C ≥ n′. Let C ′ = 2 + |log ϵ(l)| + 3C . We have����n log n

ϵ(n) − n
′ log

n′

ϵ(n′)

���� ≤ ����(n′ − n) log n

ϵ(n)

���� + ����n′ (log n

ϵ(n) − log
n′

ϵ(n′)

)���� ≤ C ′ |n′ − n | logn.

The last inequality is due to (25) and (26). Similarly, we can also prove the lemma if n < n′. □

Proof of Corollary 6.14. By Lgraph = o(n), we have n′ = Θ(n). Since I and I ′ both satisfy Dobrushin-
Shlosman condition (Condition 3.1) with constant δ > 0, we can set T ,T ′ as in (7) such that

T =

⌈
n

δ
log

n

ε(n)

⌉
= Θ(n logn)

T ′ =

⌈
n′

δ
log

n′

ε(n′)

⌉
= Θ(n logn).
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The equations hold because n′ = Θ(n) and the error function ϵ satisfies ϵ(ℓ) ≥ 1
poly(ℓ) by Lemma 6.17.

Thus, we have

Tmax = max{T ,T ′} = O(n logn).(27)

By Lemma 6.17 and |n′ − n | ≤ Lgraph = o(n), we have

|T −T ′ | = O(Lgraph logn).(28)

Let Imid = (V , E,Q,Φmid) be the middle instance constructed as in (8). In Algorithm 2, we call the
subroutine UpdateHamiltonian for instances I and Imid. Since I satisfies the Dobrushin-Shlosman
condition, by Lemma 6.8 and d(I,Imid) ≤ d(I,I ′) ≤ LHamil, we have

E [RHamil] = O
(
∆TLHamil

δn

)
= O(∆LHamil logn),(29)

where RHamil is defined in (17) for the subroutine UpdateHamiltonian.
We also call the subroutineUpdateGraph for instancesImid andI ′ in Algorithm 2. The subroutine is

shown in Algorithm 5. We first add isolated vertices to update Imid to I1, then update edges to update
I1 to I2, finally delete isolated vertices to update I2 to I ′. Since I ′ satisfies Dobrushin-Shlosman
condition and the only difference between I2 and I ′ is that I2 contains extra isolated vertices, it is
easy to verify that I2 also satisfies Dobrushin-Shlosman condition. In Algorithm 5, the subroutine
UpdateEdge is called for I1 and I2. By Lemma 6.11, we have

E
[
Rgraph

]
= O

(
∆TLgraph

∆n

)
= O(∆Lgraph logn).(30)

where Rgraph is defined in (23) for the subroutine UpdateEdge.
Combining (27), (28), (29), (30) with Lemma 6.13, we have the expected time cost is

E [Tcost] = O
(
∆n + ∆

(
|T −T ′ | +

Tmax(LHamil + Lgraph)
n

+ E [RHamil] + E
[
Rgraph

] )
log2Tmax

)
= O

(
∆n + ∆2(Lgraph + LHamil) log3 n

)
. □

6.4. Multi-sample dynamic Gibbs sampling algorithm. In this section, we give an Multi-sample
dynamic Gibbs sampling algorithm thatmaintainsmultiple independent random samples for the current
MRF instance. Theorem 6.1 follows immediately from the following lemma.

Lemma6.18 (multi-sample dynamicGibbs sampling algorithm). LetN : N+ → N+ and ϵ : N+ →
(0, 1) be two functions satisfying the bounded difference condition in Definition 2.3. Let I = (V , E,Q,Φ) be
an MRF instance with n = |V | and I ′ = (V ′, E ′,Q,Φ′) the updated instance with n′ = |V ′ |. Assume that
I and I ′ both satisfy Dobrushin-Shlosman condition with constant δ > 0, dgraph(I,I ′) ≤ Lgraph = o(n)
and dHamil(I,I ′) ≤ LHamil. Denote T = dnδ log n

ϵ (n)e, T ′ = d
n′
δ log n′

ϵ (n′)e.
There is an algorithm which does the followings:

• (space cost)The algorithmmaintainsN (n) explicit copies of independent samplesX (1), . . . ,X (N (n)),
where X (i) ∈ QV for all 1 ≤ i ≤ N (n), for the current instance I, and also a data structure using
O(nN (n) logn) memory words, each of O(logn) bits, for representing the initial state X (i)0 ∈ QV

and the execution-log Exe-Log(i)(I,T ) =
〈
v(i)t ,X

(i)
t (v

(i)
t )

〉T
t=1

for 1 ≤ i ≤ N (n) such that each

Gibbs sampling (X (i)t )Tt=0 on I generating an independent sample X (i) = X (i)T .
• (correctness) Assuming that Condition 6.2 holds for each X (i)0 and Exe-Log(i)(I,T ) for the Gibbs
sampling onI, upon each update thatmodifiesI toI ′, the algorithmupdatesX (1),X (2), . . . ,X (N (n))

to N (n′) explicit copies of independent samples Y (1),Y (2), . . . ,Y (N (n
′)) ∈ QV ′ for the new instance

I ′, and correspondingly updates the data represented by the data structure to Y (i)0 ∈ QV ′ and

Exe-Log(i)(I ′,T ′) =
〈
u(i)t ,Y

(i)
t (u

(i)
t )

〉T ′
t=1

for 1 ≤ i ≤ N (n′) such that each Gibbs sampling chain
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(Y (i)t )T
′

t=0 on I ′ generating a new sampleY (i) = Y (i)T ′ , where eachY
(i)
0 and Exe-Log(i)(I ′,T ′) satisfy

Condition 6.2 for the Gibbs sampling on I ′, therefore,

dTV
(
Y (i), µI′

)
≤ ϵ(n′).

• (time cost) Assuming Condition 6.2 for each X (i)0 and Exe-Log(i)(I,T ) for the Gibbs sampling on
I, the time complexity for resolving an update is

O
(
∆2(LHamil + Lgraph)N (n) · log3 n + ∆n

)
,

where ∆ = max{∆G ,∆G′}, and ∆G ,∆G′ denote the maximum degree of G = (V , E) and G ′ =
(V ′, E ′).

The following technique lemma will be used to prove Lemma 6.18.

Lemma 6.19. Let N : N+ → N+ be a function such that there exists a constant C > 0 such that

∀n ∈ N+ : |N (n + 1) − N (n)| ≤ C

n
N (n).

Then the function N has the following properties
• for any n ∈ N+, it holds that N (n) ≤ poly(n);
• let α ≥ 1 be a constant, given any n,n′ ∈ N+ such that 1

α ≤
n′
n ≤ α ,

|N (n) − N (n′)| = C ′(α,C) · |n − n
′ |

n
N (n),

where C ′(α,C) is a constant that depends only on α and C .

Proof. By the condition, we have N (n + 1) ≤
(
1 + C

n

)
N (n). Thus for all n ∈ N+,

N (n) ≤ N (1)
n−1∏
i=1

(
1 +

C

i

)
≤ N (1) exp

(
C

n−1∑
i=1

1
i

)
= N (1) exp(Θ(lnn)) = poly(n).

We then prove the second property. Note that |n−n
′ |

n ≤ α , it suffices to prove����N (n′)N (n) − 1
���� ≤ C ′(α,C) · |n − n

′ |
n
.(31)

Assume thatmin{n,n′} ≤ 2Cα . Then, we havemax{n,n′} ≤ 2Cα2. We can chooseC ′(α,C) sufficiently
large so that (31) holds. Assume n′ > n > 2αC . Note that |n−n

′ |
n ≤ α . We have

1 − C |n − n′ |
n

≤
(
1 − C

n

) |n−n′ |
≤ N (n′)

N (n) ≤
(
1 +

C

n

) |n−n′ |
≤ 1 +

C exp(αC) |n − n′ |
n

,

which implies (31) holds if C ′(α,C) ≥ C exp(αC). Assume n > n′ > 2αC . Note that |n−n
′ |

n ≤ α and
n′ ≥ n

α . We have

1 − αC |n − n′ |
n

≤
(
1 − αC

n

) |n−n′ |
≤ N (n′)

N (n) ≤
(
1 +

αC

n

) |n−n′ |
≤ 1 +

Cα exp(α2C) |n − n′ |
n

.

which implies (31) holds if C ′(α,C) ≥ Cα exp(α2C). □

Proof. The main idea of the multi-sample dynamic Gibbs sampling algorithm is to use single-sample
dynamic Gibbs sampling algorithm (Algorithm 2) to maintain each sampleX (i) ∈ QV for 1 ≤ i ≤ N (n).
We need a careful implementation of the algorithm to guarantee the time cost in Lemma 6.18.
Space cost: Note that T =

⌈
n
δ log n

ε (n)

⌉
= Θ(n logn) due to Lemma 6.17 and N (n) ≤ poly(n) due to

Lemma 6.19. The dynamic dictionary for each sample X (i) uses O(n) memory words, each of O(logn)
bits. Hence, the algorithm usesO(T · N (n)) = O(nN (n) logn) memory words to maintain all the initial
states, execution-logs and the random samples due to Theorem 6.12.
Correctness: The invariants for execution-log (Condition 6.2) are preserved by the coupling simulated
by the algorithm. The correctness holds as a consequence.
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Time cost: Define Nmin ≜ min{N (n),N (n′)}. Fix 1 ≤ k ≤ Nmin. We use the Algorithm 2 to update the
sampleX (k ) toY (k ). Let Pk ⊆ [T ] denote the set defined in (13) for the subroutine UpdateHamiltonian
in Algorithm 2. The multi-sample dynamic Gibbs sampling has the following three stages.

