
SAMPLING CONSTRAINT SATISFACTION SOLUTIONS IN THE LOCAL LEMMA REGIME

WEIMING FENG, KUN HE, AND YITONG YIN

Abstract. We give aMarkov chain based algorithm for sampling almost uniform solutions of constraint
satisfaction problems (CSPs). Assuming a canonical setting for the Lovász local lemma, where each
constraint is violated by a small number of forbidden local configurations, our sampling algorithm is
accurate in a local lemma regime, and the running time is a fixed polynomial whose dependency on n is
close to linear, where n is the number of variables. Our main approach is a new technique called state
compression, which generalizes the “mark/unmark” paradigm of Moitra [Moi19], and can give fast local-
lemma-based sampling algorithms. As concrete applications of our technique, we give the current best
almost-uniform samplers for hypergraph colorings and for CNF solutions.

1. Introduction

The space of constraint satisfaction solutions is one of the most well-studied subjects in Computer
Science. Given a collection of constraints defined on a set of variables, a solution to the constraint
satisfaction problem (CSP) is an assignment of variables such that all constraints are satisfied. A fun-
damental criterion for the existence of constraint satisfaction solutions is given by the Lovász local
lemma (LLL) [EL75]. Interpreting the space of all assignment as a probability space and the violation
of each constraint as a bad event, the local lemma characterizes a regime within which a constraint
satisfaction solution always exists, by the tradeoff between: (1) the chance for the occurrence of each
bad event and (2) the degree of dependency between them.

In Computer Science, the studies of the Lovász local lemma are more focused on the algorithmic LLL
(also called constructive LLL), which is concerned with not just existence of a constraint satisfaction
solution, but also how to find such a solution efficiently. The studies of algorithmic LLL constitute
an important line of modern algorithm researches [Bec91, Alo91, MR98, CS00, Mos09, MT10, KM11,
HSS11, HS17b, HS19]. A major breakthrough was the Moser-Tardos algorithm [MT10], which finds a
satisfaction solution efficiently up to a sharp condition known as the Shearer’s bound [She85, KM11].

In this paper, we are concerned with a problem that we call the sampling LLL, which asks for the
regimes in which a nearly uniform (instead of an arbitrary) satisfaction solution can be generated ef-
ficiently. This is a distribution-sensitive variant of the algorithmic LLL. The problem is closely related
to the problem of estimating the total number of satisfaction solutions, usually via standard reduc-
tions [JVV86, DSE09]; besides, it may also serve as a standard toolkit for solving the inference problems
that are well motivated from machine learning applications [Moi19].

This sampling variant of algorithmic LLL is computationallymore challenging than the conventional
algorithmic LLL. For example, for k-CNF formulas with variable-degree d , the Moser-Tardos algorithm
for generating an arbitrary solution is known to be efficient when k ≳ log2 d , while the problem of
generating a nearly uniform solution requires k ≳ 2 log2 d to be tractable [BGG+19].

Meanwhile, much less positive progress was known for the sampling LLL. A fundamental obstacle
is that the space of satisfaction solutions may not be connected via local updates of variables [Wig19],
whereas such connectivity is crucial for mainstream sampling techniques. In [GJL19], Guo, Jerrum
and Liu proposed to study the sampling LLL, and resolved the problem for the CSPs with extremal
constraints. In a major breakthrough [Moi19], Moitra introduced a novel approach for approximately

(Weiming Feng, Yitong Yin) State Key Laboratory for Novel Software Technology, Nanjing University. E-mail:
fengwm@smail.nju.edu.cn and yinyt@nju.edu.cn.

(Kun He) Shenzhen University; Shenzhen Institute of Computing Sciences. E-mail: hekun.threebody@foxmail.
com.

This research is supported by the National Key R&D Program of China 2018YFB1003202 and the National Science Foun-
dation of China under Grant Nos. 61722207 and 61672275.

1

fengwm@smail.nju.edu.cn
yinyt@nju.edu.cn
hekun.threebody@foxmail.com
hekun.threebody@foxmail.com

counting k-SAT solutions. The approach utilizes the algorithmic LLL to properly mark/unmark vari-
ables, which helps construct efficient linear programmings for estimating marginal probabilities. For
k-CNF formulas with variable-degree d within a local lemma regime k ≳ 60 logd , the algorithm ap-
proximately counts the total number of SAT solutions in time npoly(dk). Further extensions of Moitra’s
approach were made to hypergraph colorings [GLLZ19] and random CNF formulas [GGGY20], where
the running times are both npoly(dk) for constraint-width k and variable-degree d . Recently, a much
faster algorithm for sampling k-SAT solutions inspired by Moitra’s algorithm was given in [FGYZ20].
It implements a Markov chain on the assignments of the marked variables chosen via Moitra’s ap-
proach. The resulting sampling algorithm enjoys a close-to-linear running time Õ(d2k3n1.000001) with
an improved regime k ≳ 20 logd . It also formally confirms that the originally disconnected solution
space is changed to be very well connected after restricting onto a wisely chosen set of marked vari-
ables. However, such approach of fast sampling seems rather restricted to CNF formulas, where the
variables can be marked/unmarked non-adaptively to the assignments, whereas for CSPs with larger
domains where marking/unmarking variables adaptively to their assignments is crucial [GLLZ19], the
current approach for fast sampling has met some fundamental barriers.

For sampling general constraint satisfaction solutions, we do not know whether the problem is
tractable in a local lemma type of regime, neither do we know any general algorithmic approach that
can achieve this. New ideas beyond the paradigm of marking/unmarking variables are needed.

1.1. Our results. We consider the problem of uniform sampling constraint satisfaction solutions, for-
mulated by the variable-framework LLL with uniform random variable and atomic bad events. Let V
be a collection of n = |V | mutually independent uniform random variables and B be a collection of
atomic bad events such that

• uniform random variables: the value of each v ∈ V is uniformly drawn from a domain Qv ;
• atomic bad events: each B ∈ B is determined by the variables in vbl (B) ⊆ V , and B occurs if

the assignment of vbl (B) is as specified by the unique forbidden pattern σB ∈
⊗

v ∈vbl(B)Qv .
We assume uniform random variables because our goal is to uniformly sample constraint satisfaction

solutions. Meanwhile, the atomicity of bad events is a natural and fundamental setting assumed in
various studies of LLL [AI16, HH17, HS17a, Kol18a, Har19, AIS19, HS19, HV20].

Let p = maxB∈B Pr [B], where the probability is taken over independent random variables inV . Let
G = (B, E) be the dependency graph, where each vertex is a bad event in B, and the neighborhood of
each B ∈ B in G is Γ(B) ≜ {B′ ∈ B \ {B} | vbl (B) ∩ vbl (B′) , �}. Let D ≜ maxB∈B |Γ(B)| denote
the maximum degree of the dependency graph. By the Lovász local lemma, there exists a satisfying
assignment that avoids all bad events in B if

ln
1
p
≥ lnD + 1.(1)

Such an instance of LLL naturally specifies a uniform distribution over all satisfying assignments,
called the LLL-distribution [Har20]. Formally, it is the distribution of the independent random vari-
ables in V conditioned on that none of the bad events in B occurs.

Theorem 1.1. The following holds for any 0 < ζ ≤ 2−400. There is an algorithm such that given a Lovász
local lemma instance with uniform random variables and atomic bad events, if

ln
1
p
≥ 350 lnD + 3 ln

1
ζ
,(2)

then the algorithm outputs a random assignment X ∈
⊗

v ∈V Qv in time Õ
(
(D2k + q)n

(n
ε

)ζ) , such that
the distribution of X is ε-close to the LLL-distribution in total variation distance, where q = maxv ∈V |Qv |,
k = maxB∈B |vbl (B)|, and Õ(·) hides a factor of polylog(n, 1ε ,q,D).

This gives a unified approach for sampling uniform LLL-distributions. It is achieved by a new tech-
nique called “state compression” (see Section 1.3 and Section 3). The time complexity of the sampling
algorithm is controlled by a constant parameter ζ which also controls the gap to the local lemma con-
dition (2), so the running time can be arbitrarily close to linear in n as ζ approaches 0.

2

Though Theorem 1.1 is stated for uniform sampling, our main result can be extended to the LLL-
distributions that arise from non-uniform random variables with arbitrary constant biases, a setting
that corresponds to the statistical physics models with constant local fields, which are considered inter-
esting for sampling and counting. For such a general setting, Theorem 1.1 remains to hold by replacing
the condition (2) with ln 1

p ≥ C ln(D/ζ) where the constant factor C depends on the maximum bias.
The formal proof of this general result is postpone to the full version of the paper.

On the other hand, any general non-atomic bad event can be seen as a union of disjoint atomic bad
events. Let B be a bad event defined on vbl (B) ⊆ V and NB ≜ {σ ∈

⊗
v ∈vbl(B)Qv | B occurs at σ }

denote the set of assignments of vbl (B) that make B occur. Event B can thus be decomposed to |NB |
atomic events, each corresponding to a forbidden assignment σ ∈ NB . Therefore, any general LLL
instance withp = maxB∈B Pr [B] andmaximum degreeD of the dependency graph, can be equivalently
represented as an LLL instance with atomic bad events, by blowing up each bad event B ∈ B for at
most N ≜ maxB∈B |NB | times. The resulting LLL instance with atomic bad events can be constructed
within Õ(DNkn) time, such that every atomic bad event occurs with probability at most p and has the
degree of dependency at most (D + 1)N . Hence, we have the following corollary.
Corollary 1.2. The following holds for any 0 < ζ ≤ 2−400. There is an algorithm such that given a Lovász
local lemma instance with uniform random variables, if

ln
1
p
≥ 350 ln(D + 1) + 350 lnN + 3 ln 1

ζ
,

then the algorithm outputs a random assignment X ∈
⊗

v ∈V Qv in time Õ
(
(D2N 2k + q)n

(n
ε

)ζ) such
that the distribution ofX is ε-close to the LLL-distribution in total variation distance, whereq = maxv ∈V |Qv |,
k = maxB∈B |vbl (B)|, and Õ(·) hides a factor of polylog(n, 1ε ,q,D,N).

To the best of our knowledge, this is the first result that achieves efficient uniform sampling of
general CSP solutions within such a local lemma type of regime. In the current result, both the regime
and the complexity depend on an extra parameter N , namely the maximum number of violating local
configurations for any bad event. Whether such dependency is necessary is an open problem.

Our approach also produces sharper bounds for specific subclasses of LLL instances. We consider
the problem of uniformly sampling proper colorings of hypergraphes. Let H = (V , E) be a k-uniform
hypergraph i.e. |e | = k for all e ∈ E. A proper hypergraph q-coloring X ∈ [q]V assigns each vertex
a color such that no hyperedge is monochromatic. Let ∆ denote the maximum degree of hypergraph,
i.e. each vertex belongs to at most ∆ hyperedges. By LLL, a proper q-coloring exists if q ≥ C∆

1
k−1 for

some suitable constant C . We have the following result for sampling hypergraph colorings.
Theorem 1.3. There is an algorithm such that given any k-uniform hypergraph on n vertices with max-
imum degree ∆ and a set of colors [q], assuming k ≥ 30 and q ≥ 15∆

9
k−12 + 650, the algorithm returns a

random q-coloring X ∈ [q]V in time Õ(q2k3∆2n
(n
ε

) 1
q), such that the distribution of X is ε-close in total

variation distance to the uniform distribution of all proper q-colorings of the input hypergraph.

In fact, our algorithm works for a regime where k ≥ 13 and q ≥ q0(k) = Ω(∆ 9
k−12). See Theorem 5.4

for a more technical statement. The running time of our algorithm is always polynomially bounded
for any bounded or unbounded k and ∆, and is getting arbitrarily close to linear in n as q grows.

Hypergraph colorings are important combinatorial objects. The classic local Markov chain on hy-
pergraph colorings rapidly mixes inO(n logn) steps if k ≥ 4 and q > ∆ [BDK06, BDK08]. For “simple”
hypergraphs where any two hyperedges share at most one vertex, the mixing condition was improved
to q ≥ max{Ck logn, 500k3∆1/(k−1)} [FM11, FA17]. The first algorithm for sampling and counting
hypergraph colorings that works in a local lemma regime was given in [GLLZ19]. The algorithm is ob-
tained by extendingMoitra’s approach [Moi19] to adaptively marking/unmarking hypergraph vertices,
and runs in time npoly(∆k) if k ≥ 28 and q > 798∆

16
k−16/3 . Our algorithm both substantially improves the

running time and improves the regime to q ≥ 15∆
9

k−12 +O(1). Our algorithm utilizes a novel projection
scheme instead of the mark/unmark strategy of Moitra, to transform the space of proper colorings.
And our algorithm implements a rapidly mixing Markov chain on the projected space.

3

A canonical subclass of CSPs are the CNF (conjunctive normal form) formulas. In a k-CNF, each
clause contains k distinct variables. And the maximum (variable-)degree d is given by maximum num-
ber of clauses a variable appears in. By LLL, a satisfying assignment exists if k ≥ logd + logk +C1 for
some suitable constant C . We have the following result for uniform sampling k-CNF solutions.
Theorem 1.4. The following holds for any 0 < ζ ≤ 2−20. There is an algorithm such that given any k-CNF
formula onn variables with maximum degreed , assuming k ≥ 13 logd + 13 logk + 3 log 1

ζ , the algorithm

returns a random assignment X ∈ {True, False}V in time Õ(d2k3n
(n
ε

)ζ) such that the distribution of
X is ε-close in total variation distance to the uniform distribution of all satisfying assignments.

A more detailed version is stated as Theorem 5.5. The regime k ≳ 13 logd in Theorem 1.4 improves
the state-of-the-art regime k ≳ 20 logd in [FGYZ20] with the same running time.

1.2. Implications to approximate counting. All our sampling results imply efficient algorithms for
approximate counting. Given an LLL instance Φwith uniform random variables, letZΦ denote the total
number of satisfying assignments that avoid all bad events. For any 0 < δ < 1, the problem Pcount(Φ, δ)
asks to output a random number Ẑ such that Ẑ ∈ (1 ± δ)ZΦ with probability at least 3

4 .
In our results (Theorem 1.1, Corollary 1.2, Theorem 1.3, and Theorem 1.4), for several subclasses of

LLL instances, we give such sampling algorithms that given an LLL instance Φ and an error bound
ε > 0, a random X is returned in time T (ε) = TΦ(ε) such that X is ε-close in total variation distance to
the LLL-distribution of Φ, which is the uniform distribution over all satisfying assignments for Φ.