• Preparation stage: construct the updated instances I ′ and other middle instances Imid,I1,I2
in (8), (18), (19); computepup

v in (12) for allv ∈ V ; and construct the random setsP1,P2, . . . ,PNmin .
• Update stage: given the (pup

v )v ∈V and (Pi )1≤i≤Nmin , for each 1 ≤ i ≤ Nmin, use Algorithm 2 to
update the initial state X (i)0 to Y (i)0 , the execution-log Exe-Log(i)(I,T ) =

〈
v(i)t ,X

(i)
t (v

(i)
t )

〉T
t=1

to

Exe-Log(i)(I ′,T ′) =
〈
u(i),Y (i)t (u(i))

〉T ′
t=1

, and the sample X (i) to Y (i).
• Completion stage: If N (n′) < N (n), for each N (n′) < i ≤ N (n), remove the sample X (i), the
initial state X (i)0 and the execution-log Exe-Log(i)(I,T ) =

〈
v(i)t ,X

(i)
t (v

(i)
t )

〉T
t=1

from the data; if
N (n′) > N (n), for each N (n) < i ≤ N (n′), construct an independent Gibbs sampling chain
(Y (i)t )T

′
t=0 on instance I ′, write the sampleY (i) = Y (i)T ′ , the initial stateY

(i)
0 and the execution-log

Exe-Log(i)(I ′,T ′) =
〈
u(i)t ,Y

(i)
t (u

(i)
t )

〉T ′
t=1

into the data.

Let Tmulti
preparation,T

multi
update and T

multi
completion denote the running time of the corresponding stages. Note that

the update stage of the multi-sample dynamic sampling algorithm repeats the update stage of the
single-sample algorithm for Nmin times. Also note that both I and I ′ satisfies Dobrushin-Shlosman
condition. Combining (24), (27), (28), (29), and (30), we have

E
[
Tmulti

update

]
=

Nmin∑
i=1

E
[
T

single,(i)
update

]
= O(Nmin∆

2(Lgraph + LHamil) log3 n)

(by Nmin ≤ N (n)) = O(N (n)∆2(Lgraph + LHamil) log3 n)(32)

whereT single,(i)
update is the running time of the update stage of the Algorithm 2 that updates the i-th sample.

In completion stage, we either remove the chains from the data structure, or generate the new chains
and write them into data structure. It is easy to see the running time of the completion stage satisfies

E
[
Tmulti

completion

]
= O(|N (n) − N (n′)|Tmax logTmax) = O(n |N (n) − N (n′)| log2 n)

(by Lemma 6.19) = O(|n − n′ | N (n) log2 n) = O(LgraphN (n) log2 n),

where Tmax = max{T ,T ′} = O(n logn) since n′ = Θ(n) and ϵ(n′) ≥ 1
poly(n′) (by Lgraph = o(n) and

Lemma 6.17).
We make the following claim about the preparation stage.

Claim 6.20. The expected running time of the preparation stage is

E
[
Tmulti

preparation

]
= O

(
∆n + log2 n

Nmin∑
i=1

E [|Pi |]
)
,

and the expected size of Pi is at most 4TmaxLHamil
n for each 1 ≤ i ≤ Nmin.

By Claim 6.20, we have

E
[
Tmulti

preparation

]
= O

(
∆n + N (n)LHamil log

3 n
)
.

By the linearity of expectation, the expected time cost of the algorithm is E
[
Tmulti

preparation

]
+E

[
Tmulti

update

]
+

E
[
Tmulti

completion

]
. This proves the time cost.

□
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7. Proofs for dynamic Gibbs sampling

7.1. Analysis of the couplings. We analysis the couplings in dynamic Gibbs sampling algorithm.
In Section 7.1.1, we analysis the coupling for Hamiltonian update. In Section 7.1.2, we analysis the
coupling for graph update.

7.1.1. Proofs for the coupling for Hamiltonian update. In this section, we prove Lemma 6.5, Lemma 6.6,
and Lemma 6.8.
The validity of the coupling (proof of Lemma 6.5).We first prove that the distribution ντIv ,I′v

(·)
in (10) is valid. We draw samples from ντIv ,I′v

(·) only if the result of coin flipping is HEADS, which
implies µv ,I(x | τ ) > µv ,I′(x | τ ) for some x ∈ Q . Thus, the two distributions µv ,I(· | τ ) and µv ,I′(· | τ )
are not identical, and ∑

x ∈Q
max

{
0, µv ,I(x | τ ) − µv ,I′(x | τ )

}
> 0.

Hence, the denominator of ντIv ,I′v (·) is positive. Besides, since both µv ,I(· | τ ) and µv ,I′(· | τ ) are
distributions over Q , we have∑

x ∈Q
max

{
0, µv ,I′(x | τ ) − µv ,I(x | τ )

}
=

∑
x ∈Q

max
{
0, µv ,I(x | τ ) − µv ,I′(x | τ )

}
.

Thus we have
∑

x ∈Q ντIv ,I′v
(x) = 1. Hence, ντIv ,I′v (·) a valid distribution.

We next prove the coupling Dσ ,τ
Iv ,I′v
(·, ·) in Definition 6.4 is a valid coupling between µv ,I(· | τ ) and

µv ,I′(· | τ ). If µv ,I(· | τ ) and µv ,I′(· | τ ) are identical, the result holds trivially. We may assume
µv ,I(· | τ ) and µv ,I′(· | τ ) are not identical, thus the distribution ντIv ,I′v (·) is well-defined.

The coupling Dσ ,τ
Iv ,I′v
(·, ·) in Definition 6.4 returns a pair (c, c ′) ∈ Q2. It is easy to see c follows the

law µv ,I(· | σ ). We prove that c ′ follows the law µv ,I′(· | σ ). By the definition of Dσ ,τ
Iv ,I′v
(·, ·), c ′ ∈ Q is

generated by the following procedure:
• sample a ∈ Q from the distribution µv ,I(· | τ );
• sample b ∈ Q from the distribution ντIv ,I′v defined in (10), set

c ′ =

{
b with probability pτIvt ,I′vt (a)
a with probability 1 − pτIvt ,I′vt (a).

Note that a follows the law µv ,I(· | τ ). We have for each x ∈ Q ,

Pr[c ′ = x] = Pr[a = x] · (1 − pτIv ,I′v (x)) +
∑
y∈Q

Pr[a = y] · pτIv ,I′v (y) · ν
τ
Iv ,I′v (x)

= µv ,I(x | τ ) · (1 − pτIv ,I′v (x)) + ν
τ
Iv ,I′v (x)

∑
y∈Q

µv ,I(y | τ ) · pτIv ,I′v (y).

By the definition of pτIv ,I′v (y) in (9), we have

∀y ∈ Q, µv ,I(y | τ ) · pτIv ,I′v (y) =
{
0 if µv ,I(y | τ ) ≤ µv ,I′(y | τ )
µv ,I(y | τ ) − µv ,I′(y | τ ) otherwise.

This implies µv ,I(y | τ ) · pτIv ,I′v (y) = max
{
0, µv ,I(y | τ ) − µv ,I′(y | τ )

}
. We have

ντIv ,I′v (x)
∑
y∈Q

µv ,I(y | τ ) · pτIv ,I′v (y)

=
max

{
0, µv ,I′(x | τ ) − µv ,I(x | τ )

}∑
y∈Q max

{
0, µv ,I(y | τ ) − µv ,I′(y | τ )

} ∑
y∈Q

max
{
0, µv ,I(y | τ ) − µv ,I′(y | τ )

}
= max

{
0, µv ,I′(x | τ ) − µv ,I(x | τ )

}
.
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Hence, we have

Pr[c ′ = x] = µv ,I(x | τ ) · (1 − pτIv ,I′v (x)) +max
{
0, µv ,I′(x | τ ) − µv ,I(x | τ )

}
.

Suppose µv ,I(x | τ ) ≤ µv ,I′(x | τ ), then we have pτIv ,I′v (x) = 0. In this case, we have

Pr[c ′ = x] = µv ,I(x | τ ) + µv ,I′(x | τ ) − µv ,I(x | τ ) = µv ,I′(x | τ ).

Suppose µv ,I(x | τ ) > µv ,I′(x | τ ), then we have

Pr[c ′ = x] = µv ,I(x | τ ) · (1 − pτIv ,I′v (x)) = µv ,I′(x | τ ).

Combining these two cases proves that c ′ follows the law µv ,I′(· | τ ). □

The upper bound of the probability p ·Iv ,I′v
(·) (proof of Lemma 6.6). It suffices to prove that for

any two instances I = (V , E,Q,Φ) and I ′ = (V , E,Q,Φ′) of MRF model, and any v ∈ V , c ∈ Q and
σ ∈ QΓG (v),

µv ,I(c | σ ) − µv ,I′(c | σ ) ≤ 2µv ,I(c | σ )
©­«‖φv − φ ′v ‖1 +

∑
e={u ,v }∈E

‖φe − φ ′e ‖1
ª®¬ .(33)

Note that if µv ,I(c | σ ) = 0, then pτIv ,I′v
(c) = 0; otherwise pτIv ,I′v (c) = max

{
0,

µv ,I (c |σ )−µv ,I′ (c |σ )
µv ,I (c |σ )

}
.

Hence, inequality (33) proves the lemma.
We now prove (33). Suppose µv ,I(c | σ ) = 0. Then the LHS of (33) ≤ 0. Since the RHS ≥ 0, the

inequality holds.
We next assume µv ,I(c | σ ) > 0. Then it suffices to prove

µv ,I(c | σ ) − µv ,I′(c | σ )
µv ,I(c | σ )

= 1 −
µv ,I′(c | σ )
µv ,I(c | σ )

≤ 2
©­«‖φv − φ ′v ‖1 +

∑
e={u ,v }∈E

‖φe − φ ′e ‖1
ª®¬ .

By the definitions of φv ,φ ′v ,φe ,φ ′e , we can write the ratio as

µv ,I′(c | σ )
µv ,I(c | σ )

=
exp

(
φ ′v (c) +

∑
u ∈Γv φ

′
uv (σu , c)

)
exp

(
φv (c) +

∑
u ∈Γv φuv (σu , c)

) ∑
a∈Q exp

(
φv (a) +

∑
u ∈Γv φuv (σu ,a)

)∑
a∈Q exp

(
φ ′v (a) +

∑
u ∈Γv φ

′
uv (σu ,a)

) ,
where Γv denotes the neighborhood of v in G. Next, we assume that

∀c ∈ Q : φv (c) = −∞ ⇐⇒ φ ′v (c) = −∞
∀u ∈ Γv , c, c ′ ∈ Q : φuv (c, c ′) = −∞ ⇐⇒ φ ′uv (c, c ′) = −∞.

(34)

Otherwise, it must hold that the RHS of (33) is∞, then (33) holds trivially. Thus we can define the set

Q ′ ≜

{
a ∈ Q | φv (a) +

∑
u ∈Γv

φuv (σu ,a) , −∞
}
=

{
a ∈ Q | φ ′v (a) +

∑
u ∈Γv

φ ′uv (σu ,a) , −∞
}
.

Since exp(−∞) = 0, we have

µv ,I′(c | σ )
µv ,I(c | σ )

=
exp

(
φ ′v (c) +

∑
u ∈Γv φ

′
uv (σu , c)

)
exp

(
φv (c) +

∑
u ∈Γv φuv (σu , c)

) ∑
a∈Q ′ exp

(
φv (a) +

∑
u ∈Γv φuv (σu ,a)

)∑
a∈Q ′ exp

(
φ ′v (a) +

∑
u ∈Γv φ

′
uv (σu ,a)

) .
We then show that

∀a ∈ Q ′ :
exp

(
φv (a) +

∑
u ∈Γv φuv (σu ,a)

)
exp

(
φ ′v (a) +

∑
u ∈Γv φ

′
uv (σu ,a)

) ≥ exp
©­«−‖φv − φ ′v ‖1 −

∑
e={u ,v }∈E

‖φe − φ ′e ‖1
ª®¬

∀a ∈ Q ′ :
exp

(
φ ′v (a) +

∑
u ∈Γv φ

′
uv (σu ,a)

)
exp

(
φv (a) +

∑
u ∈Γv φuv (σu ,a)

) ≥ exp
©­«−‖φv − φ ′v ‖1 −

∑
e={u ,v }∈E

‖φe − φ ′e ‖1
ª®¬

(35)
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We first use (35) to prove the (33). Since µv ,I(c | σ ) > 0, then we have c ∈ Q ′. By (35), we have

1 −
µv ,I′(c | σ )
µv ,I(c | σ )

≤ 1 − exp ©­«−2‖φv − φ ′v ‖1 − 2
∑

e={u ,v }∈E
‖φe − φ ′e ‖1

ª®¬
≤ 2

©­«‖φv − φ ′v ‖1 +
∑

e={u ,v }∈E
‖φe − φ ′e ‖1

ª®¬ .
This proves the lemma.

We now prove (35). For any a ∈ Q ′, it holds that

exp
(
φv (a) +

∑
u ∈Γv φuv (σu ,a)

)
exp

(
φ ′v (a) +

∑
u ∈Γv φ

′
uv (σu ,a)

) = exp

(
φv (a) − φ ′v (a) +

∑
u ∈Γv

φuv (σu ,a) −
∑
u ∈Γv

φ ′uv (σu ,a)
)
.

Then (35) holds because

φv (a) − φ ′v (a) ≥ −
∑
c ∈Q
|φv (c) − φ ′v (c)| = −‖φv − φ ′v ‖1;∑

u ∈Γv
φuv (σu ,a) −

∑
u ∈Γv

φ ′uv (σu ,a) ≥ −
∑

e={u ,v }∈E

∑
c ,c ′∈Q

|φe (c, c ′) − φ ′e (c, c ′)| = −
∑

e={u ,v }∈E
‖φe − φ ′e ‖1.

The lower bound of exp(φ′v (a)+∑u∈Γv φ′uv (σu ,a))
exp(φv (a)+∑u∈Γv φuv (σu ,a)) can be proved in a similar way. □

The cost of the coupling for UpdateHamiltonian (proof of Lemma 6.8). By the definition of the
indicator random variable γt in (17), we have

Pr[γt = 1 | Dt−1] ≤ Pr [t ∈ P | Dt−1] + Pr
[
vt ∈ Γ+G (Dt−1) | Dt−1

]
≤ (∆ + 1)|Dt−1 |

n
+

∑
v ∈V

pup
v

n
.

By the definition of pup
v in (12) and dHamil(I,I ′) =

∑
v ∈V



φv − φ ′v

1 +∑
e ∈E



φe − φ ′e

1 ≤ L, we have

Pr[γt = 1 | Dt−1] ≤
(∆ + 1)|Dt−1 |

n
+
4L
n
.

By the definition of RHamil ≜
∑T

t=1 γt , we have

E [RHamil] =
T∑
t=1

E [γt ] =
T∑
t=1

E [E [γt | Dt−1]] ≤
T∑
t=1

(
(∆ + 1)E [|Dt−1 |]

n
+
4L
n

)
.(36)

Next, we bound the expectation E [|Dt |]. Recall that the one-step local coupling for Hamiltonian
update (Definition 6.3) is implemented as follows. We first construct the random set P ⊆ V in (13). In
the t-th step, where 1 ≤ t ≤ T , given any Xt−1 and Yt−1, the Xt and Yt is generated as follows.

• LetX ′(u) = Xt−1(u) andY ′(u) = Yt−1(u) for allu ∈ V \{vt }, sample (X ′(vt ),Y ′(vt )) ∈ Q2 jointly
from the optimal coupling Dσ ,τ

opt,Ivt
of the marginal distributions µvt ,I(· | σ ) and µvt ,I(· | τ ),

where σ = Xt−1(ΓG (vt )) and τ = Yt−1(ΓG (vt )).
• Let Xt = X ′ and Yt = Y ′. If t ∈ P, update the value of Yt (vt ) using (14).

Hence, for any vertex v ∈ V , Xt (v) , Yt (v) only if one of the following two events occurs (1) X ′(v) ,
Y ′(v); (2) vt = v and t ∈ P. Then for any v ∈ V , we have

Pr[Xt (v) , Yt (v) | Xt−1,Yt−1] ≤ Pr[X ′(v) , Y ′(v) | Xt−1,Yt−1] + Pr[v = vt ∧ t ∈ P | Xt−1,Yt−1]
= Pr[X ′(v) , Y ′(v) | Xt−1,Yt−1] + Pr[v = vt ∧ t ∈ P],(37)

where the equation holds because v = vt ∧ t ∈ P is independent of Xt−1,Yt−1. Given Xt−1,Yt−1,
the random pair X ′,Y ′ are obtained by the one-step optimal coupling for Gibbs sampling on instance
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I (Definition 4.2). Since I satisfies the Dobrushin-Shlosman condition with constant 0 < δ < 1, by
Proposition 4.3, we have

E [H (X ′,Y ′) | Xt−1,Yt−1] ≤
(
1 − δ

n

)
H (Xt−1,Yt−1) =

(
1 − δ

n

)
|Dt−1 |.(38)

where H (X ,Y ) = |{v ∈ V | X (v) , Y (v)}| denote the Hamming distance. Combining (37) and (38),

E [|Dt | | Dt−1] ≤
∑
v ∈V

Pr[X ′(v) , Y ′(v) | Dt−1] +
∑
v ∈V

Pr[t ∈ P ∧v = vt | Dt−1]

≤
(
1 − δ

n

)
|Dt−1 | +

∑
v ∈V

pup
v

n

(by (12)) ≤
(
1 − δ

n

)
|Dt−1 | +

2
n

∑
v ∈V

©­«‖φv − φ ′v ‖1 +
∑

e={u ,v }∈E
‖φe − φ ′e ‖1

ª®¬
(by dHamil(I,I ′) ≤ L) ≤

(
1 − δ

n

)
|Dt−1 | +

4L
n
.

Thus, we have

E [|Dt |] ≤
(
1 − δ

n

)
E [|Dt−1 |] +

4L
n
.

Note that |D0 | = 0. This implies

E [|Dt |] ≤
8L
δ
.(39)

Thus, by (36), we have

E [RHamil] ≤
20∆TL
δn

= O

(
∆TL

δn

)
.

□

7.1.2. Proofs for the coupling for graph update. In this section, we prove Lemma 6.11.

Cost of the coupling for UpdateEdge (Proof of Lemma 6.11). By the definition of Rgraph in (23)
and the linearity of the expectation, we have

E
[
Rgraph

]
=

T∑
t=1

E [γt ] =
T∑
t=1

E [E [γt | Dt−1]] .

Recallγt = 1
[
vt ∈ S ∪ Γ+G (Dt−1)

]
andvt ∈ V is uniformly at randomgivenDt−1. Note that |Γ+G (Dt−1)| ≤

(∆ + 1)|Dt−1 | and |S| ≤ 2|E ⊕ E ′ | ≤ 2L. We have

E
[
Rgraph

]
≤

T∑
t=1

E

[
(∆ + 1)|Dt−1 | + 2L

n

]
=
(∆ + 1)

n

T∑
t=1

E [|Dt−1 |] +
2LT
n
.(40)

Suppose I ′ satisfies Dobrushin-Shlosman condition (Condition 3.1) with the constant δ > 0, we claim

∀ 0 ≤ t ≤ T : E [|Dt |] ≤
8L
δ
.(41)

Combining (40) and (41), we have

E
[
Rgraph

]
≤ 18∆LT

δn
= O

(
∆LT

n

)
.