It is well known that one can solve the approximate counting problem Pcount(Φ, δ) by calling to
such oracles for nearly uniform sampling, either via the self-reducibility [JVV86] that adds one bad
event at a time, or via the simulated annealing approach [BŠVV08, DSE09, Hub15, Kol18b] that al-
ters a temperature. The simulated annealing gives more efficient reduction. Specifically, by routinely
going through the annealing process in [FGYZ20], one can obtain a non-adaptive simulated anneal-
ing strategy to solve the approximate counting problem Pcount(Φ, δ) in time O

(
m
δ 2T (ε) log m

δ

)
, where

ε = Θ
(

δ 2

m log(m/δ)

)
, andm denotes the number of bad events in Φ.

1.3. Technique overview. As addressed in [Wig19], in general, the space of SAT solutions may not
be connected via local updates of variables, even when the existence of SAT solutions is guaranteed by
the local lemma. A major challenge for efficiently sampling constraint satisfaction solutions in a local
lemma regime is to bypass such connectivity barrier.

Several previous works that have successfully bypassed this fundamental barrier fell into the same
“mark/unmark” paradigm initiated by Moitra in [Moi19]. LetV be the set of variables, and let µ denote
the uniform distribution over all satisfying assignments. The paradigm effectively constructs a random
pair (M,XM) whereM ⊆ V is a set of marked variables and XM is a random assignment of the marked
variables inM , such that the random pair (M,XM) satisfies the so-called “pre-Gibbs” property [GLLZ19],
which means that if we complete XM to an assignmentX of all variables inV by sampling the comple-
mentXV \M according to the marginal distribution induced by µ onV \M conditioning onXM , then the
resulting X indeed follows the correct distribution µ. The paradigm may construct the marked set M
either non-adaptively to the randomXM (as in [Moi19, FGYZ20, GGGY20] for CNFs), or adaptively to it
(as in [GLLZ19] for hypergraph colorings). The random pair (M,XM) can thus be jointly distributed, so
that being pre-Gibbs does not necessarily mean that XM is distributed as the marginal distribution µM .
Indeed, it can be much more complicated than that.

In this paper, we introduce a novel technique called “state compression” to bypass the connectivity
barrier for general spaces of satisfaction solutions and obtain fast sampling algorithms.

For each variable v ∈ V with domain Qv , we construct a projection hv : Qv → Σv that maps from
domain Qv to an alphabet Σv , so that each assignment X ∈ Q ≜

⊗
v ∈V Qv is mapped to a string

h(X) ≜ (hv (Xv))v ∈V in Σ ≜
⊗

v Σv . Therefore, the LLL-distribution µ over satisfying assignments, is
transformed to a joint distribution ν over Σ as:

∀Y ∈ Σ, ν (Y) = PrX ∼µ [h(X) = Y] .
1Throughout the paper, we use log to denote the logarithm base 2.

4

Our algorithm first simulates the Glauber dynamics with stationary distribution ν to draw a sample
Y ∈ Σ approximately according to ν . At each transition, the Glauber dynamics:

• picks a variable v uniformly at random;
• updates Yv by a random value sampled according to ν

YV \{v }
v , which stands for the marginal

distribution at v induced by ν conditioned on the assignment on V \ {v} being fixed as YV \{v }.
After running the Glauber dynamics for a sufficiently many O(n logn) steps, the algorithm generates
a random string Y ∈ Σ which hopefully is distributed approximately as ν . Finally, the algorithm still
needs to “invert” the sampled string Y ∈ Σ to a random satisfying assignment X ∈ Q that follows the
LLL-distribution µ conditioning on h(X) = Y .

Both in the final step of the algorithm and at each transition of the Glauber dynamics, we are in fact
trying to invert a completely specified string Y ∈ Σ (or an almost completely specified string YV \{v })
to a uniform random satisfying assignment X ∈ Q within its pre-image h−1(Y) (or that of YV \{v }).

Therefore, the efficiency of above algorithmic framework for sampling relies on that:
(1) the Glauber dynamics for ν mixes in O(n logn) steps;
(2) there is a procedure that can efficiently invert a completely (or almost completely) specified

string Y to a uniform random satisfying assignment X ∈ Q within the pre-image h−1(Y).
As we know, the original space of satisfying assignmentsX ∈ Q may not be connected via the local

updates used by the Glauber dynamics. To achieve above item 1, intuitively, the projection h should
be able to map many far-apart solutions X ,X ′ ∈ Q to the same h(X) = h(X ′), so the random walk
in the projected space becomes well connected. This suggests that the projection h should substantially
compress the original state space. On the other hand, the above item 2 is easier to solve when the
projection h is somehow close to a one-to-one mapping, because in such case, by assuming h(X) = Y ,
the original LLL instance is very likely to be decomposed into small clusters. This suggests that the
projection h should not compress the original state space too much.

The above two seemingly contradicting requirements can in fact be captured by a set of simple and
local entropy constraints, formulated in Condition 3.4. A good projection h satisfying these require-
ments can thus be constructed by algorithmic LLL.

The original mark/unmark paradigm can be treated as a special case of our approach of state com-
pression. Recall that the paradigm generates a pre-Gibbs pair (M,XM), where each variable v ∈ V
is either marked (v ∈ M) so that its value Xv is revealed, or is unmarked (v < M) so that its value
Xv is unrevealed. This can be represented by a projection h where for each marked v , the projection
hv : Qv → Σv is a one-to-one mapping to Σv where |Σv | = |Qv |; and for each unmarked v , the pro-
jection hv : Qv → Σv is a all-to-one mapping to Σv of size |Σv | = 1. General projections provide a
broad middle ground between the two extremal cases for the one-to-one and the all-to-one mappings,
so that our technique is applicable to more general settings. And for large enough Qv ’s, it indeed is
such middle ground hv : Qv → Σv with |Σv | ≈ |Qv |3/4 that resolves the problem well.

1.4. Openproblems. An open problem is to remove the assumption on the atomicity of bad events. In
general, the LLL is defined by arbitrary bad events on arbitrary probability space. The LLL distribution
can thus be generalized. And the sampling LLL corresponds to the problems of sampling from non-
uniform distributions or distributions arising from global constraints.

It is well-known that the Shearer’s bound is tight for general LLL [She85]. A central open problem
for sampling LLL is to find the “Shearer’s bound” for sampling LLL, namely, to give a tight condition
under which one can efficiently draw random samples from general LLL distributions.

Even for interesting special classes of LLL instances such as k-CNFs or hypergraph colorings, the
critical thresholds for the computational phase transition for sampling are major open problems in the
field of sampling algorithms.

1.5. Organization of the paper. Models and preliminaries are described in Section 2. The rules for
state compression are given in Section 3. The main sampling algorithm is described in Section 4. In
Section 5, we prove all main results in Section 1. In Section 6, we give the algorithms for constructing
projections. In Section 7, we analyze the inverse sampling subroutine. The rapid mixing of the Markov
chain is proved in Section 8.

5

2. Models and preliminaries

2.1. CSP formulas defined by atomic bad events. Let V be a set of variables with finite domains
(Qv)v ∈V , where each v ∈ V takes its value from Qv with |Qv | ≥ 2. Let Q ≜

⊗
v ∈V Qv denote the

space for all assignments, and for any subset Λ ⊆ V , denote QΛ ≜
⊗

v ∈ΛQv . Let C be a collection
of local constraints, where each c ∈ C is defined on a subset of variables vbl (c) ⊆ V that maps every
assignment xvbl(c) ∈ Qvbl(c) to a True or False, which indicates whether c is satisfied or violated. A
CSP (constraint-satisfaction problem) formula Φ is specified by the tuple (V ,Q, C) such that:

∀x ∈ Q, Φ(x) =
∧
c ∈C

c
(
xvbl(c)

)
,

where xvbl(c) denotes the restriction of x on vbl (c). In LLL’s language, each c ∈ C corresponds to a
bad event Ac defined on vbl (c) that occurs if c is violated, and Φ is satisfied by x if and only if none of
these bad events occurs.

In this paper, we restrict ourselves to the CSP formulas defined by atomic bad events. A constraint
c defined on vbl (c) is called atomic if |c−1(False)| = 1, that is, if c is violated by a unique “forbidden
configuration” inQvbl(c). Such CSP formulas with atomic constraints have drawn studies in the context
of LLL [AI16, HH17, HS17a, Kol18a, Har19, AIS19, HS19, HV20]. Similar classes of CSP formulas have
also been studied under the name “multi-valued/non-Boolean CNF formulas” in the field of classic
Artificial Intelligence [LKM03, FP01]. Clearly, any general constraint c on vbl (c) can be simulated by
|c−1(False)| atomic constraints, each forbidding a configuration in c−1(False).

The dependency graph of a CSP formula Φ = (V ,Q, C) is defined on the vertex set C, such that any
two constraints c, c ′ ∈ C are adjacent if vbl (c) and vbl (c ′) intersect. We use Γ(c) ≜ {c ′ ∈ C \ {c} |
vbl (c) ∩ vbl (c ′) , �} to denote the neighborhood of c ∈ C and let

D = DΦ ≜ max
c ∈C
|Γ(c)|

denote the maximum degree of the dependency graph.
The followings are some typical special cases of CSP formulas with atomic constraints.

2.1.1. k-CNF formula. TheCNF formulasΦ = (V ,Q, C) are formulaswith atomic constraints on Boolean
domainsQv = {True, False}, for allv ∈ V . Now each constraint c ∈ C is a clause. Fork-CNF formulas,
we have |vbl (c)| = k for all clauses c ∈ C.

2.1.2. Hypergraph coloring. Let H = (V , E) be a k-uniform hypergraph, where every hyperedge e ∈ E
has |e | = k . Let [q] = {1, 2, . . . ,q} be a set of q colors. A proper hypergraph coloring X ∈ [q]V assigns
each vertex v ∈ V a color Xv such that no hyperedge is monochromatic.

Define the following set C of atomic constraints. For each hyperedge e ∈ E and color i ∈ [q], add an
atomic constraint ce ,i into C, where ce ,i is defined as vbl

(
ce ,i

)
= e and for any x ∈ [q]e , ce ,i (x) = False

if and only if xv = i for all v ∈ e . It is straightforward to see that there is a one-to-one correspondence
between the proper q-colorings in H and the satisfying assignments to Φ = (V , [q]V , C).

2.2. Lovász local lemma. Let R = {R1,R2, . . . ,Rn} be a collection of mutually independent ran-
dom variables. For any event E, denote by vbl (E) ⊆ R the set of variables determining E. In other
words, changing the values of variables outside of vbl (E) does not change the truth value of E. Let
B = {B1,B2, . . . , Bn} be a collection of “bad” events. For each event B ∈ B, we define Γ(B) ≜
{B′ ∈ B | B′ , B and vbl (B′) ∩ vbl (B) , �}. For any eventA < B and its determining variables vbl (A) ⊆
R, we define Γ(A) ≜ {B ∈ B | vbl (A) ∩ vbl (B) , �}. Let PrD [·] denote the product distribution of
variables in R. The following version of the Lovász local lemma will be used in this paper.

Theorem 2.1 ([HSS11]). If there is a function x : B → (0, 1) such that for any B ∈ B,

PrD [B] ≤ x(B)
∏

B′∈Γ(B)
(1 − x(B′)),(3)

6

then it holds that

PrD

[∧
B∈B

B

]
≥

∏
B∈B
(1 − x(B)) > 0.

Thus, there exists an assignment of all variables that avoids all the bad events.
Moreover, for any event A, it holds that

PrD

[
A

�� ∧
B∈B

B

]
≤ PrP [A]

∏
B∈Γ(A)

(1 − x(B))−1.

2.3. Coupling, Markov chain and mixing time. Let Ω be a state space. Let µ and ν be two distri-
butions over Ω. The total variation distance between µ and ν are defined by

dTV (µ,ν) ≜
1
2

∑
x ∈Ω
|µ(x) − ν (x)| .

A coupling of µ and ν is a joint distribution (X ,Y) ∈ Ω × Ω such that the marginal distribution of X is
µ and the marginal distribution of Y is ν . The following coupling lemma is well-known.
Lemma 2.2 (coupling lemma [LP17, Proposition 4.7]). For any coupling (X ,Y) between µ and ν ,

dTV (µ,ν) ≤ Pr [X , Y] .
Moreover, there exists an optimal coupling that achieves the equality.

A Markov chain is a random sequence (Xt)t ≥0 over a state space Ω such that the transition rule is
specified by the transition matrix P : Ω × Ω → R≥0. We often use the transition matrix to denote the
corresponding Markov chain. The Markov chain P is irreducible if for any X ,Y ∈ Ω, there exists t > 0
such that P t (X ,Y) > 0. The Markov chain P is aperiodic if gcd{t | P t (X ,X) > 0} = 1 for all X ∈ Ω. A
distribution π over Ω is a stationary distribution of P if πP = π . If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distribution. The Markov chain P is reversible with respect
to the distribution π if the following detailed balance equation holds

∀X ,Y ∈ Ω : π (X)P(X ,Y) = π (Y)P(Y ,X),
which implies π is a stationary distribution of P . Given a Markov chain P with the unique stationary
distribution π , the mixing time of P is defined by

∀0 < ε < 1, Tmix(ε) ≜ max
X0∈Ω

min{t | dTV
(
P t (X0, ·), π

)
≤ ε}.

A coupling ofMarkov chain P is a joint random process (Xt ,Yt)t ≥0 such that both (Xt)t ≥0 and (Yt)t ≥0
follow the transition rule of P individually, and if Xs = Ys , then Xk = Yk for all k ≥ s . The coupling
is a widely-used tool to bound the mixing times of Markov chains, because by the coupling lemma, it
holds that maxX0∈Ω dTV

(
P t (X0, ·), π

)
≤ maxX0,Y0∈Ω Pr [Xt , Yt].

The path coupling [BD97] is a powerful tool to construct the coupling of Markov chains. Assume
Ω =

⊗
v ∈V Qv , where |V | = n and each Qv is a finite domain. For any X ,Y ∈ Ω, define the Hamming

distance between X and Y by
dham(X ,Y) ≜ |{v ∈ V | Xv , Yv }| .