This proves the lemma.
27



We now prove (41). Let (Xt ,Yt )t ≥0 be the one-step local coupling for updating edges (Definition 6.9).
We claim the following result

∀σ , τ ∈ Ω : E [H (Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] ≤
(
1 − δ

n

)
· H (σ , τ ) + 4L

n
,(42)

where H (σ , τ ) = |{v ∈ V | σ (v) , τ (v)}| denotes the Hamming distance. Assume (42) holds. Taking
expectation over Xt−1 and Yt−1, we have

E [H (Xt ,Yt )] ≤
(
1 − δ

n

)
E [H (Xt−1,Yt−1)] +

4L
n
.(43)

Note that X0 = Y0, we have
H (X0,Y0) = 0.(44)

Combining (43) with (44) implies

∀ 0 ≤ t ≤ T : E [|Dt |] = E [H (Xt ,Yt )] ≤
8L
δ
.(45)

This proves the claim in (41).
We finish the proof by proving the claim in (42). The main idea is to compare the one-step local

coupling for updating edges (Definition 6.9) with the one-step optimal coupling for Gibbs sampling on
instance I ′ (Definition 4.2). Let (X ′t ,Y ′t )t ≥0 be the coupling for Gibbs sampling on I ′. Since I ′ satisfies
Dobrushin-Shlosman condition, by Proposition 4.3, we have

∀σ , τ ∈ Ω = QV : E
[
H (X ′t ,Y ′t ) | X ′t−1 = σ ∧Y ′t−1 = τ

]
≤

(
1 − δ

n

)
· H (σ , τ ).(46)

According to the coupling, we can rewrite the expectation in (46) as follows:

E
[
H (X ′t ,Y ′t ) | X ′t−1 = σ ∧Y ′t−1 = τ

]
=

1
n

∑
v ∈V
E

[
H

(
σv←CX ′

v , τv←CY ′
v

)]
,(47)

where (CX ′
v ,C

Y ′
v ) ∼ Dσ ,τ

opt,I′v
, Dσ ,τ

opt,I′v
is the optimal coupling between µv ,I′(· | σ ) and µv ,I′(· | τ ), and

the configuration σv←CX ′
v ∈ QV is defined as

σv←CX ′
v (u) ≜

{
CX ′
v if u = v

σ (u) if u , v

and the configuration τv←CY ′
v ∈ QV is defined in a similar way.

Similarly, we can rewrite the expectation in (42) as follows:

E [H (Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] =
1
n

∑
v ∈V
E

[
H

(
σv←CX

v , τv←CY
v

)]
,(48)

where (CX
v ,C

Y
v ) ∼ Dσ ,τ

Iv ,I′v
, where Dσ ,τ

Iv ,I′v
is the local coupling defined in (21).

The following two properties hold for (47) and (48).
• If v < S, by the definition of Dσ ,τ

Iv ,I′v
(·, ·) in (21), it holds that Dσ ,τ

Iv ,I′v
= Dσ ,τ

opt,Iv . Hence

∀v < S : E
[
H

(
σv←CX ′

v , τv←CY ′
v

)]
= E

[
H

(
σv←CX

v , τv←CY
v

)]
.

• Ifv ∈ S, then it holds thatH (σv←CX
v ,σv←CX ′

v ) ≤ 1 andH (τv←CY ′
v , τv←CY

v ) ≤ 1. By the triangle
inequality of the Hamming distance, we have

H
(
σv←CX

v , τv←CY
v

)
≤ H

(
σv←CX

v ,σv←CX ′
v

)
+ H

(
σv←CX ′

v , τv←CY ′
v

)
+ H

(
τv←CY ′

v , τv←CY
v

)
≤ H

(
σv←CX ′

v , τv←CY ′
v

)
+ 2.

This implies

∀v ∈ S : E
[
H

(
σv←CX

v , τv←CY
v

)]
≤ E

[
H

(
σv←CX ′

v , τv←CY ′
v

)]
+ 2.
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Combining above two properties with (47) and (48), we have for any σ ∈, τ ∈ Ω,
E [H (Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ]

=
1
n

∑
v ∈V
E

[
H

(
σv←CX

v , τv←CY
v

)]
≤ 1
n

∑
v<S
E

[
H

(
σv←CX ′

v , τv←CY ′
v

)]
+
1
n

∑
v ∈S

(
E

[
H

(
σv←CX ′

v , τv←CY ′
v

)]
+ 2

)
(∗) ≤ E

[
H (X ′t ,Y ′t ) | X ′t−1 = σ ∧Y ′t−1 = τ

]
+
4L
n

≤
(
1 − δ

n

)
· H (σ , τ ) + 4L

n
,

where (∗) holds due to |S| ≤ 2L. This proves the claim in (42). □

7.2. Implementation of the algorithms. In this section, we prove the Claim 6.15, Claim 6.16 and
Claim 6.20 by giving the implementation of the algorithms.

7.2.1. Proofs of Claim 6.15 and Claim 6.20. We prove Claim 6.20, then Claim 6.15 can be proved in a
similar way.

It is easy to verify the updated sample I ′, all the probabilities (pup
v )v ∈V in (12), all middle instances

Imid,I1,I2 in (8), (18), (19) can be computed with time cost O(∆n). We focus on constructing Pi for
1 ≤ i ≤ Nmin.

Themulti-sample dynamic Gibbs sampling algorithm use the data structure inTheorem 6.12 tomain-
tain N (n) independent Gibbs sampling chain on instance I represented by X (i)0 and Exe-Log (I,T ) =〈
v(i)t ,X

(i)
t (v

(i)
t )

〉T
t=1

. To construct the random sets Pi for 1 ≤ i ≤ Nmin, we need an additional data
structure to maintain the following data. Define the set Hv as

Hv ≜ {(i, t) ∈ [N (n)] × [T ] | v(i)t = v}.
Hv contains all the transition steps in N (n) independent chains that picks the vertex v . The algorithm
uses an extra data structure H to maintain all (Hv )v ∈V . The data structure H contains n balanced
binary search trees (Hv )v ∈V , where eachHv maintains the set Hv in a similar way as in the main data
structure in Theorem 6.12. SinceT = O(n logn),N (n) ≤ poly(n), the space cost ofH isO(nN (n) logn)
memory words, each of O(logn) bits, which is dominated by the space cost in Lemma 6.18. And the
time cost of adding, deleting, and searching a transition step in H is O(log2 n). We need to update
H when I is updated to I ′. One can verify that such time cost is dominated by the time cost in
Lemma 6.18.

Then for each v ∈ V , we pick each element in Hv with probability pup
v to construct the set

Bv ⊆ Hv .

This is the standard Bernoulli process. With the data structureHv , the time complexity of constructing
the set Bv is O(|Bv | log2 n). Given all the sets Bv , it is easy to construct all the sets Pi . Hence,

Tmulti
preparation = O

(
∆n +

∑
v ∈V
|Bv | log2 n

)
= O

(
∆n +

Nmin∑
i=1

|Pi | log2 n
)
.

In the preparation stage of multi-sample dynamic Gibbs sampling algorithm, we first construct the
Imid = (V , E,Q,Φmid) as in (8), and each Pi (1 ≤ i ≤ Nmin) is constructed with respect to I and Imid.
Note that dHamil(I,Imid) ≤ dHamil(I,I ′) ≤ LHamil. By (12), we have for each 1 ≤ i ≤ Nmin,

E [|Pi |] ≤
T∑
t=1

∑
v ∈V

pup
v

n
≤ 4TLHamil

n
.

This proves the claim. □
29



7.2.2. Proof of Claim 6.16. We give the implementation of the update stage of the single-sample dy-
namic Gibbs sampling algorithm (Algorithm 2). The algorithm updates the MRF instance from I to I ′
as follows,

I → Imid → I1 → I2 → I ′,
where Imid is defined in (8), I1 = I1(Imid,I ′) is defined in (18), and I2 = I2(Imid,I ′) is defined in (19).
Then the algorithm calls LengthFix to modifies the length of the execution log from T to T ′.

The preparation stage computes all probabilities (pup
v )v ∈V in (12), the set P in (13), and all instances

Imid,I1,I2. Consider the time cost of the update stage. In the update from Imid to I1, we only add
isolated vertices in V ′ \V , using the data structure in Theorem 6.12, the expected time cost is

E
[
TImid→I1

]
= O

(
|V ′ \V |
|V | Tmax log

2Tmax

)
= O

(
Lgraph
n

Tmax log
2Tmax

)
.

In the update from I2 to I ′, we only delete isolated vertices in V \V ′, thus

E
[
TImid→I1

]
= O

(
|V \V ′ |
|V ∪V ′ |Tmax log

2Tmax

)
= O

(
Lgraph
n

Tmax log
2Tmax

)
.

It is also easy to observe that the expected time cost of LengthFix is

E
[
TLengthFix

]
= O

(
∆ |T −T ′ | log2Tmax

)
.

We then prove that

E
[
TI→Imid

]
= O

(
∆E [RHamil] log2Tmax

)
(49)

E
[
TI1→I2

]
= O

(
∆E

[
Rgraph

]
log2Tmax

)
.(50)

Combining all the running time together proves Claim 6.16.
We give the implementation of Algorithm 4 to prove (49). The Algorithm 6 can be implemented in a

similar way to prove (50). Since (pup
v )v ∈V andP are given, the running time of Algorithm 4 is dominated

by the while-loop. We implement Algorithm 4 such that after each execution of the while-loop, the
first t0 transition steps of the Gibbs sampling on instance I is updated to the first t0 transition steps
of the Gibbs sampling on instance I ′, namely, (Xt )t0t=0 is updated to (Yt )

t0
t=0, where t0 is the variable in

Algorithm 4. Recall the sets D and P in Algorithm 4. We need some temporary data structures:
• a balanced binary search tree T to maintain the set D and the configuration Xt0−1(D);
• a heapH1 to maintain the set P;
• a heap H2 such that once a vertex v is added into D, the update times Succ(t0,u) for all u ∈
ΓG (v)∪{v} are added intoH2, where Succ is the operation of the data structure inTheorem 6.12.

Line 5 can be implemented usingH1,H2,T . And Line 7 and Line 10 can be implemented using T and
the main data structure in Theorem 6.12. Note that the time cost of each operation of T is O(logn) =
O(logTmax). Also note that at most ∆RHamil elements can be added into H2. Hence, all the time cost
contributed by H2 is O(∆RHamil log(∆RHamil)) = O(∆RHamil logTmax). One can verify that the total
running time is

TI→Imid = O
(
∆RHamil log

2Tmax
)
.

This proves (49). □

7.3. Dynamic Gibbs sampling for specificmodels. In this section, we apply our algorithm on Ising
model, graph q-coloring, and hardcore model. We prove the following theorem.

Theorem 7.1. There exist dynamic sampling algorithms as stated in Theorem 6.1 with the same space
cost O (nN (n) logn), and expected time cost O

(
∆2(Lgraph + LHamil)N (n) log3 n + ∆n

)
for each update, if

the input instance I with n vertices and the updated instance I ′ satisfying dgraph(I,I ′) ≤ Lgraph =
o(n),dHamil(I,I ′) ≤ LHamil both are:

• Ising models with temperature β and arbitrary local fields where exp(−2|β |) ≥ 1 − 2−δ
∆+1 ;

• proper q-colorings with q ≥ (2 + δ )∆;
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• hardcore models with fugacity λ ≤ 2−δ
∆−2 , but with an alternative time cost for each update

O
(
∆3(Lgraph + LHamil)N (n) log3 n + ∆n

)
,(51)

where δ > 0 is a constant, ∆ = max{∆G ,∆G′}, ∆G denotes the maximum degree of the input graph, and
∆G′ denotes the maximum degree of the updated graph.

In Theorem 7.1, the regime for Ising model and q-coloring match the Dobrushin-Shlosman condi-
tion, thus the results are corollaries of Theorem 6.1. The regime for hardcore model is better than the
Dobrushin-Shlosman condition. We give the proof for hardcore model.

We use I = (V , E, λ) to specify the hardcore model on graph G = (V , E) with fugacity λ. A config-
uration of hardcore model is σ ∈ {0, 1}V , where σv = 1 indicates v is occupied, σv = 0 indicates v is
unoccupied. If σ forms an independent set, then µI(σ ) ∝ λ ‖σ ‖ ; otherwise, µI(σ ) = 0. We need the
following lemma proved by Vigoda’s coupling technique [Vig99].

Lemma 7.2. Let δ > 0 be a constant. Let I = (V , E, λ) be a hardcore instance, where n = |V |, and
ΩI ≜ {σ ∈ {0, 1}V | µI(σ ) > 0}. Assume λ ≤ 2−δ

∆−2 , where ∆ is the maximum degree of G = (V , E).
There exist a potential function ρI : ΩI × ΩI → R≥0, where ∀σ , τ ∈ ΩI , ρI(σ , τ ) = 0 if σ = τ and
ρI(σ , τ ) ≥ 1 if σ , τ , and DiamI ≜ maxσ ,τ ∈ΩI ρI(σ , τ ) ≤ ∆n, such that the one-step optimal coupling
(Definition 4.2) (Xt ,Yt )t ≥0 of Gibbs sampling on I satisfies

(1) (step-wise decay) for the coupling (Xt ,Yt )t ≥0 of Gibbs sampling, it holds that

∀σ , τ ∈ ΩI : E [ ρI(Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] ≤
(
1 − β

n

)
· ρI(σ , τ ),(52)

where β = 1
96δ , which implies τmix(I, ϵ) ≤ dnβ log DiamI

ϵ e = O(n log
n
ϵ ).

(2) (up-bound to Hamming) for all σ , τ ∈ ΩI , H (σ , τ ) ≤ ρI(σ , τ ), where H (σ , τ ) denotes the
Hamming distance between σ and τ .

(3) (Lipschitz) function ρI(·, ·), seen as a function of 2n variables, is K-Lipschitz, that is,

max
σ ,σ ′,τ ,τ ′∈ΩI

|ρI(σ , τ ) − ρI(σ ′, τ ′)| ≤ K · H (στ ,σ ′τ ′),

where K = 12∆.

Compared with Proposition 4.3, the step-wise decay property in (52) holds only for feasible config-
urations σ and τ , and the decay property is established on the potential function ρI rather than the
Hamming distance H . We first use Lemma 7.2 to prove Theorem 7.1, then we prove Lemma 7.2 in the
end of this section.

Recall that the error function ϵ satisfies ϵ(ℓ) ≥ 1
poly(ℓ) by Lemma 6.17. Recall ∆ = max{∆G ,∆G′}. By

Lemma 7.2 and n′ = Θ(n) (since Lgraph = o(n)), we can set

T = T (I) =
⌈
96n
δ

log
n∆

ϵ(n)

⌉
= O (n logn)

T ′ = T (I ′) =
⌈
96n′

δ
log

n′∆

ϵ(n′)

⌉
= O (n logn) .

We modify Algorithm 2 for the hardcore model as follows. Suppose the current instance is I =
(V , E, λ), we set the initial configuration X0 as

∀v ∈ V , X0(v) = 0.

Thus X0 is feasible. Suppose the instance I = (V , E, λ) is updated to I ′ = (V ′, E ′, λ′). We divide the
update into the following steps

I → Imid → I1 → I2 → I3 → I ′,
• change fugacity to update I = (V , E, λ) to Imid = (V , E, λ′) using UpdateHamiltonian;
• add isolated vertices inV ′\V to update Imid = (V , E, λ′) to I1 = (V ∪V ′, E, λ′) using AddVertex;
• delete edges in E \E ′ to update I1 = (V ∪V ′, E, λ′) to I2 = (V ∪V ′, E∩E ′, λ′) usingUpdateEdge;
• add edges in E ′ \E to update I2 = (V ∪V ′, E ∩E ′, λ′) to I3 = (V ∪V ′, E ′, λ′) using UpdateEdge;
• delete isolated vertices in V ′ \V to update I3 = (V ∪V ′, E ′, λ′) to I ′ = (V ′, E ′, λ′);
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• fix the length of the execution log from T to T ′.
Compared to Algorithm 2, we further divide the update of edges into two steps: at first delete edges,
then add edges. Thus, we have the following observation.

Observation 7.3. The following results holds:
• ΩI = ΩImid , ΩI1 ⊆ ΩI2 and ΩI3 ⊆ ΩI2 , where ΩJ is the set of feasible configurations for any
instance J .
• the instancesI,I2,I3,I ′ all satisfy λ ≤ 2−δ

∆−2 , where λ and ∆ are the fugacity andmaximum degree
of the corresponding instance.

By the observation, we know that ΩI = ΩImid , ΩI1 ⊆ ΩI2 and ΩI3 ⊆ ΩI2 , thus we can use Lemma 7.2,
because the step-wise decay property (52) is established only on feasible configurations.

We need to analyze RHamil and Rgraph defined in (17) and (23) for the hardcore model. We prove the
following two lemmas for hardcore model.

Lemma 7.4. Consider UpdateHamiltonian
(
I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1

)
. Let I = (V , E, λ) be the current

instance and I ′ = (V , E, λ′) the updated instance. Assume λ ≤ 2−δ
∆−2 , where δ > 0 is a constant and ∆ is

the maximum degree of G = (V , E). Also assume dHamil(I,I ′) = n |ln λ − ln λ′ | ≤ L. Then E [RHamil] =
O

(
∆2T L
nδ

)
, where n = V , ∆ is the maximum degree of graph G = (V , E).

Lemma 7.5. Consider UpdateEdge
(
I,I ′,X0, 〈vt ,Xt (vt )〉Tt=1

)
. Let I = (V , E, λ) be the current instance

and I ′ = (V , E ′, λ) the updated instance. Assume |E ⊕ E ′ | ≤ L. Also assume one of the following two
conditions holds for some constant δ > 0:

• λ ≤ 2−δ
∆G−2 and ΩI′ ⊆ ΩI , where ∆G is the maximum degree of G = (V , E);

• λ ≤ 2−δ
∆G′−2 and ΩI ⊆ ΩI′ , where ∆G′ is the maximum degree of G ′ = (V , E ′).

Then E
[
Rgraph

]
= O

(
∆2T L
nδ

)
, where n = V , ∆ = max{∆G ,∆G′}.

Note that we call the subroutine UpdateHamiltonian for the update modifying I to Imid. By Ob-
servation 7.3, the condition in Lemma 7.4 holds. We call the subroutine UpdateEdge for the update
modifying I1 to I2 and the update modifying I2 to I3. By Observation 7.3, in both two calls of Up-
dateEdge, the condition in Lemma 7.5 holds. Then Theorem 7.1 for hardcore can by proved by going
through the proof in Section 6. Compared to Lemma 6.8 and Lemma 6.11, E [RHamil] ,E

[
Rgraph

]
in

Lemma 7.4 and Lemma 7.5 are bounded by O
(
∆2T L
nδ

)
rather than O

(
∆T L
nδ

)
. This is why the hardcore

model has an alternative running time in (51).
The proofs of Lemma 7.4 and Lemma 7.5 are similar to the proofs of Lemma 6.8 and Lemma 6.11.

We give the proofs here for the completeness.

Proof of Lemma 7.4. By the definition of the indicator γt in (17), we have

Pr[γt = 1 | Dt−1] ≤ Pr [t ∈ P] + Pr
[
vt ∈ Γ+G (Dt−1)

]
=
(∆ + 1)|Dt−1 |

n
+

∑
v ∈V

pup
v

n
.