In this paper, we will use the following simplified version of path coupling.
Lemma 2.3 (path coupling [BD97]). Let 0 < δ < 1 be a parameter. Let P be an irreducible and aperiodic
Markov chain over the state space Ω =

⊗
v ∈V Qv , where |V | = n . If there is a coupling of Markov chain

(X ,Y) → (X ′,Y ′) defined over all X ,Y ∈ Ω with dham(X ,Y) = 1 such that

E [dham(X ′,Y ′) | X ,Y] ≤ 1 − δ ,
then the mixing time of the Markov chain satisfies

Tmix(ε) ≤
⌈
1
δ
log

n

ε

⌉
.

Readers can refer to the textbook [LP17] for more backgrounds of Markov chains and mixing times.
7

3. state compression

A CSP formula Φ = (V ,Q, C) with uniformly distributed random variables defines an LLL instance.

Definition 3.1 (LLL-distribution). For eachv ∈ V , let πv denote the uniform distribution over domain
Qv . Let π ≜

⊗
v ∈V πv be the uniform distribution overQ . Let µ = µΦ denote the distribution ofX ∼ π

conditioned on Φ(X), that is, the uniform distribution over satisfying solutions of Φ.

This distribution µ over satisfying solutions of Φ is what we want to sample from. In order to do
so, this uniform probability space of satisfying solutions is transformed by a projection. A projection
scheme h = (hv)v ∈V specifies for each v ∈ V , a mapping from v’s domain Qv to a finite alphabet Σv :

hv : Qv → Σv .

Let Σ ≜
⊗

v ∈V Σv , and for any Λ ⊆ V , we denote ΣΛ ≜
⊗

v ∈Λ Σv .
We also naturally interpret h as a function on (partial) assignments such that

∀Λ ⊆ V ,∀x ∈ QΛ, h(x) ≜ (hv (xv))v ∈Λ.(4)

Definition 3.2 (projected LLL-distribution). For each v ∈ V , let ρv be the distribution of Yv = hv (Xv)
where Xv ∼ πv . Let ρ ≜

⊗
v ∈V ρv be the product distribution over Σ.

For each v ∈ V and any yv ∈ Σv , let πyvv denote the distribution of Xv ∼ πv conditioned on
hv (Xv) = yv . For any Λ ⊆ V and yΛ ∈ ΣΛ, let πyΛ be the distribution of X ∼ π conditioned on
h(XΛ) = yΛ.

Let ν = νΦ,h denote the distribution of Y = h(X) where X ∼ µ.

Note that the original LLL-distribution µ is aGibbs distribution [MM09], defined by local constraints
on independent random variables. Whereas, the distribution ν of projected satisfying solution, is a joint
distribution over Σ, which may no longer be a Gibbs distribution nor can it be represented as any LLL
instance, because x,x ′ ∈ Q with Φ(x) , Φ(x ′) may be mapped to the same h(x) = h(x ′).

In the algorithm, a projection scheme h = (hv)v ∈V is accessed through the following oracle.

Definition 3.3 (projection oracle). A projection oracle with query cost t for a projection scheme h =
(hv)v ∈V is a data structure that can answer each of the following two types of queries within time t :

• evaluation: given an input value xv ∈ Qv of a variable v ∈ V , output hv (xv) ∈ Σv ;
• inversion: given a projected value yv ∈ Σv of a variable v ∈ V , return a random Xv ∼ π

yv
v .

Our algorithm for sampling a uniform random satisfying solution is then outlined below.

Algorithm for sampling from µ

1. Construct a good projection scheme h (formalized by Condition 3.4);

2. sample a uniform random X ∼ π and let Y = h(X);
3. (Glauber dynamics on ν) repeat the followings for sufficiently many iterations:

pick a v ∈ V uniformly at random;

update Yv by redrawing its value independently according to νYV \{v }v ;

4. sample X ∼ µ conditioned on h(X) = Y .

The algorithm simulates a Markov chain (known as the Glauber dynamics) on space Σ for drawing
a random configuration Y ∈ Σ approximately according to the joint distribution ν , after which, the
algorithm “inverts”Y to a uniform random satisfying assignmentX for Φwithin the pre-imageh−1(Y).

The key to the effectiveness of this sampling algorithm is that we should be able to sample accurately
and efficiently from ν

YV \{v }
v (which is the marginal distribution at v induced by ν conditioning on that

the configuration on V \ {v} being fixed as YV \{v }) as well as from µY (which is the distribution of
X ∼ µ conditioned on that h(X) = Y). In fact, both of these are realized by sampling generally from

8

the following marginal distribution µ
yΛ
S , for S ⊆ V and yΛ ∈ ΣΛ, where either Λ = V or |Λ| = |V | − 1.

µ
yΛ
S : distribution of XS , where X ∈ Q is drawn from µ conditioning on that h(XΛ) = yΛ.(5)

The distribution µY corresponds to the special case of µyΛS with S = Λ = V . And also we can sample
from ν

YV \{v }
v by first sampling a Xv ∼ µ

YV \{v }
v ≜ µ

YV \{v }
{v } and then outputting hv (Xv).

Since yΛ is either completely or almost completely specified on V , sampling from µ
yΛ
S is essentially

trying to invert yΛ according to distribution µ. And this task becomes tractable when the projection h
is somehow close to a 1-1 mapping, i.e. when h(X)’s entropy remains significant compared to X ∼ µ.

On the other hand, the efficiency of the sampling algorithm relies on the mixing of the Markov chain
for sampling from ν . It was known that the original state space of all satisfying solutions might not
be well connected through single-site updates [Wig19, FGYZ20]. The projection may increase the con-
nectivity of the state space by mapping many far-apart satisfying solutions to the same configuration
in Σ, but this means that the projection h should not be too close to a 1-1 mapping. In other words, the
projection h(X) shall reduce the entropy of X ∼ µ by a substantial amount.

These two seemingly contradicting requirements are formally captured by the following condition.

Condition 3.4 (entropy criterion). Let 0 < β < α < 1 be two parameters.The followings hold for the
CSP formula Φ = (V ,Q, C) and the projection scheme h. For each v ∈ V , let qv ≜ |Qv | and sv ≜ |Σv |.
The projection h is balanced, which means for any v ∈ V and yv ∈ Σv ,⌊

qv
sv

⌋
≤

��h−1v (yv)�� ≤ ⌈
qv
sv

⌉
.

And for any constraint c ∈ C, it holds that∑
v ∈vbl(c)

log

⌈
qv
sv

⌉
≤ α

∑
v ∈vbl(c)

logqv ,(6)

∑
v ∈vbl(c)

log

⌊
qv
sv

⌋
≥ β

∑
v ∈vbl(c)

logqv .(7)

Note that for uniform random variable Xv ∈ Qv , the entropy H (Xv) = logqv , and for Yv = hv (Xv)
where h is balanced, we have log qv

dqv /sv e ≤ H (Yv) ≤ log qv
bqv /sv c . Therefore, the two inequalities (6)

and (7) are in fact slightly stronger versions of the entropy upper and lower bounds for X ∼ π :

(1 − α)
∑

v ∈vbl(c)
H (Xv) ≤

∑
v ∈vbl(c)

H (hv (Xv)) ≤ (1 − β)
∑

v ∈vbl(c)
H (Xv).

So howmay such a projection satisfying Condition 3.4 change the properties of a solution space and
help sampling? Next, we introduce two consequent conditions of Condition 3.4 to explain this.

Recall that after projection, the joint distribution ν over projected solutions may no longer be repre-
sented by any LLL instance. Nevertheless, we can modify it to a valid LLL instance by proper rounding.

Definition 3.5 (the “round-down” CSP formula). Given a CSP formula Φ = (V ,Q, C) and a projection
scheme h = (hv)v ∈V , let CSP formula Φ bh c = (V , Σ, C bh c) be constructed as follows:

• the variable set is still V and each variable v ∈ V now takes values from Σv ;
• corresponding to each constraint c ∈ C of Φ, a constraint c ′ ∈ C bh c is constructed as follows:

vbl (c ′) = vbl (c) and

∀y ∈ Σvbl(c ′), c ′ (y) =
{

True if c(x) for all x ∈ Ωvbl(c) that h(x) = y,
False if ¬c(x) for some x ∈ Ωvbl(c) that h(x) = y.

TheCSP formulaΦ bh c is considered a “round-down” version of the CSP formulaΦ under projectionh,
because it always holds that c ′(y) =

⌊
PrX ∼π

[
c
(
Xvbl(c)

)
| h

(
Xvbl(c)

)
= y

] ⌋
for all y ∈ Σvbl(c ′) = Σvbl(c).

9

Recall that the following “LLL condition” is assumed for the LLL instance defined by CSP formula
Φ = (V ,Q, C) on uniform random variables X ∼ π :

ln
1
p
> A lnD + B, (for some suitable constants A and B)(8)

where p ≜ maxc ∈C PrX ∼π
[
¬c

(
Xvbl(c)

)]
denotes the maximum probability that a constraint c ∈ C is

violated and D denotes the maximum degree of the dependency graph.
For CSP formula Φ defined by atomic constraints, the LLL condition (8) and the inequality (6) in

Condition 3.4 together imply the following condition.
Condition 3.6 (round-down LLL criterion). The LLL instance defined by the round-down CSP formula
Φ bh c = (V , Σ, C bh c) on variables distributed as ρ, satisfies that

ln
1
p
> (1 − α)(A lnD + B),

where p ≜ maxc ∈C bhc PrY ∼ρ
[
¬c

(
Yvbl(c)

)]
and D denotes the maximum degree of the dependency graph.

The projection h may map both satisfying x ∈ Q and unsatisfying x ′ ∈ Q to the same h(x) =
h(x ′) ∈ Σ, which causes ambiguity for classifying those “satisfying” y ∈ Σ. The round-down CSP
formula resolves such ambiguity with a pessimistic mindset: it refutes any y ∈ Σ whenever even a
single x ∈ h−1(y) is unsatisfying. Condition 3.6 basically says that an LLL condition holds even up to
such a pessimistic interpretation. This is crucial for sampling from µ

yΛ
S defined in (5), because within

such regime, the probability space of µyΛ is decomposed into small clusters of sizes O(logn).
Meanwhile, the LLL condition (8) and the inequality (7) in Condition 3.4 together imply the following

condition.
Condition 3.7 (conditional LLL criterion). For any Λ ⊆ V and yΛ ∈ ΣΛ, the LLL instance defined by
CSP formula Φ = (V ,Q, C) on variables distributed as πyΛ , satisfies that

ln
1
p
> β(A lnD + B),

where p ≜ maxc ∈C PrX ∼πyΛ
[
¬c

(
Xvbl(c)

)]
and D denotes the maximum degree of the dependency graph.

Condition 3.7 is basically a self-reducibility property. A major obstacle for sampling satisfying so-
lution is that the regime (8) for the original CSP formula Φ may not be self-reducible: it is not closed
under pinning of variables to arbitrary evaluations. Condition 3.7 states that the self-reducibility prop-
erty is achieved under projection: the LLL regime is closed under pinning of variables to arbitrary
projected evaluations. This is crucial for rapid mixing of the Markov chain on projected space Σ.

We have efficient procedures for constructing the projection scheme satisfying Condition 3.4.
Theorem 3.8 (projection construction). Let 0 < β < α < 1 be two parameters. Let Φ = (V ,Q, C) be a
CSP formula where all constraints in C are atomic. Let D denotes the maximum degree of its dependency
graph and p ≜ maxc ∈C

∏
v ∈vbl(c)

1
|Qv | . If log 1

p ≥
25

(α−β)3 (logD + 3), then for any 0 < δ < 1, with
probability at least 1 − δ a projection oracle (Definition 3.3) with query cost O(logq) can be successfully
constructed within time O(n(Dk + q) log 1

δ logq), where q ≜ maxv ∈V |Qv |, k ≜ maxc ∈C |vbl (c)| and the
oracle is for a projection scheme h = (hv)v ∈V that satisfies Condition 3.4 with parameters (α, β).

The above result can be strengthened for the (k,d)-CSP formulas, where |vbl (c)| = k for all c ∈ C
and each v ∈ V appears in at most d constraints, on homogeneous domains Qv = [q] for all v ∈ V .
Theorem 3.9. Let 0 < β < α < 1 be two parameters. The followings hold for any (k,d)-CSP formula
Φ = (V , [q]V , C) where all constraints in C are atomic:

• If 7 ≤ q
α+β
2 ≤ q

6 and logq ≥
1

α−β , then a projection oracle with query costO(logq) for a projection
scheme h satisfying Condition 3.4 with parameters (α, β), can be constructed in time O(n logq).
• If k ≥ 2 ln 2

(α−β)2 log(2ekd), then for any 0 < δ < 1, with probability at least 1 − δ a projection oracle
as above can be successfully constructed within time O(ndk log 1

δ).
The proofs of Theorem 3.8 and Theorem 3.9 are given in Section 6.

10

4. The sampling algorithm

Let Φ = (V ,Q, C) be the input CSP formula with atomic constraints, which defines a uniform distri-
bution µ over satisfying assignments as in Definition 3.1. Let ε > 0 be an error bound. The goal is to
output a random assignment X ∈ Q such that dTV (X , µ) ≤ ε .

Depending on the classes of CSP formulas, the algorithm first applies one of the procedures in
Theorem 3.8 and Theorem 3.9 to construct a projection scheme h = (hv)v ∈V , where hv : Qv → Σv for
each v ∈ V , such that h satisfies Condition 3.4 with parameters (α, β), where 0 < β < α < 1 are going
to be fixed later in the analysis in Section 5. For randomized construction procedure, we set its failure
probability to be ε

4 , and if it fails, the sampling algorithm simply returns an arbitrary X ∈ Q .
Suppose that the projection scheme h is given. The sampling algorithm is described in Algorithm 1.