By the definition of pup
v in (12) and dHamil(I,I ′) = n |ln λ − ln λ′ | ≤ L, we have

Pr[γt = 1 | Dt−1] ≤
(∆ + 1)|Dt−1 |

n
+
2L
n
.

By the definition of RHamil ≜
∑T

t=1 γt , we have

E [RHamil] =
T∑
t=1

E [γt ] =
T∑
t=1

E [E [γt | Dt−1]] ≤
T∑
t=1

(
(∆ + 1)E [|Dt−1 |]

n
+
2L
n

)
.(53)

Next, we bound the expectation E [|Dt |]. In our implementation of the one-step local coupling for
Hamiltonian update (Definition 6.3), we first construct the random set P ⊆ V in (13). In the t-th step,
where 1 ≤ t ≤ T , given any Xt−1 and Yt−1, the Xt and Yt is generated as follows.
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• Let X ′(u) = Xt−1(u) and Y ′(u) = Yt−1(u) for all u ∈ V \ {vt }, sample (X ′(vt ),Y ′(vt )) ∈ {0, 1}2
jointly from the optimal couplingDσ ,τ

opt,Ivt
of themarginal distributions µvt ,I(· | σ ) and µvt ,I(· |

τ ), where σ = Xt−1(ΓG (vt )) and τ = Yt−1(ΓG (vt )).
• Let Xt = X ′ and Yt = Y ′. If t ∈ P, update the value of Yt (vt ) using (14).

Note that ΩI = ΩI′ . Since I satisfies λ ≤ 2−δ
∆−2 with constant δ > 0, by Lemma 7.2, for any feasible

Xt−1,Yt−1 ∈ ΩI = ΩI′ , we have

E [ρI(X ′,Y ′) | Xt−1,Yt−1] ≤
(
1 − δ

96n

)
ρI(Xt−1,Yt−1).(54)

By Lemma 7.2, function ρI(·, ·), seen as a function of 2n variables, is 12∆-Lipschitz. Let F indicates
whether t ∈ P. We flip the value of Yt (vt ) only if F occurs. By (54), we have

E [ρI(Xt ,Yt ) | Xt−1,Yt−1] ≤ E [ρI(X ′,Y ′) + 12∆F | Xt−1,Yt−1]
= E [ρI(X ′,Y ′) | Xt−1,Yt−1] + E [12∆F | Xt−1,Yt−1]

(F is independent with Xt−1,Yt−1) ≤
(
1 − δ

96n

)
ρI(Xt−1,Yt−1) + 12∆E [F ]

≤
(
1 − δ

96n

)
ρI(Xt−1,Yt−1) + 12∆

∑
v ∈V

pup
v

n

(by (12)) ≤
(
1 − δ

96n

)
ρI(Xt−1,Yt−1) +

24∆
n

∑
v ∈V
|ln λ − ln λ′ |

(by dHamil(I,I ′) ≤ L) ≤
(
1 − δ

96n

)
ρI(Xt−1,Yt−1) +

24L∆
n
.

Note that ρI(X0,Y0) = 0 and X0(v) = Y0(v) = 0 for all v ∈ V , the configurations Xt ,Yt are feasible for
all t ≥ 0. Thus, we have

E [ρI(Xt ,Yt )] ≤
(
1 − δ

96n

)
E [ρI(Xt−1,Yt−1)] +

24L∆
n
.

Thus E [ρI(Xt ,Yt )] ≤ 5000L∆
δ . By the up-bound to Hamming in Lemma 7.2, we have

E [|Dt |] ≤
5000L∆

δ
.

Thus, by (53), we have

E [RHamil] ≤
50000∆2TL

δn
= O

(
∆2TL

δn

)
.

□

Proof of Lemma 7.5. By the definition of Rgraph in (23) and the linearity of the expectation, we have

E
[
Rgraph

]
=

T∑
t=1

E [γt ] =
T∑
t=1

E [E [γt | Dt−1]] .

Recallγt = 1
[
vt ∈ S ∪ Γ+G (Dt−1)

]
andvt ∈ V is uniformly at randomgivenDt−1. Note that |Γ+G (Dt−1)| ≤

(∆ + 1)|Dt−1 | and |S| ≤ 2|E ⊕ E ′ | ≤ 2L. We have

E
[
Rgraph

]
≤

T∑
t=1

E

[
(∆ + 1)|Dt−1 | + 2L

n

]
=
(∆ + 1)

n

T∑
t=1

E [|Dt−1 |] +
2LT
n
.(55)

Suppose λ ≤ 2−δ
∆G−2 and ΩI′ ⊆ ΩI . The other condition follows from symmetry. We claim that

∀ 0 ≤ t ≤ T : E [|Dt |] ≤
10000∆L

δ
.(56)
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Combining (55) and (56), we have

E
[
Rgraph

]
≤ 100000∆LT

nδ
= O

(
∆2LT

nδ

)
.

This proves the lemma.
We now prove (56). Let (Xt ,Yt )t ≥0 be the one-step local coupling for updating edges (Definition 6.9).

We claim the following result

∀σ ∈ ΩI, τ ∈ ΩI′ ⊆ ΩI,E [ ρI(Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] ≤
(
1 − δ

96n

)
· ρI(σ , τ ) +

48∆L
n
,(57)

where ρI is the potential function in Lemma 7.2. Assume (57) holds. Since X0 = Y0 = {0}V and
ΩI′ ⊆ ΩI , we must have Xt−1,Yt−1 ∈ ΩI . Taking expectation over Xt−1 and Yt−1, we have

E [ρI(Xt ,Yt )] ≤
(
1 − δ

96n

)
E [ρI(Xt−1,Yt−1)] +

48∆L
n
.(58)

Note that X0 = Y0, we have
ρI(X0,Y0) = 0.(59)

Combining (58), (59) and upper-bound Hamming property in Lemma 7.2 implies

∀ 0 ≤ t ≤ T : E [|Dt |] ≤ E [ρI(Xt ,Yt )] ≤
10000∆L

δ
.

This proves the claim in (56).
We finish the proof by proving the claim in (57). Let (X ′t ,Y ′t )t ≥0 be the one-step optimal coupling

for Gibbs sampling on instance I (Definition 4.2). Since I satisfies λ ≤ 2−δ
∆G−2 , by Lemma 7.2, we have

∀σ , τ ∈ ΩI : E
[
ρI(X ′t ,Y ′t ) | X ′t−1 = σ ∧Y ′t−1 = τ

]
≤

(
1 − δ

96n

)
· ρI(σ , τ ).(60)

According to the coupling, we can rewrite the expectation in (60) as follows:

E
[
ρI(X ′t ,Y ′t ) | X ′t−1 = σ ∧Y ′t−1 = τ

]
=

1
n

∑
v ∈V
E

[
ρI

(
σv←CX ′

v , τv←CY ′
v

)]
,(61)

where (CX ′
v ,C

Y ′
v ) ∼ Dσ ,τ

opt,Iv , D
σ ,τ
opt,Iv is the optimal coupling between µv ,I(· | σ ) and µv ,I(· | τ ), and the

configuration σv←CX ′
v ∈ QV is defined as

σv←CX ′
v (u) ≜

{
CX ′
v if u = v

σ (u) if u , v

and the configuration τv←CY ′
v ∈ QV is defined in a similar way.

Similarly, we can rewrite the expectation in (57) as follows:

E [ρI(Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] =
1
n

∑
v ∈V
E

[
ρI

(
σv←CX

v , τv←CY
v

)]
,(62)

where (CX
v ,C

Y
v ) ∼ Dσ ,τ

Iv ,I′v
, where Dσ ,τ

Iv ,I′v
is the local coupling defined in (21).

The following two properties hold for (61) and (62).
• If v < S, by the definition of Dσ ,τ

Iv ,I′v
(·, ·) in (21), it holds that Dσ ,τ

Iv ,I′v
= Dσ ,τ

opt,Iv . Hence

∀v < S : E
[
ρI

(
σv←CX ′

v , τv←CY ′
v

)]
= E

[
ρI

(
σv←CX

v , τv←CY
v

)]
.

• If v ∈ S, then it holds that H (σv←CX
v ,σv←CX ′

v ) ≤ 1 and H (τv←CY ′
v , τv←CY

v ) ≤ 1, where H is
the Hamming distance. Since ΩI′ ⊆ ΩI , it holds that σv←CX ′

v ,σv←CX
v , τv←CY

v , τv←CY ′
v ∈ ΩI .

Since the function ρI is 12∆-Lipschitz, we have

∀v ∈ S : E
[
ρI

(
σv←CX

v , τv←CY
v

)]
≤ E

[
ρI

(
σv←CX ′

v , τv←CY ′
v

)]
+ 24∆.
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Combining above two properties with (60), (61) and (62), we have for any σ ∈, τ ∈ Ω,

E [ρI(Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ]

=
1
n

∑
v ∈V
E

[
ρI

(
σv←CX

v , τv←CY
v

)]
≤ 1
n

∑
v<S
E

[
ρI

(
σv←CX ′

v , τv←CY ′
v

)]
+
1
n

∑
v ∈S

(
E

[
ρI

(
σv←CX ′

v , τv←CY ′
v

)]
+ 24∆

)
(∗) ≤ E

[
ρI(X ′t ,Y ′t ) | X ′t−1 = σ ∧Y ′t−1 = τ

]
+
48L∆
n

≤
(
1 − δ

96n

)
· ρI(σ , τ ) +

48L∆
n
,

where (∗) holds due to |S| ≤ 2L. This proves the claim in (57). □

Finally, we prove Lemma 7.2. This proof is based on the coupling technique in [Vig99].

Proof of Lemma 7.2. We give a potential function ρI for the hard core instance I. We mainly use
Vigoda’s potential function in [Vig99]. However, we need to slightly modify Vigoda’s potential func-
tion to handle the isolated vertices.

Recall that for hard core model, Q = {0, 1}. For any σ ∈ QV , σ (v) = 1 represents v is occupied and
σ (v) = 0 represents v is unoccupied. For each vertex v ∈ V , we use deg(v) to denote the degree of v
in graph G = (V , E). We divide the graph G = (V , E) into two graphs G1 = (V1, E1) and G2 = (V2, E2)
such that

V1 = {v ∈ V | deg(v) = 0}, E1 = �,
V2 = V \V1, E2 = E.

ThusG1 is an empty graph andG2 contains no isolated vertex. The potential function ρI is defined as

∀σ , τ ∈ ΩI : ρI(σ , τ ) ≜ 4ρ1(σ (V1), τ (V1)) + 4ρ2(σ (V2), τ (V2)).

Here, ρ1 is the potential function on G1, which is the Hamming distance:

ρ1(σ (V1), τ (V1)) =
∑
v ∈V1

1 [σ (v) , τ (v)] .

And ρ2(σ (V2), τ (V2)) is the Vigoda’s potential function [Vig99] on the graphG2. Formally, let D = {v ∈
V2 | σ (v) , τ (v)}. For eachv ∈ V2, let dv = |D∩ ΓG2(v)|. Let c = ∆λ

∆λ+2 , where ∆ is the maximum degree
of graphG. Note that themaximum degree of graphG2 is also ∆. The potential function ρ2(σ (V2), τ (V2))
is defined as

αv =

{
deg(v) if v ∈ D
0 otherwise;

βv =


−cdv if ∃w ∈ ΓG2(v) such that σ (w) = τ (w) = 1

−c(dv − 1) if there is no suchw and dv > 1

0 otherwise;

ρ2(σ (V2), τ (V2)) =
∑
v ∈V2
(αv + βv ).

It is easy to see ρI(σ ,σ ) = 0 and maxσ ,τ ∈ΩI ρI(σ , τ ) = ∆n. We then verify other properties for ρI .
At first, we prove the upper-bound to Hamming property. For function ρ1, it holds that

ρ1(σ (V1), τ (V1)) = H (σ (V1), τ (V1)).

For function ρ2, it holds that

ρ2(σ (V2), τ (V2)) =
∑
v ∈V2
(αv + βv ) =

∑
v ∈D

αv +
∑
v ∈V2

βv ≥
∑
v ∈D

∑
w ∈ΓG2 (v)

(1 − c),
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where the last inequality holds due to
∑
v ∈V2 βv ≥ −

∑
v ∈V2 cdv = −c

∑
v ∈D deg(v). Since graph G2

contains no isolated vertex, then |ΓG2(v)| = deg(v) ≥ 1 for all v ∈ D. Note c < 1. Thus

ρ2(σ (V2), τ (V2)) ≥ |D |(1 − c) = |D |
2

∆λ + 2
≥ |D |

4
=

1
4
H (σ (V2), τ (V2)),

where 2
λ∆+2 ≥

1
4 is because λ <

2
∆−2 and ∆ ≥ 3. Combining together we have

ρI(σ , τ ) = 4ρ1(σ (V1), τ (V1)) + 4ρ2(σ (V2), τ (V2)) ≥ H (σ , τ ).

This also implies ρI(σ , τ ) ≥ 1 [σ , τ ].
Next, we show the function ρI is 12∆-Lipschitz. Recall V1 ∩V2 = �, V1 ∪V2 = V and

ρI(σ , τ ) = 4ρ1(σ (V1), τ (V1)) + 4ρ2(σ (V2), τ (V2)).

Since ρ1 is the Hamming distance, it is easy to see ρ1 is 1-Lipschitz. To give the Lipschitz constant for
ρ2. We extend the function ρ2 as follows. Suppose the function ρ2 is defined over QV2 × QV2 , where
Q = {0, 1}. For any x,y, x ′,y ′ ∈ QV2 such thatH (xy, x ′y ′) = 1, it is easy to verify the extended function
ρ2 satisfies

|ρ2(x,y) − ρ2(x ′,y ′)| ≤ 3∆.

This implies the original function ρ2 is 3∆-Lipschitz. Hence, the function ρI is 12∆-Lipschitz.
Finally, we prove the step-wise decay property. Let (X (1)t )t ≥0, (Y

(1)
t )t ≥0 be the Gibbs sampling chains

for hard core model on graph G1. SinceG1 is a graph consisting of isolated vertices, then the one step
optimal coupling (X (1)t ,Y

(1)
t )t ≥0 satisfies

∀σ , τ ∈ ΩI : E
[
ρ1

(
X (1)t ,Y

(1)
t

)
| X (1)t−1 = σ (V1) ∧Y (1)t−1 = τ (V1)

]
≤

(
1 − 1
|V1 |

)
ρ1(σ (V1), τ (V1)).

Let (X (2)t )t ≥0, (Y
(2)
t )t ≥0 be the Gibbs sampling chains for hard core model on graph G2. If λ ≤ 2−δ

∆−2 =
2(1−δ/2)

∆−2 , then due to Vigoda’s proof 3, the one step optimal coupling (X (2)t ,Y
(2)
t )t ≥0 satisfies:

∀σ , τ ∈ ΩI : E
[
ρ2

(
X (2)t ,Y

(2)
t

)
| X (2)t−1 = σ (V2) ∧Y (2)t−1 = τ (V2)

]
≤

(
1 − δ

96|V2 |

)
ρ2(σ (V2), τ (V2)).

Let (Xt )t ≥0, (Yt )t ≥0 be the Gibbs sampling chains for hard core model on graphG. If λ ≤ 2−δ
∆−2 , then the

one step optimal coupling (Xt ,Yt )t ≥0 satisfies:

∀σ , τ ∈ ΩI : E [ρI (Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ]

=
|V1 |
n

((
1 − 1
|V1 |

)
4ρ1(σ (V1), τ (V1)) + 4ρ2(σ (V2), τ (V2))

)
+
|V2 |
n

(
4ρ1(σ (V1), τ (V1)) +

(
1 − δ

96|V2 |

)
4ρ2(σ (V2), τ (V2))

)
≤

(
1 − min{δ/96, 1}

n

)
ρI(σ , τ ).

Thus, the potential function ρI satisfies the step-wise decay property.

∀σ , τ ∈ ΩI : E [ρI (Xt ,Yt ) | Xt−1 = σ ∧Yt−1 = τ ] ≤
(
1 − δ/96

n

)
ρI(σ , τ ).

This proves the lemma. □

3It can be verified that in Vigoda’s proof [Vig99], the Markov chain for sampling hard core is indeed the Gibbs sampling
and the coupling for analysis is indeed the one step-optimal coupling for Gibbs sampling.
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8. Proofs for dynamic inference

8.1. Proof of themain theorem. Our dynamic inference algorithm is given as follows. For eachMRF
instanceI = (V , E,Q,Φ), wheren = |V |, our dynamic inference algorithmmaintainsN (n) independent
samples X (1),X (2), . . . ,X (N (n)) ∈ QV satisfying each dTV

(
µI,X

(i)) ≤ ϵ(n) and the estimator θ̂ (I) =
E(X (1),X (2), . . . ,X (N (n))) for θ (I). Given an update that modifies I to I ′ = (V ′, E ′,Q,Φ′) where
n′ = |V ′ |, our algorithm does as follows.

• Update the sample sequence. Update X (1),X (2), . . . ,X (N (n)) to N (n′) independent random sam-
plesY (1),Y (2), . . . ,Y (N (n′)) ∈ QV ′ such that eachdTV

(
µI′,Y

(i)) ≤ ϵ(n′) and output the difference
between two sample sequences.
• Update the estimator. Given the difference between two sample sequencesX (1),X (2), . . . ,X (N (n))
and Y (1),Y (2), . . . ,Y (N (n′)), update θ̂ (I) to θ̂ (I ′) = Eθ (Y (1),Y (2), . . . ,Y (N (n

′))) using the black-
box algorithm in Definition 2.3.

Obviously, θ̂ (I ′) is an (N , ϵ)-estimator for θ (I ′).
The sample seqence is maintained and updated by the dynamic sampling algorithm in Theorem 6.1.

ByTheorem 6.1, we have the space cost for maintaining the sample sequence isO (nN (n) logn)memory
words, each ofO(logn) bits. By following the proof ofTheorem 6.1, it is easy to verify that the expected
time cost for each update is O

(
∆2LN (n) log3 n + ∆n

)
.

The estimator ismaintained and updated by the black-box algorithm inDefinition 2.3. By Lemma 6.19,
we have N (n) ≤ poly(n). Combining with Definition 2.3, we have the space cost for maintaining the
estimator is (n · N (n) + K)polylog(n) bits. Let D be the size of the difference between two sample se-
quences as defined in (3). We can follow the proof of Theorem 6.1 to bound the expectation of D. Let
T =

⌈
n
δ log n

ϵ (n)

⌉
andT ′ =

⌈
n′
δ log n′

ϵ (n′)

⌉
. Since |n − n′ | ≤ L = o(n), we have |T −T ′ | = O(L logn) (due to

Lemma 6.17). Combining (39), (45) and (7) yields

E [D] = |N (n) − N (n′)| ·max{n,n′} +O (L + |T −T ′ |) · N (n) = O(LN (n) logn),

where the last equation holds because N (n) − N (n′) = O(N (n)n ) (due to Lemma 6.19). Combining
with Definition 2.3, we have the expected time cost for updating the estimator is LN (n)polylog(n).

In summary, our dynamic inference algorithm maintains an estimator for the current MRF instance
I, using extra Õ (nN (n) + K)memory words, each ofO(logn) bits, such that when I is updated to I ′,
the algorithm updates the estimator within expected time cost

E [Tcost] = E
[
Tsample

]
+ E [Testimator]

= O
(
∆2LN (n) log3 n + ∆n

)
+ LN (n)polylog(n)

= Õ
(
∆2LN (n) + ∆n

)
.