Algorithm 1: The sampling algorithm (given a proper projection scheme)
input :a CSP formula Φ = (V ,Q, C) with atomic constraints, a projection scheme

h = (hv)v ∈V satisfying Condition 3.4 with parameters (α, β), and an error bound ε > 0;
output :a random assignment X ∈ Q ;

1 sample a uniform random X ∼ π and let Y ← h(X);
2 for each t from 1 to T ≜

⌈
2n log 4n

ε

⌉
do // Glauber dynamics for Y ∈ Σ

3 pick a variable v ∈ V uniformly at random;
4 Xv ← InvSample

(
Φ,h, ε

4(T+1) ,YV \{v }, {v}
)
; // sample Xv ∈ Qv approx. from µ

YV \{v }
v

5 Yv ← hv (Xv);

6 X ← InvSample
(
Φ,h, ε

4(T+1) ,Y ,V
)
; // sample X ∈ Q approx. from µY

7 return X ;

Algorithm 1 implements the sampling algorithm outlined in Section 3. It first implements the
Glauber dynamics on space Σ for sampling from ν , the distribution of projected satisfying assignments
in Definition 3.2. It simulates the Glauber dynamics for T =

⌈
2n log 4n

ε

⌉
steps to draw a random Y ∈ Σ

distributed approximately as ν . At each step,Yv for a uniformly pickedv ∈ V is redrawn approximately
from the marginal distribution ν

YV \{v }
v . At last, the algorithm inverts the sampled Y ∈ Σ to a random

satisfying assignment X ∈ Q distributed approximately as µ conditioning on that h(X) = Y .
Algorithm 1 relies on an Inverse Sampling subroutine for sampling approximately from µ

YV \{v }
v or µY .

4.1. The InvSample subroutine (Algorithm 2). The goal of the subroutine InvSample (Φ,h, δ ,yΛ, S),
where S ⊆ V , Λ ⊆ V , and yΛ ∈ ΣΛ, is to sample a random XS ∈ QS according to the distribution
µ
yΛ
S , as defined in (5). In principle, computing the distribution µ

yΛ
S involves computing some nontrivial

partition function, which is intractable in general. Here, for an error bound δ > 0, we only ask for that
with probability at least 1 − δ , the subroutine returns a random sample that is δ -close to µ

yΛ
S in total

variation distance, where the probability is taken over the randomness of the input yΛ.
We define some notions to describe the subroutine. Let c ∈ C be a constraint in CSP formula Φ.

Recall that c is atomic. Let
F c ≜ c−1(False)

denote the unique “forbidden configuration” inQvbl(c) that violates c . We say that an atomic constraint
c ∈ C is satisfied by yΛ ∈ ΣΛ for Λ ⊆ V , if

h
(
F cΛ∩vbl(c)

)
, yΛ∩vbl(c),(9)

where the function h(·) is formally defined in (4). For atomic constraint c ∈ C, the above condition (9)
implies that c is satisfied by any x ∈ Q that h(xΛ) = yΛ. Hence, the constraint c must be satisfied by
any configuration in the support of the distribution µyΛ = µ

yΛ
V .

The key idea of the subroutine is that we can remove all the constraints that have already been satis-
fied by yΛ to obtain a new CSP formula Φ′ = (V ,Q, C′), where C′ ≜ {c ∈ C | c is not satisfied by yΛ}.

11

Algorithm 2: InvSample (Φ,h, δ ,yΛ, S)
Input :a CSP formula Φ = (V ,Q, C) with atomic constraints, a projection scheme h, an error

bound δ > 0, a configuration yΛ ∈ ΣΛ specified on Λ ⊆ V , and a subset S ⊆ V ;
Output :a random assignment X ∈ QS ;

1 let Φ′ be the new formula obtained by removing all the constraints in Φ already satisfied by yΛ;
2 factorize Φ′ and find all the sub-formulas

{
Φ′i = (Vi ,QVi , C′i) | 1 ≤ i ≤ ℓ

}
s.t. each Vi ∩ S , �;

3 if there exists 1 ≤ i ≤ ℓ s.t. |C′i | > 2D log nD
δ then // existence of giant component

4 return a uniform random XS ∼ πS ;

5 for each i from 1 to ℓ do
6 repeat for at most R ≜

⌈
10

(n
δ

)η log n
δ

⌉
times: // rejection sampling with ≤ R trials

7 sample Xi ∼ π
yΛi
Vi

, where Λi ≜ Vi ∩ Λ;
8 until Φ′i (Xi) = True;
9 if Φ′i (Xi) = False then // overflow of rejection sampling
10 return a uniform random XS ∼ πS ;

11 return X ′S , where X
′ =

⋃ℓ
i=1Xi ;

Define µyΛΦ′ to be the distribution of X ∼ πyΛ conditioned on Φ′(X), where the product distribution
πyΛ is as in Definition 3.2. It is straightforward to verify that µyΛΦ′ ≡ µyΛ .

Furthermore, the new CSP formula Φ′ can be factorized into a set of disjoint formulas:
Φ′ = Φ′1 ∧ Φ′2 ∧ . . . ∧ Φ′m .

Our plan is to show that it almost always holds that the size of every sub-formula Φ′i is logarithmically
bounded. Thus, we can apply the naïve rejection sampling independently on each sub-formula Φ′i ,
which remains to be efficient altogether.

Formally, letH ′ = (V , E ′) denote the (multi-)hypergraph induced by the CSP formulaΦ′ = (V ,Q, C′),
constructed by adding a hyperedge ec = vbl (c) into E ′ for each constraint c ∈ C′. Note that H ′ may
contain duplicated hyperedges. Let H ′1,H ′2, . . . ,H ′m denote the connected components of H ′, where
H ′i = (Vi , E ′i). Let Φ′i = (Vi ,QVi , C′i) denote sub-formula corresponding to H ′i , where C′i is the set of
constraints corresponding to hyperedges in E ′i . This defines the factorization Φ′ = Φ′1 ∧ Φ′2 ∧ . . . ∧ Φ′m .
For each sub-formula Φ′i = (Vi ,QVi , C′i), let Λi = Λ ∩ Vi , and define µ

yΛi
Φ′i

to be the distribution of
X ∼ π

yΛi
Vi

conditioned on Φ′i (X), where πyΛiVi
denotes restriction of the product distribution πyΛi on Vi .

It is then straightforward to verify:

µyΛ ≡ µ
yΛ
Φ′ ≡ µ

yΛ1
Φ′1
× µyΛ2

Φ′2
× . . . × µyΛm

Φ′m
.

Without loss of generality, we assume S ∩ Vi , � for 1 ≤ i ≤ ℓ and S ∩ Vi = � for ℓ < i ≤ m.
It suffices to draw random samples Xi ∼ µ

yΛi
Φ′i

independently for all 1 ≤ i ≤ ℓ, adjoin them together
X ′ = ∪ℓi=1Xi , and output its restriction X ′S on S , where each Xi ∼ µ

yΛi
Φ′i

can be drawn by the rejection
sampling procedure: repeatedly and independently sampling Xi ∼ π

yΛi
Vi

until Φ′i (Xi) is true.
The subroutine InvSample (Φ,h, δ ,yΛ, S) does precisely as above with two exceptions:
• existence of giant connected component: |C′i | ≥ 2D log nD

δ for some 1 ≤ i ≤ ℓ, where D
stands for the maximum degree of the dependency graph for Φ;
• overflow of rejection sampling: the rejection sampling from µ

yΛi
Φ′i

for some 1 ≤ i ≤ ℓ, has
used more than R =

⌈
10

(n
δ

)η log n
δ

⌉
trials, where η is a parameter to be fixed in Section 5.

If either of the above exceptions occurs, the algorithm terminates and returns a random XS ∼ πS .
In Section 7, we will show that assuming Condition 3.4 for the projection scheme h with properly

chosen parameters (α, β) and by properly choosing η, for the random yΛ upon which the subroutine is
called in Algorithm 1, with high probability none of these exceptions occurs. Therefore, the random
sample returned by the subroutine is accurate enough when being called in Algorithm 1.

12

5. Proofs of the main results

In this section, we prove the main theorems of this paper. Our algorithm first constructs a projection
scheme using one of the procedures in Theorem 3.8 and Theorem 3.9, which gives us the projection
oracle that can answer queries within time cost O(logq), where q = maxv ∈V |Qv |. We then execute
Algorithm 1 for sampling X approximately according to µ. We assume the following basic operations
for uniform sampling:

• draw a variable v ∈ V uniformly at random within time cost O(logn);
• for any variable v ∈ V , draw a uniform sample X ∼ πv from Qv within time cost O(logq).

When measuring the time cost of Algorithm 1, we count the number of calls to the projection oracle
as well as the above two basic sampling operations. The time complexity of Algorithm 1 is dominated
by these oracle costs.

Next, we prove Theorem 1.1 for general CSP formulas with atomic constraints, while Theorem 1.3
and Theorem 1.4 for specific subclasses of formulas are proved in Section 5.2.

5.1. CSP formulas with atomic constraints. For CSP formulas Φ = (V ,Q, C) defined by atomic
constraints, we show that sampling uniform solution is efficient within the following regime:

ln
1
p
≥ 350 lnD + 3 ln

1
ζ

(10)

wherep = maxc ∈C
∏

v ∈vbl(c)
1
|Qv | stands for themaximumprobability that a constraint c ∈ C is violated

by uniform random assignment, and D stands for the maximum degree of the dependency graph of Φ.
The positive constant parameter ζ specifies a gap to the boundary of the regime.

Theorem 5.1. The following holds for any 0 < ζ ≤ 2−400. There is an algorithm such that given any
0 < ε < 1 and CSP formula Φ = (V ,Q, C) with atomic constraints satisfying (10), the algorithm outputs a
random assignmentX ∈ Q whose distribution is ε-close in total variation distance to the uniform distribu-
tion µ over all solutions to Φ, using time costO

(
(D2k + q)n

(n
ε

)ζ log4 (
nDq
ε

))
, where k = maxc ∈C |vbl (c)|.

Theorem 1.1 is implied by Theorem 5.1, by interpreting any LLL instance with uniform random
variables and atomic bad events as a CSP formula with atomic constraints.

Let h = (hv)v ∈V be a projection scheme satisfying Condition 3.4 with parameters α and β . To prove
Theorem 5.1, we have the following lemmawhich shows that assuming a Lovász local lemma condition,
the Glauber dynamics for the projected distribution ν is rapidly mixing.

Lemma 5.2. If log 1
p ≥

50
β log

(
2000D4

β

)
, then the Markov chain PGlauber on ν has Tmix(ε) ≤

⌈
2n log n

ε

⌉
.

The proof of Lemma 5.2 is given in Section 8.
We also need the following lemma for analyzing the subroutine InvSample(Φ,h, δ ,XΛ, S). In Algo-

rithm 1 the subroutine is called for T + 1 times. For 1 ≤ t ≤ T + 1, define the following bad events:
• B(1)t : in the t-th call of InvSample(·), a random assignment X is returned in Line 10.
• B(2)t : in the t-th call of InvSample(·), a random assignment X is returned in Line 4

Lemma 5.3. Let 1 ≤ t ≤ T + 1 and 0 < η < 1. In Algorithm 1, for the t-th calling to the subroutine
InvSample(Φ,h, δ ,yΛ, S) with parameter η, it holds that

• given access to a projection oracle with query costO(logq), the time cost of InvSample(Φ,h, δ ,yΛ, S)
is bounded as

O

(
|S |D2k

(n
δ

)η
log2

(
nD

δ

)
logq

)
,

where k = maxc ∈C |vbl (c)| and q = maxv ∈V |Qv |;
• conditioned on ¬B(1)t ∧¬B

(2)
t , the t-th calling to InvSample(Φ,h, δ ,yΛ, S) returns a XS ∈ QS that

is distributed precisely according to µyΛS .
13

Furthermore, if log 1
p ≥

1
1−α log(20D2) and log 1

p ≥
1
β log

(
40eD2

η

)
it holds that

Pr
[
B(1)t

]
≤ δ and Pr

[
B(2)t

]
≤ δ .

The proof of Lemma 5.3 is given in Section 7.

Proof of Theorem 5.1. Let α, β,η be three parameters to be fixed later. Our algorithm first uses the
algorithm in Theorem 3.8 with δ = ε

4 to construct a projection scheme satisfying Condition 3.4 with
parameters α and β . If the algorithm inTheorem 3.8 fails to find such projection scheme, our algorithm
terminates and outputs an arbitrary Xout ∈ Q . If the algorithm finds such projection scheme, we run
Algorithm 1 to obtain the random sample Xout = Xalg, where Xalg denotes the output of Algorithm 1.

We first analyze the running time of the whole algorithm. By Theorem 3.8, the running time for
constructing the projection scheme is

Tproj = O

(
n(Dk + q) log 1

ε
logq

)
.

If the algorithm in Theorem 3.8 succeeds, then it gives a projection oracle with query costO(logq). In
Algorithm 1, we simulate the Glauber dynamics for T =

⌈
2n log 4n

ε

⌉
transition steps. In each step, the

algorithm first picks a variable v ∈ V uniformly at random, the cost is O(logn). The algorithm then
calls the subroutine InvSample

(
Φ,h, ε

4(T+1) ,YV \{v }, {v}
)
to draw a random Xv ∈ Qv . By Lemma 5.3,

the cost of the subroutine is O
(
D2k

(n
δ

)η log2 (nD
δ

)
logq

)
, where

δ =
ε

4(T + 1) = Θ

(
ε

n log n
ε

)
= Ω

(
ε2

n2

)
.

AfterXv is sampled in Line 4, the algorithm calls the projection oracle to mapXv ∈ Qv toYv = hv (v) ∈
Σv , the cost of this step is O(logq). Thus, the cost for simulating each transition step is

Tstep = O

(
D2k

(n
ε

)3η
log2

(
nD

ε

)
logq

)
.(11)

Finally, the algorithm uses InvSample
(
Φ,h, ε

4(T+1) ,Y ,V
)
in Line 6 to sample the final output. By

Lemma 5.3, the cost is O
(
nD2k

(n
δ

)η log2 (nD
δ

)
logq

)
, where δ = ε

4(T+1) = Ω
(
ε2
n2

)
. Hence, the cost

for the last step is

Tfinal = O

(
nD2k

(n
ε

)3η
log2

(
nD

ε

)
logq

)
.(12)

Combining all of them together, the total running time is

Ttotal = Tproj +T ·Tstep +Tfinal = O
(
n(Dk + q) log 1

ε
logq

)
+O

(
(T + n)D2k

(n
ε

)3η
log2

(
nD

ε

)
logq

)
= O

(
(D2k + q)n

(n
ε

)3η
log3

(
nD

ε

)
logq

)
.(13)

Next, we prove the correctness of the algorithm, i.e., the total variation distance between the output
Xout and the uniform distribution µ is at most ε . It suffices to prove

dTV
(
Xalg, µ

)
≤ 3ε

4
.(14)

Because if 0 < β < α < 1 and log 1
p ≥

25
(α−β)3 (logD + 3), then with probability at least 1 − ε

4 , the
algorithm in Theorem 3.8 constructs the projection scheme successfully, i.e. Xout = Xalg. Let X ∼ µ.
By coupling lemma, we can couple X and Xalg such that X , Xalg with probability 3ε

4 . Thus, we can
coupling X and Xout such that X , Xout with probability at most ε

4 +
3ε
4 = ε . By coupling lemma,

dTV (Xout, µ) ≤ ε .