8.2. Dynamic inference on specific models. Applying our dynamic inference algorithm on Ising
model, q-coloring and hardcore model yields the following result.

Theorem 8.1. There exist dynamic inference algorithms as stated in Theorem 3.2 with the same space cost
Õ (nN (n) + K), and expected time cost Õ

(
∆2LN (n) + ∆n

)
for each update, if the input instance I with n

vertices and the updated instance I ′ with d(I,I ′) ≤ L = o(n) both are:

• Ising models with temperature β and arbitrary local fields where exp(−2|β |) ≥ 1 − 2−δ
∆+1 ;

• proper q-colorings with q ≥ (2 + δ )∆;
• hardcore models with fugacity λ ≤ 2−δ

∆−2 , but with an alternative time cost for each update

Õ
(
∆3LN (n) + ∆n

)
,

where δ > 0 is a constant, ∆ = max{∆G ,∆G′}, ∆G and ∆G′ denote the maximum degree of the input
graph and updated graph respectively.

With the dynamic sampling algorithm inTheorem 7.1, Theorem 8.1 can be proved by going through
the same proof in Section 8.1.
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9. Conclusion

In this paper we study the probabilistic inference problem in a graphical model when themodel itself
is changing dynamically with time. We study the non-local updates so that two consecutive graphical
models may differ everywhere as long as the total amount of their difference is bounded. This general
setting covers many typical applications. We give a sampling-based dynamic inference algorithm that
maintains an inference solution efficiently against the dynamic inputs. The algorithm significantly
improves the time cost compared to the static sampling-based inference algorithm.

Our algorithm generically reduces the dynamic inference to dynamic sampling problem. Our main
technical contribution is a dynamic Gibbs sampling algorithm that maintains random samples for
graphicalmodels dynamically changed by non-local updates. Such technique is extendable to all single-
site dynamics. This gives us a systematic approach for transforming classic MCMC samplers on static
inputs to the sampling and inference algorithms in a dynamic setting. Our dynamic algorithms are
efficient as long as the one-step optimal coupling exhibits a step-wise decay, a key property that has
been widely used in supporting efficient MCMC sampling in the classic static setting and captured by
the Dobrushin-Shlosman condition.

Our result is the first one that shows the possibility of efficient probabilistic inference in dynamically
changing graphical models (especially when the graphical models are changed by non-local updates).
Our dynamic inference algorithm has potentials in speeding up the iterative algorithms for learning
graphical models, which deserves more theoretical and experimental research. In this paper, we focus
on discrete graphical models and sampling-based inference algorithms. Important future directions
include considering more general distributions and the dynamic algorithms based on other inference
techniques.

References

[ADK+16] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On
fully dynamic graph sparsifiers. In Proceedings of the 57th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 335–344. IEEE, 2016.

[AQ+17] Osvaldo Anacleto, Catriona Queen, et al. Dynamic chain graph models for time series
network data. Bayesian Analysis, 12(2):491–509, 2017.

[BC16] Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest
paths: beyond the o(mn) bound. In Proceedings of the 48th Annual Symposium on Theory of
Computing (STOC), pages 389–397. ACM, 2016.

[BD97] Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in
Markov chains. In Proceedings of the 38th IEEE Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 223–231, 1997.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 2009.

[CW+07] Carlos M Carvalho, Mike West, et al. Dynamic matrix-variate graphical models. Bayesian
analysis, 2(1):69–97, 2007.

[DG00] Martin Dyer and Catherine Greenhill. On markov chains for independent sets. Journal of
Algorithms, 35(1):17–49, 2000.

[DGGP18] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully dynamic effective resis-
tances. arXiv preprint arXiv:1804.04038, 2018.

[DGGP19] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully dynamic spectral vertex
sparsifiers and applications. In Proceedings of the 51st Annual Symposium on Theory of
Computing (STOC), pages 914–925, 2019.

[DGJ08] Martin Dyer, Leslie Ann Goldberg, andMark Jerrum. Dobrushin conditions and systematic
scan. Combinatorics, Probability and Computing, 17(6):761–779, 2008.

[DS85a] Roland L Dobrushin and Senya B Shlosman. Completely analytical Gibbs fields. In Statis-
tical Physics and Dynamical Systems, pages 371–403. Springer, 1985.

38



[DS85b] Roland Lvovich Dobrushin and Senya B Shlosman. Constructive criterion for the unique-
ness of Gibbs field. In Statistical Physics and Dynamical Systems, pages 347–370. Springer,
1985.

[DS87] RL Dobrushin and SB Shlosman. Completely analytical interactions: constructive descrip-
tion. Journal of Statistical Physics, 46(5-6):983–1014, 1987.

[DSOR16] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Ensuring rapid mixing and low
bias for asynchronous Gibbs sampling. In Proceedings of the 33rd International Conference
on Machine Learning (ICML), pages 1567–1576, 2016.

[FG19] Sebastian Forster and Gramoz Goranci. Dynamic low-stretch trees via dynamic low-
diameter decompositions. In Proceedings of the 51st Annual Symposium on Theory of Com-
puting (STOC), pages 377–388. ACM, 2019.

[FVY19] Weiming Feng, Nisheeth K Vishnoi, and Yitong Yin. Dynamic sampling from graphical
models. In Proceedings of the 51st Annual ACM SIGACT Symposium onTheory of Computing,
pages 1070–1081, 2019.

[GHP18] Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic Effective Resistances and
Approximate Schur Complement on Separable Graphs. In Proceedings of the 26th Annual
European Symposium on Algorithms (ESA), volume 112, pages 40:1–40:15, 2018.

[GŠV15] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability for antiferro-
magnetic spin systems in the tree nonuniqueness region. Journal of the ACM (JACM),
62(6):50, 2015.

[GŠV16] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and hard-core models. Combinatorics, Probability
and Computing, 25(04):500–559, 2016.

[Hay06] Thomas PHayes. A simple condition implying rapidmixing of single-site dynamics on spin
systems. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 39–46, 2006.

[Hin12] Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In Neural
Networks: Tricks of the Trade, pages 599–619. Springer, 2012.

[HKN14] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-
source shortest paths on undirected graphs in near-linear total update time. In Proceedings
of the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 146–
155. IEEE, 2014.

[HKN16] MonikaHenzinger, Sebastian Krinninger, and DanuponNanongkai. Dynamic approximate
all-pairs shortest paths: Breaking the o(mn) barrier and derandomization. SIAM Journal
on Computing, 45(3):947–1006, 2016.

[Jer95] Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-
degree graph. Random Structures & Algorithms, 7(2):157–165, 1995.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

[KFB09] Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[LMV19] Holden Lee, Oren Mangoubi, and Nisheeth Vishnoi. Online sampling from log-concave
distributions. In Proceedings of the 33rd Conference on Advances in Neural Information
Processing Systems (NIPS), pages 1226–1237, 2019.

[LP17] David A Levin and Yuval Peres. Markov chains and mixing times. American Mathematical
Soc., 2017.

[LV99] Michael Luby and Eric Vigoda. Fast convergence of the glauber dynamics for sampling
independent sets. Random Structures & Algorithms, 15(3-4):229–241, 1999.

[MM09] Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford Uni-
versity Press, 2009.

[NR17] Hariharan Narayanan and Alexander Rakhlin. Efficient sampling from time-varying log-
concave distributions. The Journal of Machine Learning Research, 18(1):4017–4045, 2017.

39



[NSWN17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic min-
imum spanning forest with subpolynomial worst-case update time. In 2017 IEEE 58th An-
nual Symposium on Foundations of Computer Science (FOCS), pages 950–961. IEEE, 2017.

[QS92] CMQueen and JQ Smith. Dynamic graphical models. Bayesian Statistics, 4:741–751, 1992.
[QS93] Catriona MQueen and Jim Q Smith. Multiregression dynamic models. Journal of the Royal

Statistical Society: Series B (Methodological), 55(4):849–870, 1993.
[RKD+19] Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin Schawinski, Wentao Wu, and

Ce Zhang. Continuous integration of machine learning models: A rigorous yet practical
treatment. InThe Conference on Systems and Machine Learning (SysML), 2019.

[ŠVV09] Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. Adaptive simulated annealing: A
near-optimal connection between sampling and counting. J. ACM, 56(3):18, 2009.

[SWA09] Padhraic Smyth, Max Welling, and Arthur U Asuncion. Asynchronous distributed learn-
ing of topic models. In Proceedings of the 22nd Advances in Neural Information Processing
Systems (NIPS), pages 81–88, 2009.

[Vig99] Eric Vigoda. Fast convergence of the glauber dynamics for sampling independent sets:
Part II. Technical Report TR-99-003, International Computer Science Institute, 1999.

[WJ08] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

[WN17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-
case update time. In Proceedings of the 49th Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 1130–1143. ACM, 2017.

40


	1. Introduction
	1.1. Our results
	1.2. Related work
	1.3. Organization of the paper.

	2. Dynamic inference problem
	2.1. Markov random fields.
	2.2. Probabilistic inference and sampling
	2.3. Dynamic inference problem

	3. Main results
	4. Preliminaries
	5. Outlines of algorithm
	6. Dynamic Gibbs sampling
	6.1. Coupling for dynamic instances
	6.2. Data structure for Gibbs sampling
	6.3. Single-sample dynamic Gibbs sampling algorithm
	6.4. Multi-sample dynamic Gibbs sampling algorithm

	7. Proofs for dynamic Gibbs sampling
	7.1. Analysis of the couplings
	7.2. Implementation of the algorithms
	7.3. Dynamic Gibbs sampling for specific models

	8. Proofs for dynamic inference
	8.1. Proof of the main theorem
	8.2. Dynamic inference on specific models

	9. Conclusion
	References