14

We then verify (14). Consider an idealized algorithm that first runs the idealized Glauber dynamics for
T =

⌈
2n log 4n

ε

⌉
steps to obtain a random sample YG, then samples Xidea from the distribution µYG . By

Lemma 5.2, if log 1
p ≥

50
β log

(
2000D4

β

)
, then dTV (YG,ν) ≤ ε

4 . Consider the following process to draw
a random sample X ∼ µ. First sample Y ∼ ν , then sample X ∼ µY . Thus, we can couple Y and YG
such that Y , YG with probability ε

4 . Conditional on Y = YG, X andXidea can be perfectly coupled. By
coupling lemma,

dTV (Xidea, µ) ≤
ε

4
.(15)

We now couple Algorithm 1 with this idealized algorithm. For each transition step, they pick the same
variable, then couple each transition step optimally. In the last step, they use the optimal coupling
to draw random samples from the conditional distributions. Note that in Line 4 of Algorithm 1, if
the random sample Xv ∈ Qv returned by the subroutine is a perfect sample from µ

YV \{v }
v , then the

Yv ∈ Σv constructed in Line 5 follows the distribution νYV \{v }v . By Lemma 8.12, if none of B(1)t and B(2)t
for 1 ≤ t ≤ T + 1 occurs, then all the (T + 1) executions of the subroutine InvSample(Φ,h, δ ,yΛ, S)
return perfect samples from µ

yΛ
S . In this case, Algorithm 1 and the idealized algorithm can be coupled

perfectly. Note that δ = ε
4(T+1) . By coupling lemma and Lemma 5.3, we have

dTV
(
Xalg,Xidea

)
≤ Pr

[
T+1∨
i=1

(
B(1)t ∨ B

(2)
t

)]
≤ 2(T + 1)δ = ε

2
.

Hence, (14) can be proved by the following triangle inequality

dTV
(
Xalg, µ

)
≤ dTV

(
Xalg,Xidea

)
+ dTV (Xidea, µ) ≤

ε

2
+
ε

4
≤ 3ε

4
.

We then set the parameters α, β and η. We put all the constraints in Theorem 3.8, Lemma 5.2 and
Lemma 5.3 together:

0 < β < α < 1, 0 < η < 1;

log
1
p
≥ 25
(α − β)3 (logD + 3) ;

log
1
p
≥ 50

β
log

(
2000D4

β

)
;

log
1
p
≥ 1

1 − α log(20D2);

log
1
p
≥ 1

β
log

(
40eD2

η

)
.

We can take α = 0.994 and β = 0.577. The following condition implies all the above constraints

log
1
p
≥ 350 logD + 3 log

1
ζ

and η =
ζ

3
, where 0 < ζ ≤ 2−400.

Remark that log 1
p ≥ 350 logD + 3 log 1

ζ is equivalent to ln 1
p ≥ 350 lnD + 3 ln 1

ζ . By (13), under this
condition, the total running time is

Ttotal = O

(
(D2k + q)n

(n
ε

)3η
log3

(
nD

ε

)
logq

)
= O

(
(D2k + q)n

(n
ε

)ζ
log4

(
nDq

ε

))
. □

5.2. Sharper bounds for subclasses of CSP formulas. We prove the following theorems on specific
subclasses of CSP formulas. Our first result is for hypergraph coloring.

Theorem 5.4. There is an algorithm such that given any k-uniform hypergraph with maximum degree
∆ and a set of colors [q], assuming k ≥ 13 and q ≥ max

(
(7k∆) 9

k−12 , 650
)
, the algorithm returns a random

q-coloringX ∈ [q]V in timeO
(
q2k3∆2n

(n
ε

) 1
100(qk∆)4 log4

(
nqk∆
ε

))
such that the distribution ofX is ε-close

in total variation distance to the uniform distribution of all proper q-colorings of the input hypergraph.
15

Theorem 1.3 is implied by Theorem 5.4: when k ≥ 30, we have (7k) 9
k−12 ≤ 15, which means that

q ≥ 15∆
9

k−12 + 650 suffices to imply the condition in Theorem 5.4.
Our next result is for CNF formulas. For a k-CNF formula, each clause contains k variables. And

the maximum degree of the formula is given by the maximum number of clauses a variable belongs to.
The following theorem is is a formal restatement of Theorem 1.4.

Theorem 5.5. The following holds for any 0 < ζ ≤ 2−20. There is an algorithm such that given any k-CNF
formula with maximum degree d , assuming k ≥ 13 logd + 13 logk + 3 log 1

ζ , the algorithm returns a ran-

dom assignment X ∈ {True, False}V in timeO
(
d2k3n

(n
ε

)ζ /(dk)4 log3 (
ndk
ε

))
such that the distribution

of X is ε-close in total variation distance to the uniform distribution of all satisfying assignments.

Let Φ = (V , [q]V , C) denote the CSP formula where all variables have the same domain [q]. Suppose
that for every constraint c ∈ C, c is atomic and |vbl (c)| = k , and each variable belongs to at most d
constraints. Let h denote a projection scheme satisfying Condition 3.4 with parameters α and β . For
such special CSP formulas, we have the following lemma with an improved mixing condition.

Lemma5.6. Ifk logq ≥ 1
β log

(
3000q2d6k6

)
, then theMarkov chain PGlauber onν hasTmix(ε) ≤

⌈
2n log n

ε

⌉
.

The proof of Lemma 5.6 is given in Section 8. We use Lemma 5.3 and Lemma 5.6 to prove our results.

Proof of Theorem 5.4. Consider the hypergraph q-coloring on a k-uniform hypergraphH = (V , E)with
maximum degree ∆. We first transform the hypergraph coloring instance into a CSP formula Φ =
(V , [q]V , C)with atomic constraints. For each hyperedge e ∈ E, we add q constraints such that the i-th
constraint ci forbids the bad event that the hyperedge e is monochromatic with color i ∈ [q]. Namely,
vbl (ci) = e and ci is False if and only if all variables in vbl (ci) take the value i . The time complexity
for this reduction is O(nq∆ logq).

In CSP formula Φ = (V , [q]V , C), c is atomic and |vbl (c)| = k for all c ∈ C; each variable belongs
to at most q∆ constraints. The maximum degree D of the dependency graph of Φ is at most qk∆. We
assume D = qk∆. If each variable v ∈ V draws a random value from [q] uniformly and independently,
then the maximum probability p that one constraint becomes False is

p =

(
1
q

)k
.

Let α, β,η be three parameters to be fixed later. Our algorithm first uses the deterministic algorithm
inTheorem 3.9 to construct a projection scheme satisfying Condition 3.4 with parameters α and β . The
deterministic algorithm inTheorem 3.9 always finds such a projection scheme, which gives a projection
oracle with query cost O(logq). Remark that the cost for constructing the projection scheme is

Tproj = O (n logq) .(16)

We then runAlgorithm 1 to obtain the outputXout = Xalg, whereXalg denotes the output of Algorithm 1.
The correctness result can be proved by going through the proof of Theorem 1.1.

We set parameters α, β and η. Note that vbl (c) = k for all c ∈ C; p = q−k ; and each variable belongs
to at most d = q∆ constraints; and D = qk∆. We put all the constraints in Theorem 3.9, Lemma 5.6 and
Lemma 5.3 together:

0 < β < α < 1, 7 ≤ q
α+β
2 ≤ q

6
, logq ≥ 1

α − β , 0 < η < 1;

k logq ≥ 1
β
log

(
3000q8∆6k6

)
;

k logq ≥ 1
1 − α log(20q2k2∆2);

k logq ≥ 1
β
log

(
40eq2k2∆2

η

)
.

16

We can take α = 7
9 and β = 2

3 . The following condition suffices to imply all the above constraints:
assume k > 12,

logq ≥ 9
k − 12 log∆ +

9
k − 12 logk +

25
k − 12 , q ≥ 650, η =

1
29(qk∆)4 .

The following condition suffices to imply the above one

q ≥ max
(
(7k∆) 9

k−12 , 650
)

and η =
1

29(qk∆)4 .

Note that D = kq∆. Under this condition, by (11), (12) and (16), the total running time is

Ttotal = O

(
D2kn

(n
ε

)3η
log3

(
nD

ε

)
logq

)
= O

(
q2k3∆2n

(n
ε

) 1
100(qk∆)4 log4

(
nqk∆

ε

))
. □

Proof of Theorem 5.5. LetΦ = (V , {True, False}V , C) be ak-CNF formula, where each variable belongs
to at most d clauses. Each variable takes its value for the Boolean domain {True, False}, thus the size
of the domain is q = 2. The maximum degree D of the dependency graph is at most kd . We assume
D = kd . If each variable v ∈ V draws a random value from the Boolean domain {True, False}
uniformly and independently, the maximum probability p that one clause is not satisfied is

p =

(
1
2

)k
.

Let α, β,η be three parameters to be fixed later. Our algorithm first uses the randomized algorithm
in Theorem 3.9 with δ = ε

4 to construct a projection scheme satisfying Condition 3.4 with parameters
α and β . If the randomized algorithm in Theorem 3.9 fails to find such projection scheme, our algo-
rithm terminates and outputs an arbitrary Xout ∈ {True, False}V . If the randomized algorithm in
Theorem 3.9 succeeds, it gives a projection oracle with query cost O(logq). By Theorem 3.9, the cost
for constructing the projection scheme is

Tproj = O

(
ndk log

1
ε

)
.(17)

We then runAlgorithm 1 to obtain the outputXout = Xalg, whereXalg denotes the output of Algorithm 1.
The correctness result can be proved by going through the proof of Theorem 1.1.

We set parameters α, β and η. We put all the constraints in Theorem 3.9, Lemma 5.6 and Lemma 5.3
together:

0 < β < α < 1, k ≥ 2 ln 2
(α − β)2 log(2ekd), 0 < η < 1;

k ≥ 1
β
log

(
3000 · 4 · d6k6

)
;

k ≥ 1
1 − α log(20d2k2);

k ≥ 1
β
log

(
40ed2k2

η

)
.

We can take α = 21
25 and β = 1

2 . The following condition suffices to imply all the above constraints

k ≥ 13 logd + 13 logk + 3 log
1
ζ

and η =
ζ

3d4k4
, where 0 < ζ ≤ 2−20.

Note that D = dk and q = 2. Under this condition, by (11), (12) and (17), the total running time is

Ttotal = O

(
D2kn

(n
ε

)3η
log3

(
nD

ε

)
logq

)
= O

(
d2k3n

(n
ε

) ζ
d4k4 log3

(
ndk

ε

))
. □

17

6. Projection construction

In this section, we give the algorithms to construct the projection schemes. We first give the pro-
jection algorithm for (k,d)-CSP formulas (Theorem 3.9), then give the projection algorithm for general
CSP formulas (Theorem 3.8).

Proof of Theorem 3.9. We start from the first part of the lemma. For each v ∈ V , we set sv as

sv =
⌈
q

2−α−β
2

⌉
.

For each variable v ∈ V , we partition [q] = {1, 2, . . . ,q} into sv intervals, where the sizes of the first
(q mod sv) intervals are dq/sv e, and the sizes of the last sv − (q mod sv) intervals are bq/sv c. Let
Σv = {1, 2, . . . , sv }. For each i ∈ [q], hv (i) = j ∈ Σv , where i belongs to the j-th interval. This
constructs the function hv : [q] → Σv . To implement the projection oracle, we only need to calculate
sv for each v ∈ V , the total cost is O(n logq). Consider the two queries in Definition 3.3.

• evaluation: given an input value i ∈ [q] of a variablev ∈ V , the algorithm should return j ∈ Σv
such that i is in the j-th interval, this query can be answered with the cost O(logq);
• inversion: given a projected value j ∈ Σv of a variable v ∈ V , the algorithm should return a

random element in the j-th interval uniformly at random, this query can be answered with the
cost O(logq).

Next, we prove that this projection scheme satisfies Condition 3.4. For any v ∈ V , it holds that⌈
q

sv

⌉
≤

⌈
q(α+β)/2

⌉
≤ q(α+β)/2 + 1

♦
≤ 7

6
q(α+β)/2,

where (♦) holds because q(α+β)/2 + 1 ≤ 7
6q
(α+β)/2 if q(α+β)/2 ≥ 6. Note that log 7

6 ≤ 0.23. This implies
the following inequality∑

v ∈vbl(c)

⌈
q

sv

⌉
≤ k

(
α + β

2
logq + 0.23

)
(⋆)
≤ k · α logq = α

∑
v ∈vbl(c)

logq,(18)

where inequality (⋆) holds because α > β and logq ≥ 0.8
α−β . For any v ∈ V , it holds that⌊

q

sv

⌋
=

⌊
q⌈

q(2−α−β)/2
⌉ ⌋ ≥ ⌊

q

q(2−α−β)/2 + 1

⌋
(∗)
≥

⌊
q(

1 + 1
6

)
q(2−α−β)/2

⌋
≥ 6

7
q
α+β
2 − 1

(♦)
≥ 5

7
q
α+β
2 ,

where inequality (∗) holds because
(
1 + 1

6

)
q(2−α−β)/2 ≥ q(2−α−β)/2 + 1 if q(2−α−β)/2 ≥ 6; inequality (♦)

holds because q(α+β)/2 ≥ 7. Note that log 5
7 ≥ −0.5. This implies∑

v ∈vbl(c)
log

⌊
q

sv

⌋
≥ k

(
α + β

2
logq − 0.5

)
(⋆)
≥ k · β logq = β

∑
v ∈vbl(c)

logq,(19)

where inequality (⋆) holds because α > β and logq ≥ 1
α−β . Combining (18) and (19) proves the first

part of the lemma.
We then prove the second part of the lemma. The algorithm constructs a subset of variablesM ⊆ V .

We callM the set of marked variables. Ifv ∈ M, let Σv = [q], and hv (i) = i for all i ∈ [q]. Ifv <M, let
Σv = {1}, and hv (i) = 1 for all i ∈ [q]. Remark that sv = q if v is a marked variable, and sv = 1 if v is
an unmarked variable. To implement the projection oracle, we only need to constructM. Suppose the
setM is given (the construction will be explained later). Consider the two queries in Definition 3.3.

• evaluation: given an input value i ∈ [q] of a variable v ∈ V , the algorithm should return the
input i if v ∈ M, or return 1 ∈ Σv if v <M; this query can be answered with the costO(logq);
• inversion: given a projected value j ∈ Σv of a variable v ∈ V , the algorithm should return
j ∈ [q] if v ∈ M; or return a uniform random element X ∈ [q] if v < M; this query can be
answered with the cost O(logq).

18

Now, we construct the set of marked variablesM ⊆ V . For each constraint c ∈ C, define tc as the
number of marked variables in c , i.e.

tc ≜ |M ∩ vbl (c)| .
Hence, Condition 3.4 becomes for each c ∈ C,

(1 − α)k ≤ tc ≤ (1 − β)k .
In other words, each constraint contains at least (1 − α)k marked variables and at least βk unmarked
variables. We use Lovász local lemma to show that such setM exists, then use Moser-Tardos algorithm
to find a setM. LetD denote the product distribution such that each variables is marked independently
with probability 2−α−β

2 . For each constraint c ∈ C, let Bc denote the bad event that c contains less
than (1 − α)k marked variables or less than βk unmarked variables. We use concentration inequality
to bound the probability of Bc . In [FGYZ20], the probability of the bad event Bc is bounded by the
Chernoff bound. Now, we use Hoeffding’s inequality to obtain a better result

PrD [Bc] = Pr [tc < (1 − α)k ∨ tc > (1 − β)k] = Pr

[
|tc − E [tc]| ≥

α − β
2

k

]
≤ 2 exp

(
−(α − β)

2

2
k

)
.

The maximum degree of dependency graph is at most k(d − 1). By Lovász local lemma (Theorem 2.1),
the setM exist if

e · 2 exp
(
−(α − β)

2

2
k

)
· kd ≤ 1.

Note that α > β and k ≥ 2 ln 2
(α−β)2 (logk + logd + log 2e) implies the above condition.

TheMoser-Tardos algorithm can find such setM within 2n
k resampling steps in expectation [MT10].

We can run
⌈
log 1

δ

⌉
Moser-Tardos algorithms independently, then with probability at least 1 − δ , one

of them finds the setM within 4n
k resampling steps. The cost of each resampling step is O(dk2). The

cost for constructing data structure is O(ndk log 1
δ). □

Proof of Theorem 3.8. The domain of each variablev ∈ V isQv , where qv = |Qv |. Assume each element
x ∈ Qv can be in-coded by O(logqv) bits. For each v ∈ V , suppose the input provides an array Av
of size qv containing all the elements in Qv . For each v ∈ V , we construct a data structure Sv that
can answer the following two types of the queries: (1) given any index i ∈ [qv], we can access the i-th
element in this array with cost O(logqv). (2) given any x ∈ Qv , we can find the unique index i such
that Av (i) = x with the cost O(logqv). For each v ∈ V , the cost of the construction is O(qv logqv).

The algorithm divides all variables into two parts Slarge and Ssmall such that

Slarge =

{
v ∈ V | logqv ≥

5
α − β

}
, Ssmall =

{
v ∈ V | logqv <

5
α − β

}
.

For each variable v ∈ Slarge, the algorithm sets

∀v ∈ Slarge, sv =

⌈
q

2−α−β
2

v

⌉
.

We partition [q] = {1, 2, . . . ,q} into sv intervals, where the sizes of the first (q mod sv) intervals are
dq/sv e, and the sizes of the last sv − (q mod sv) intervals are bq/sv c. Let Σv = {1, 2, . . . , sv }, where
each j ∈ Σv represents an interval [Lj ,R j]. For any x ∈ Qv , let i denote the unique index such that
Av (i) = x , we set hv (x) = j such that i ∈ [Lj ,R j]. This defines the function hv : Qv → Σv . To
implement the projection oracle for Slarge, the algorithm only needs to compute the value of sv , where
the cost is O(logqv). Consider the two queries of the projection oracle in Definition 3.3.

• evaluation: given an input value x ∈ Qv of a variable v ∈ Slarge, with the data structure Sv , the
algorithm can return hv (x) in time O(logqv);
• inversion: given a projected value j ∈ Σv of a variable v ∈ Slarge, the algorithm should return a

uniform element in set {x ∈ Av (i) | Lj ≤ i ≤ R j }; with the data structure Sv , this query can
be answered with the cost O(logqv).

19

Let q = maxv ∈V qv . For any v ∈ Slarge, the cost for answering each query is O(logq).
For variables in Ssmall, the algorithm constructs a subset of variablesM ⊆ Ssmall. We callM the set

of marked variables. If v ∈ M, let Σv = Qv , and hv (x) = x for all x ∈ Qv . If v <M, let Σv = {1}, and
hv (x) = 1 for all x ∈ Qv . To implement the projection oracle, the algorithm only needs to construct the
setM. The construction ofM will be explained later. Suppose the setM ⊆ Ssmall is given. Consider
the two queries of the projection oracle in Definition 3.3.

• evaluation: given an input value x ∈ Qv of a variable v ∈ Ssmall, the algorithm should return
the input x if v ∈ M, or return 1 ∈ Σv if v <M; this query can be answered in timeO(logqv);
• inversion: given a projected value x ∈ Σv of a variable v ∈ Ssmall, the algorithm should return

the input x if v ∈ M; or return a uniform random element X ∈ Qv if v < M; with the data
structure Sv , this query can be answered in time O(logqv).

Let q = maxv ∈V qv . For any v ∈ Ssmall, the cost for answering each query is O(logq).
Again, we use Lovász local lemma to prove that there is a subsetM such that the above projection

scheme satisfies Condition 3.4, then use Moser-Tardos algorithm to find such setM. Let D denote
the product distribution such that each variable v ∈ Ssmall is marked with probability 2−α−β

2 . For each
c ∈ C, let Bc denote the bad event∑

v ∈vbl(c)
log

⌈
qv
sv

⌉
> α

∑
v ∈vbl(c)

logqv or
∑

v ∈vbl(c)
log

⌊
qv
sv

⌋
< β

∑
v ∈vbl(c)

logqv .(20)

Fix a constraint c ∈ C. Suppose v1,v2, . . . ,vk are variables in vbl (c), where k = k(c) = |vbl (c)|. Let
0 ≤ ℓ ≤ k be an integer and assume vi ∈ Slarge for all 1 ≤ i ≤ ℓ and vj ∈ Ssmall for all ℓ + 1 ≤ j ≤ k . For
each 1 ≤ i ≤ k , we define random variable

Xi ≜ log

⌈
qvi
svi

⌉
.

For each 1 ≤ i ≤ ℓ, since vi ∈ Slarge, Xi = log
⌈
qvi /dq

(2−α−β)/2
vi e

⌉
with probability 1. We have

∀1 ≤ i ≤ ℓ, E [Xi] = log

⌈
qvi

dq(2−α−β)/2vi e

⌉
≤ log

⌈
q
(α+β)/2
vi

⌉
≤ log

(
5
4
q
(α+β)/2
vi

)
,

where the last inequality holds because logqvi ≥ 5
α−β , which implies 5

4q
(α+β)/2
vi ≥ q

(α+β)/2
vi + 1 ≥⌈

q
(α+β)/2
vi

⌉
. Note that log 5

4 ≤ 0.33 and logqvi ≥ 5
α−β . It holds that

∀1 ≤ i ≤ ℓ, E [Xi] ≤ 0.33 +
α + β

2
logqvi ≤ α logqvi −

α − β
3

logqvi .(21)

For each ℓ+ 1 ≤ j ≤ k , sincevj ∈ Ssmall, X j = logqvj with probability α+β
2 ; and X j = 0with probability

1−α−β
2 . We have

∀ℓ + 1 ≤ j ≤ k, E [Xi] =
α + β

2
logqvi ≤ α logqvi −

α − β
3

logqvi .(22)

Consider the sum
∑k

i=1Xi . For any vi ∈ Slarge, the value of Xi is fixed. For any vj ∈ Ssmall, X j takes a
random value and it must hold that X j ∈ {0, logqvi }. By Hoeffding’s inequality,

PrD

[
k∑
i=1

Xi >

k∑
i=1

E [Xi] + t
]
≤ exp

(
− 2t2∑k

j=ℓ+1 log
2 qvj

)
(⋆)
≤ exp

(
− 2(α − β)t2

5
∑k

j=ℓ+1 logqvj

)
,(23)

where (⋆) holds due to logqvj ≤ 5
α−β for all ℓ + 1 ≤ j ≤ k . Combining (21), (22) and (23), we have

PrD

[
k∑
i=1

Xi > α
k∑
i=1

logqvi

]
≤ exp

©­­«−
2(α−β)3

9

(∑k
i=1 logqvi

)2
5
∑k

j=ℓ+1 logqvj

ª®®¬ ≤ exp

(
−(α − β)

3

23

k∑
i=1

logqvi

)
.(24)

20

Similarly, for each 1 ≤ i ≤ k , we define random variable

Yi ≜ log

⌊
qvi
svi

⌋
.

For each 1 ≤ i ≤ ℓ, since vi ∈ Slarge, Yi = log

⌊
qvi

dq(2−α−β)/2vi e

⌋
with probability 1. We have

∀1 ≤ i ≤ ℓ, E [Yi] = log


qvi⌈

q
(2−α−β)/2
vi

⌉ ≥ log

⌊
4
5
q
(α+β)/2
vi

⌋
≥ log

(
3
5
q
(α+β)/2
vi

)
,

where the last two inequalities hold because 0 < β < α < 1 and logqvi ≥ 5
α−β , which implies

5
4q
(2−α−β)/2
vi ≥ q

(2−α−β)/2
vi + 1 ≥

⌈
q
(2−α−β)/2
vi

⌉
and

⌊
4
5q
(α+β)/2
vi

⌋
≥ 4

5q
(α+β)/2
vi − 1 ≥ 3

5q
(α+β)/2
vi . Note that

log 3
5 ≥ −0.74. Again, by logqvi ≥ 5

α−β , we have

∀1 ≤ i ≤ ℓ, E [Yi] ≥ −0.74 +
α + β

2
logqvi ≥ β logqvi +

α − β
3

logqvi .

For each ℓ+1 ≤ j ≤ k , sincevj ∈ Ssmall,Yj = 0with probability 2−α−β
2 ; andYj = logqvj with probability

α+β
2 . We have

∀ℓ + 1 ≤ j ≤ k, E [Yi] =
α + β

2
logqvi ≥ β logqvi +

α − β
3

logqvi .

Again, by Hoeffding’s inequality, we have

PrD

[
k∑
i=1

Yi < β
k∑
i=1

logqvi

]
≤ exp

(
−(α − β)

3

23

k∑
i=1

logqvi

)
.(25)

Combining (24) and (25) we have

PrD [Bc] ≤ 2 exp

(
−(α − β)

3

23

k∑
i=1

logqvi

)
(⋆)
≤ 2 exp

(
−25
23

logD − 3
)
≤ 2 exp

(
−25
23

lnD − 3
)
≤ 1

e(D + 1) ,

where (⋆) holds because ∑k
i=1 logqvi ≥ 25

(α−β)3 (logD + 3). By Lovász local lemma, there exists a set of
marked variablesM ⊆ Ssmall such that the condition in (20) is satisfied.

Similar to the proof of Theorem 3.9, we can use Moser-Tardos algorithm [MT10] to construct such
projection scheme. With probability at least 1 − δ , the algorithm constructs a projection scheme in
time O(nDk log 1

δ), where k = maxc ∈C |vbl (c)|.
We now combine all the steps together. The construction of the data structures Sv for all v ∈ V

has the cost O(nq logq). Computing the sv for all v ∈ Slarge has the costs O(n logq). Computing the
marked setM ⊆ Ssmall has the cost O(nDk log 1

δ). The total cost is O(n(Dk + q) log 1
δ logq). □

7. Analysis of the Inverse Sampling subroutine

In this section, we prove Lemma 5.3. Let Φ = (V ,Q, C) be a CSP formula, where each variable v
takes value in Qv . Let h = (hv)v ∈V be a balanced projection scheme satisfying Condition 3.4 with
parameters α and β , where for each v ∈ V , hv : Qv → Σv , |Qv | = qv and |Σv | = sv . Let (Yt)t ≥0 denote
random sequence generated by Algorithm 1, where Yt ∈ Σ is the random Y after the t-th iteration of
the for-loop. Recall that for each 1 ≤ t ≤ T + 1, we have defined the following bad events:

• B(1)t : in the t-th call of InvSample(·), the random assignment X is returned in Line 10;
• B(2)t : in the t-th call of InvSample(·), the random assignment X is returned in Line 4.

In the t-th calling of the subroutine InvSample(Φ,h, δ ,yΛ, S) (Algorithm 2), conditional on ¬B(1)t ∧
¬B(2)t , all the connected components that intersect with S are small, and the rejection sampling on each
component succeeds. It is straightforward to verify the subroutine returns a perfect sample from µ

yΛ
S .

21

Next, we analyze the running time of the subroutine InvSample(Φ,h, δ ,yΛ, S). LetG = (C, E) denote
the dependency graph of Φ = (V ,Q, C). We assume the dependency graph is stored in an adjacent list.
We can construct such adjacent list at the beginning of the whole algorithm. The cost of construction
is O(nDk), which is dominated by the cost in Theorem 5.1.

Assume that the algorithm can access a projection oracle with query cost O(logq). The first step
of the subroutine is to find all the connected components that intersect with set S . For each variable
v ∈ S , we find all the constraints C(v) = {c ∈ C | v ∈ vbl (c)} (note that |C(v)| ≤ D), then perform
a deep first search (DFS) in G starting from C(v). During the DFS, suppose the current constraint is
c ∈ C. We can find the unique configuration σ ∈ Qvbl(c) forbidden by c , i.e. c(σ) = False. We call
the projection oracle to obtain τ ∈ Σvbl(c), where τv = hv (σv) for each v ∈ V . The cost of this step
is O(k logq). If for all v ∈ Λ ∩ vbl (c), yΛ(v) = τv (which means c is not satisfied by yΛ), we do DFS
recursively starting from c; otherwise, we stop current DFS branch and remove c from the graphG. If
the size of current connected component is greater than 2D log nD

δ , the connected component is too
large, we stop the whole DFS process. The total cost of DFS is

TDFS = O

(
|S |D2k log

nD

δ
logq

)
.

Another cost of the subroutine comes from the rejection sampling from Line 5 to Line 10. To perform
the rejection sampling, for each variable v , we either draw Xv from π

yv
v or draw Xv from the πv . This

step can be achieved by calling oracles. The cost is O(logq). Since there are at most |S | connected
components and each of the size at most 2D log nD

δ , the total number of variables is O(|S |Dk log nD
δ).

For each component, the algorithm uses the rejection sampling for at most R =
⌈
10

(n
δ

)η log n
δ

⌉
times.

The total cost of rejection sampling is

Trej = O

(
|S |Dk

(n
δ

)η
log2

(
nD

δ

)
logq

)
.

The total cost of the subroutine is

TDFS +Trej = O

(
|S |D2k

(n
δ

)η
log2

(
nD

δ

)
logq

)
.

Finally, we use the following lemma to bound the probabilities of the bad events B(1)t and B(2)t .

Lemma 7.1. Let Φ = (V ,Q, C) be the input CSP formula and h a projection scheme satisfying Con-
dition 3.4 with parameters α and β . Let D denote the maximum degree of the dependency graph of Φ.
Let p = maxc ∈C

∏
v ∈vbl(c)

1
|Qv | . Let 0 < η < 1 be a parameter. Suppose log 1

p ≥
1

1−α log(20D2) and
log 1

p ≥
1
β log

(
40eD2

η

)
. The subroutine InvSample(Φ,h, δ ,yΛ, S) in Algorithm 2 with parameter η satisfies

that for any 1 ≤ t ≤ T + 1,

Pr
[
B(1)t

]
≤ δ and Pr

[
B(2)t

]
≤ δ .

The rest of this section is dedicated to the proof of Lemma 7.1. Letvi ∈ V denote the random variable
picked by Algorithm 1 in the i-th iteration of the for-loop. In the proof of Lemma 7.1, we always fix a
1 ≤ t ≤ T +1 and a sequencev1,v2, . . . ,vT . Hence, we always consider the probability space generated
by Algorithm 1 conditional on vi is picked in the i-th iteration of the for-loop.

Define (possibly partial) projected configuration

Y = yΛ ≜

{
Yt−1(V \ {vt }) if 1 ≤ t ≤ T ;
YT if t = T + 1,

(26)

where Λ = V \ {vt } if 1 ≤ t ≤ T , and Λ = V if t = T + 1. We analyze InvSample(Φ,h, δ ,Y , S), where

S =

{
{vt } if 1 ≤ t ≤ T ;
V if t = T + 1.

22

7.1. Analysis of rejection sampling (bound Pr[B(1)t]). We first prove that

Pr
[
B(1)t

]
≤ δ .(27)

Let Φ′ = (V ,Q, C′) denote the CSP formula obtained from Φ = (V ,Q, C) by removing constraints
satisfied by Y . Let H ′ = HΦ′ = (V , E ′) denote the hypergraph modeling Φ′, where E ′ = {vbl (c) |
c ∈ C′} is a multi-set. Suppose H ′Φ has ℓ connected components H ′1,H ′2, . . . ,H ′ℓ that intersect with S ,
where H ′i = (Vi , E ′i) and Vi ∩ S , � for all 1 ≤ i ≤ ℓ. Let Φ′i = (Vi ,QVi , C′i) denote the CSP formula
represented by H ′i , where C′i denotes the set of constraints represented by E ′i .

Fix an integer 1 ≤ i ≤ ℓ. Lines 6 – 8 in Algorithm 2 actually run rejection sampling on Φ̃i =

(Vi , Q̃Vi , C′i), where each Q̃v ⊆ Qv , such that

∀v ∈ Vi , Q̃v ≜

{
h−1v (Yv) if v ∈ Vi ∩ Λ;
Qv if v ∈ Vi \ Λ.

Since the maximum degree of the dependency graph of Φ isD, the maximum degree of the dependency
graph of Φ̃i is at most D. Let D denote the product distribution such that each v ∈ Vi samples a
value from Q̃v uniformly at random. For each constraint c ∈ C′i , let Bc denote the bad event that c
is not satisfied. Note that h is a balanced projection scheme. By the definition of Q̃Vi , it holds that
|Q̃v | ≥ bqv/sv c for all v ∈ Vi , where qv = |Qv |. In other words, Φ̃i is the conditional LLL instance in
Condition 3.7. By Condition 3.4, we have for each c ∈ C′i ,

PrD [Bc] =
∏

v ∈vbl(c)

1���Q̃v

��� ≤ ∏
v ∈vbl(c)

1
bqv/sv c

≤ ©­«
∏

v ∈vbl(c)

1
qv

ª®¬
β

,

Recall that in Lemma 7.1, we assume that for each c ∈ C, ∑v ∈vbl(c) logqv ≥ 1
β log

(
40eD2

η

)
for 0 < η < 1.

Note that C′i ⊆ C, we have for each c ∈ C′i ,

PrD [Bc] ≤
η

40eD2 .

For each Bc , define x(Bc) = η
40D2 . We have

PrD [Bc] ≤
η

40eD2 ≤
η

40D2

(
1 − η

40D2

) 40D2
η −1 ≤ η

40D2

(
1 − η

40D2

)D
≤ x(Bc)

∏
Bc′ ∈Γ(Bc)

(1 − x(Bc ′)) ,

where Γ(·) is defined as in the Lovász local lemma (Theorem 2.1). Since B(1)t occurs, it must hold that��C′i �� ≤ 2D log nD
δ . By Lovász local lemma (Theorem 2.1), we have

PrD


∧
c ∈C′i

Bc

 ≥
∏
c ∈C′i

(1 − x(Bc)) ≥
∏
c ∈C′i

(
1 − η

40D2

)
(
by

��C′i �� ≤ 2D log
nD

δ

)
≥

(
1 − η

40D2

)2D log nD
δ ≥ exp

(
− η

5D
log

Dn

δ

)
=

(
δ

Dn

) η
5D ln 2

≥
(
δ

Dn

) η
2D

≥ 1
2

(
δ

n

)η
.

Hence, each trial of the rejection sampling in Lines 6 – 8 succeeds with probability at least 1
2

(
δ
n

)η
. Since

the algorithm uses rejection sampling independently for R =
⌈
10

(n
δ

)η log n
δ

⌉
times, the probability that

the rejection sampling fails in one connected component is at most(
1 − 1

2

(
δ

n

)η)R
≤ exp

(
−R
2

(
δ

n

)η)
≤ δ

n
.

23

Since there are at most n connected components, by a union bound,

Pr
[
B(1)t

]
≤ δ

This proves (27).

7.2. Analysis of connected component (bound Pr[B(2)t]). We now bound the probability of bad
event B(2)t . Consider the subroutine InvSample(Φ,h, δ ,Y , S). Recall Φ′ = (V ,Q, C′) is the CSP formula
obtained from Φ = (V ,Q, C) by removing all the constraints satisfied by Y . Recall hypergraph H ′ =
HΦ′ = (V , E ′)models Φ′. LetH = HΦ = (V , E) denote the hypergraph modeling Φ, where E = {vbl (c) |
c ∈ C} is a multi-set. For any edge e ∈ E, we useBe to denote the bad event that e ∈ E ′ and the number
of hyperedges in the connected component in H ′ that contains e is at least L, where L = d2D log Dn

δ e.
By a union bound, we have

Pr
[
B(2)t

]
≤

∑
e ∈E

Pr [Be] .

Recall D is the maximum degree of the dependency graph. Since |E | ≤ n(D + 1), it suffices to prove

Pr [Be] ≤
δ

n(D + 1) .(28)

To bound the probability of Be , we need the following lemma.

Lemma 7.2. Let Φ = (V ,Q, C) be a CSP formula. Let h be the projection scheme satisfying Condition 3.4
with parameters α and β . Let qv = |Qv | and D denote the maximum degree of the dependency graph of
Φ. If for any constraint c ∈ C, ∑

v ∈vbl(c)
logqv ≥

1
β
log(40eD2),

then for any subset H ⊆ Λ, any projected configuration σ ∈ ΣH =
⊗

v ∈H Σv ,

Pr [YH = σ] ≤ exp

(∑
u ∈H

1
20D

) ∏
v ∈H

(
1
qv

⌈
qv
sv

⌉)
,

where Y ∈ ΣΛ is defined in (26).

The proof of Lemma 7.2 is deferred to Section 7.3. Next, we introduce the following definitions of
line graph and 2-tree.

Definition 7.3 (line graph). Let H = (V , E) be a hypergraph. The line graph Lin(H) is a graph such
that each vertex represents a hyperedge in E, two vertices e, e ′ ∈ E are adjacent iff e ∩ e ′ , �.

Definition 7.4 (2-tree). LetG = (V , E) be a graph. A subset of vertices Stree ⊆ V is a 2-tree if (1) for any
u,v ∈ Stree, their distance distG (u,v) in graphG is at least 2; (2) if one adds an edge betweenu,v ∈ Stree
such that distG (u,v) = 2, then Stree becomes connected.

The following two propositions are proved in the full version [FGYZ19] of [FGYZ20].

Proposition 7.5 ([FGYZ19, Corollary 5.7]). Let G = (V , E) be a graph with maximum degree ∆ and
v ∈ V a vertex. The number of 2-trees in graph G of size ℓ containing vertex v is at most (e∆

2)ℓ−1
2 .

Proposition 7.6 ([FGYZ19, Lemma 5.8]). Let H = (V , E) be hypergraph. Let Lin(H) denote the line
graph of H . Let B ⊆ E be a subset of hyperedges that induces a connected subgraph in Lin(H) and e ∈ B
an arbitrary hyperedge. There exists a 2-tree Stree ⊆ E in Lin(H) such that e ∈ Stree and |Stree | =

⌊
|B |
D+1

⌋
,

where D is the maximum degree of the line graph Lin(H).
24

Suppose h satisfies Condition 3.4. Recall Y ∈ ΣΛ, where Λ = V \ {vt } for 1 ≤ t ≤ T and Λ = V for
t = T + 1. We say an edge e ∈ E is bad if e is not satisfied by Y . Suppose e represents the constraint c
such that c(x) = False for a unique configuration x ∈ Qe . Given the projected configuration Y ∈ ΣΛ,
we have

e is bad ⇐⇒ ∀u ∈ Λ ∩ e,Yu , hu (xu).(29)

In other words, if e is bad, then the constraint corresponding to c in the “round-down” CSP formula
(Definition 3.5) is not satisfied by Y . If Be occurs, there must exist a connected component B ⊆ E in
line graph Lin(H) such that e ∈ B and all hyperedges in B are bad and |B | = L, where L = d2D log Dn

δ e
and D is the maximum degree of the dependency graph of the input formula. By Proposition 7.6, there
must exist a 2-tree Stree in Lin(H) with size ℓ =

⌊ L
D+1

⌋
such that e ∈ Stree and all edges in Stree are bad.

Fix such a 2-tree Stree. By definition, each vertex in Stree is a hyperedge e ∈ E, and for all e, e ′ ∈ Stree,
e ∩ e ′ = �. Let S ′tree ⊆ Stree denote the subset of edges e ∈ Stree such that e ⊆ Λ. Since Y is a random
projected configuration, by (29), we have

Pr [∀e ∈ Stree, e is bad] = Pr [∀e ∈ Stree,∀u ∈ e ∩ Λ,Yu , hu (xu)]
≤ Pr

[
∀e ∈ S ′tree,∀u ∈ e,Yu , hu (xu)

]
.

Fix an edge e ∈ S ′tree. By Condition 3.4 and the condition
∑
v ∈e logqv ≥ 1

1−α log(20D2) assumed in
Lemma 7.1, it holds that ∏

v ∈e

1
qv

⌈
qv
sv

⌉
≤

(∏
v ∈e

1
qv

)1−α
≤ 1

20D2 .

Note that if sv = 1, then 1
qv

⌈
qv
sv

⌉
= 1. For any v ∈ e such that sv > 1(thus qv ≥ sv > 1), we have

1
qv

⌈
qv
sv

⌉
≤ 1

qv

⌈qv
2

⌉
≤ 2

3 . Let r = log2/3
1

20D2 + 1. We can find a subset of variables R(e) ⊆ e such that∏
v ∈R(e)

1
qv

⌈
qv
sv

⌉
≤ 1

20D2 , and |R(e)| ≤ r .

Note that Lemma 7.1 assumes that
∑
v ∈vbl(c) logqv ≥ 1

β log
(
40eD2

η

)
≥ 1

β log(40eD2). We use Lemma 7.2
on subset H = ∪e ∈S ′treeR(e). Note that all hyperedges in S ′tree are disjoint. We have

Pr [∀e ∈ Stree, e is bad] ≤ Pr
[
∀e ∈ S ′tree,∀u ∈ R(e),Yu , hu (xu)

]
≤ Pr [∀u ∈ H ,Yu , hu (xu)]

≤
∏

e ∈S ′tree

∏
v ∈R(e)

(
1
qv

⌈
qv
sv

⌉
exp

(
1

20D

))
≤

∏
e ∈S ′tree

(
1

20D2 exp
(r

20D

))
(
by r = log2/3

1
20D2 + 1)

)
≤

∏
e ∈S ′tree

(
1

12D2

)
.

Since |Λ| ≥ n − 1 and all hyperedges in Stree are disjoint,
��S ′tree�� ≥ |Stree | − 1 = ℓ − 1. We have

Pr [∀e ∈ Stree, e is bad] ≤
(

1
12D2

)ℓ−1
.

Note that the maximum degree of line graph is at most D. By Proposition 7.5, we have

Pr [Be] ≤
1
2

(
eD2)ℓ−1 (

1
12D2

)ℓ−1
≤ 1

2

(
1
4

)ℓ−1
≤

(
1
2

)2ℓ−1
.

Note that ℓ = bL/(D + 1)c and L =
⌈
2D log nD

δ

⌉
. We have ℓ ≥ log nD

δ − 1. We may assume nD ≥ 16.
Otherwise, the sampling problem is trivial. The inequality (28) can be proved by

Pr [Be] ≤
(
1
2

)2 log nD
δ −3
≤ δ

n(D + 1) .
25

7.3. Proof of Lemma 7.2. We now prove (Lemma 7.2). We use the following lemma to prove it.

Lemma 7.7. Let Φ = (V ,Q, C) be a CSP formula. Let h = (hv)v ∈V be the projection scheme satisfying
Condition 3.4 with parameters α and β . Let D denote the maximum degree of the dependency graph of Φ.
Let qv = |Qv |. Suppose for any constraint c ∈ C, it holds that∑

v ∈vbl(c)
logqv ≥

1
β
log(40eD2).

Fix a variable u ∈ V and a partial projected configuration τ ∈ ΣV \{u }. For any y ∈ Σu , it holds that

ντu (y) ≤
1
qu

⌈
qu
su

⌉
exp

(
1

20D

)
.

Proof. Define a new CSP formula Φ̂ = (V , Q̂ = (Q̂v)v ∈V , C) by

∀w ∈ V , Q̂w =

{
h−1w (τw) ifw , u
Qw ifw = u .

Let D denote the product distribution that eachw ∈ V takes a value from Q̂w uniformly and indepen-
dently. For each constraint c ∈ C, define a bad event Bc as c is not satisfied. Let B = (Bc)c ∈C be the
collection of bad events. Recall that Γ(·) is defined as in the Lovász local lemma (Theorem 2.1). It holds
that maxc ∈C |Γ(Bc)| ≤ D. For each Bc , let x(Bc) = 1

40D2 . By Condition 3.4, it holds that

PrD [Bc is not satisfied] =
∏

v ∈vbl(c)

1���Q̂v

��� ≤ ∏
v ∈vbl(c)

1
bqv/sv c

≤ ©­«
∏

v ∈vbl(c)

1
qv

ª®¬
β

≤ 1
40eD2 ≤

1
40D2

(
1 − 1

40D2

)40D2−1

≤ 1
40D2

(
1 − 1

40D2

)D
≤ x(Bc)

∏
Bc′ ∈Γ(Bc)

(1 − x(Bc ′)) .

Fix y ∈ Σu . Let A denote the event that the value of u belongs to h−1u (y), then |Γ(A)| ≤ D, where
Γ(A) ⊆ B is the set of bad events B such that u ∈ vbl (B). Let µ̂ denote the uniform distribution of all
satisfying assignments to Φ̂. By Theorem 2.1, we have

ντu (y) = Prµ̂ [A] = PrX∼µ̂
[
Xu ∈ h−1u (y)

]
≤ 1

qu

⌈
qu
su

⌉ (
1 − 1

40D2

)−D
≤ 1

qu

⌈
qu
su

⌉
exp

(
1

20D

)
. □

Now we are ready to prove Lemma 7.2.

Proof of Lemma 7.2. Fix a subset H ⊆ V , and an projected configuration σ ∈ ΣH . Recall 1 ≤ t ≤ T + 1
is a fixed integer. Recall Y = Yt−1(Λ), where Λ = V \ {vt } if 1 ≤ t ≤ T , and Λ = V if t = T + 1. Recall
that v1,v2, . . . ,vt ∈ V is a sequence such that vi is the variable picked by Algorithm 1 in i-th iteration
of the for-loop.

For any variable u ∈ H , let t(u) denote the last step up to step t such that u is picked by Algorithm 1
of the for-loop. Formally, if u appears in the sequence v1,v2, . . . ,vt , then t(u) is the largest number
such that vt (u) = u; if u does not appear in the sequence v1,v2, . . . ,vt , then t(u) = 0. We list all
variables in H as u1,u2, . . . ,u |H | such that t(u1) ≤ t(u2) ≤ . . . ≤ t(u |H |), where for these variables u
satisfying t(u) = 0, we break tie arbitrarily. Thus, Yt (u) = Yt (u)(u) for all u ∈ H . We have

Pr [YH = σ] = Pr
[
∀ui ∈ H ,Yui = σui

]
≤
|H |∏
i=1

Pr
[
Yt (ui)(ui) = σui | ∀j < i,Yt (uj)(uj) = σuj

]
.

We now only need to prove that, for any 1 ≤ i ≤ |H |,

Pr
[
Yt (ui)(ui) = σui | ∀j < i,Yt (uj)(uj) = σuj

]
≤ 1

qui

⌈
qui
sui

⌉
exp

(
1

20D

)
.(30)

26

Suppose t(ui) = 0, then Y0(ui) ∈ Σui is sampled independently with Pr
[
Y0(ui) = σui

]
=

���h−1ui (σui)���
qui

.

Since h is balanced, we have
��h−1ui (σui)�� ≤ ⌈

qui
sui

⌉
. Inequality (30) holds because

Pr
[
Y0(ui) = σui | ∀j < i,Y0(uj) = σuj

]
≤ 1

qui

⌈
qui
sui

⌉
.

Suppose t(ui) = ℓ , 0. Algorithm 1 uses the subroutine InvSample(·) to sample a random Xv ∈ Qv
in Line 4, then mapsXv into Yℓ(ui) in Line 5. IfXv is returned in Line 4 or Line 10 in Algorithm 2, then
Xv is uniformly distribution over Qui . In this case, inequality (30) holds because

Pr
[
Yℓ(ui) = σui | ∀j < i,Yt (uj)(uj) = σuj

]
=

∑
Xv ∈h−1ui (σui)

1
qui
≤ 1

qui

⌈
qui
sui

⌉
.

Otherwise,Xv is returned in Line 11 of Algorithm 2. In this case,Yℓ(ui) is sampled from the distribution
νYℓ−1(V \{ui })ui . We can use Lemma 7.7 with τ = Yℓ−1(V \ {ui }) and u = ui . Note that Lemma 7.7 holds
for any τ and u. We have

Pr
[
Yℓ(ui) = σui | ∀j < i,Yt (uj)(uj) = σuj

]
= νYℓ−1(V \{ui })ui (σui) ≤

1
qui

⌈
qui
sui

⌉
exp

(
1

20D

)
.

Thus, inequality (30) holds. □

8. Proof of rapid mixing

LetΦ = (V ,Q, C) be a CSP formulawith atomic constraints andh = (hv)v ∈V be a balanced projection
scheme satisfying Condition 3.4 with parameter α and β , where hv : Qv → Σv . Let ν = νΦ,h be the
projected distribution over Σ =

⊗
v ∈V Σv in Definition 3.2. Let (Yt)t ≥0 denote the Glauber dynamics

PGlauber on ν . In this section, we show that the Glauber dynamics PGlauber is rapid mixing, and prove
Lemma 5.6 and Lemma 5.2.

8.1. The stationary distribution. We first proves that ν is the unique stationary distribution.

Proposition 8.1. LetΦ = (V ,Q, C) be a CSP formula with atomic constraints. Leth = (hv)v ∈V be the pro-
jection scheme satisfying Condition 3.4 with parameters α and β . Let qv = |Qv |, p = maxc ∈C

∏
v ∈vbl(c)

1
qv

and D denote the maximum degree of the dependency graph of Φ. Suppose log 1
p ≥

1
β log(2eD). The

Glauber dynamics PGlauber is irreducible, aperiodic and reversible with respect to ν , thus it has the unique
stationary distribution ν .

Proof. By the transition rule of Glauber dynamics, it is easy to verify the Glauber dynamics is aperiodic
and reversible with respect to ν . We prove theMarkov chain is irreducible. We show that for any σ ∈ Σ,
ν (σ) > 0. This implies that the transition probability of Glauber dynamics is always well-defined and
the Markov chain is connected. Fix a σ ∈ Σ. Define a new instance Φ̂ = (V , Q̂ = (Q̂v)v ∈V , C) as
Q̂v = h−1v (σv) for all v ∈ V . It suffices to show that Φ̂ is satisfiable, which implies ν (σ) > 0. The
maximum degree of dependency graph of Φ̂ is at most D. Besides, if each variable picks a value from
Q̂v uniformly and independently, then for each c ∈ C, the probability that c is not satisfied is at most

∏
v ∈vbl(c)

1

|Q̂v |
≤

∏
v ∈vbl(c)

1
bqv/sv c

≤ ©­«
∏

v ∈vbl(c)

1
qv

ª®¬
β

≤ 1
2eD
.

By Lovász local lemma, Φ̂ is satisfiable. □
27

8.2. Path coupling analysis. We use the path coupling [BD97] to show that the Markov chain is
rapid mixing. Fix two projected configurationsX ,Y ∈ Σ =

⊗
v ∈V Σv such thatX and Y disagree only

at one variable v0 ∈ V (assume sv0 ≥ 2). We construct a coupling (X ,Y) → (X ′,Y ′) such thatX → X ′

and Y → Y ′ each individually follows the transition rule of PGlauber such that

E [dham(X ′,Y ′) | X ,Y] ≤ 1 − 1
2n
,(31)

where dham(X ′,Y ′) ≜ |{v ∈ V | X ′v , Y ′v }| denotes the Hamming distance between X ′ and Y ′. Note
that the Hamming distance is at most n. Thus, by path coupling lemma (Lemma 2.3), for any 0 < ε < 1,

Tmix(ε) ≤
⌈
2n log

n

ε

⌉
,

where n = |V | is the number of variables.
The coupling (X ,Y) → (X ′,Y ′) is constructed as follows.
• Pick the same variable v ∈ V uniformly at random, set X ′u ← Xu and Y ′u ← Yu for all u , v .
• Sample (X ′v ,Y ′v) jointly from the optimal coupling between ν

XV \{v }
v and νYV \{v }v .

By the linearity of expectation, we have

E [dham(X ′,Y ′) | X ,Y] =
∑
v ∈V

Pr
[
X ′v , Y

′
v | X ,Y

]
(by the optimal coupling) =

1
n

∑
v ∈V \{v0 }

dTV
(
ν
XV \{v }
v ,ν

YV \{v }
v

)
+

(
1 − 1

n

)
,

where the last equation holds because dTV
(
ν
XV \{v0}
v0 ,ν

YV \{v0}
v0

)
= 0. To prove (31), it suffices to prove∑

v ∈V \{v0 }
dTV

(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤ 1

2
.

To prove the above inequality, we need to bound dTV
(
ν
XV \{v }
v ,ν

YV \{v }
v

)
for each v ∈ V \ {v0}. We

use the coupling introduced by Moitra [Moi19] to do this task. For k-uniform CSP formula such that
the domain of each variable is [q], we construct an adaptive version [GLLZ19] of Moitra’s coupling.
Compared with the analysis in [GLLZ19, FGYZ20], this coupling is more refined and requires a more
careful analysis. This part in given in Section 8.3. For general CSP formula, we use the original non-
adaptive version of Moitra’s coupling. The analysis for general case is muchmore involved, because we
need to deal with arbitrary domain and arbitrary size of constraints. This part is given in Section 8.4.

8.3. Adaptive coupling analysis. We first analyze the simple case. Suppose the original input CSP
formula of Algorithm 1 is a (k,d)-CSP formulaΦ = (V , [q]V , C)with atomic constraints, where |vbl (c)| =
k for all c ∈ C and each variable v ∈ V appears in at most d constraints, on homogeneous domains
Qv = [q] for all v ∈ V . Note that this case covers two applications: hypergraph coloring and k-CNF
formula. We prove the following lemma.

Lemma 8.2. Let Φ = (V , [q]V , C) be a (k,d)-CSP formula with atomic constraints. Let h = (hv)v ∈V be
the projection scheme for Φ satisfying Condition 3.4 with parameters α and β . If

k logq ≥ 1
β
log

(
3000q2d6k6

)
,(32)

then it holds that
∑
v ∈V \{v0 } dTV

(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤ 1

2 .

Recall that for any σ ∈ ΣΛ, where Λ ⊆ V , the distribution µσ is the distribution of X ∈ [q]V such
thatX is sampled from µ conditional onh(XΛ) = (hv (Xv))v ∈Λ = σ , where µ is the uniform distribution
over all satisfying assignments to Φ. We use µσv to denote the marginal distribution onv projected from
µσ . For any v ∈ V and c ∈ Σv , it holds that

ν
XV \{v }
v (c) =

∑
j ∈h−1v (c)

µ
XV \{v }
v (j) and ν

YV \{v }
v (c) =

∑
j ∈h−1v (c)

µ
YV \{v }
v (j).

28

Note that each hv is a function from [q] to Σv . By triangle inequality, it holds that

dTV
(
ν
XV \{v }
v ,ν

YV \{v }
v

)
=

1
2

∑
c ∈Σv

���νXV \{v }v (c) − νYV \{v }v (c)
���(

by
⊎
c ∈Σv

h−1v (c) = [q]
)
≤ 1

2

∑
j ∈[q]

���µXV \{v }v (j) − µYV \{v }v (j)
��� = dTV (

µ
XV \{v }
v , µ

YV \{v }
v

)
.

For any variable v ∈ V \ {v0}, define the influence on v caused by v0 as

Iv ≜ dTV
(
µ
XV \{v }
v , µ

YV \{v }
v

)
.(33)

To prove the rapid mixing of Glauber dynamics, it suffices to prove that∑
v ∈V :v,v0

Iv ≤
1
2
.(34)

Fix a variable v⋆ ∈ V . We will use a coupling Capt to bound the influence Iv⋆ . The coupling Capt
draws two random samples X Capt ∼ µXV \{v⋆} and Y Capt ∼ µYV \{v⋆} . By coupling lemma (Lemma 2.2),
the influence Iv⋆ can be bounded by

Iv⋆ ≤ PrCapt
[
X
Capt
v⋆
, Y

Capt
v⋆

]
.(35)

To describe the coupling Capt, we first introduce some definitions. Recall Φ = (V , [q]V , C) is the
original input CSP formula of Algorithm 1. Recall two projected configurations X ,Y ∈ Σ =

⊗
v ∈V Σv

differ only at v0. Define two CSP formulas ΦX and ΦY as follows:
• ΦX = (V ,QX = (QX

u)u ∈V , C) is a CSP formula such that

QX
u =

{
h−1u (Xu) if u , v⋆;
[q] if u = v⋆.

(36)

• ΦY = (V ,QY = (QY
u)u ∈V , C) is a CSP formula such that

QY
u =

{
h−1u (Yu) if u , v⋆;
[q] if u = v⋆.

By definition, (QX
u)u ∈V and (QY

u)u ∈V differ only at variable v0. We then define two distributions
• µΦX : the uniform distribution over all satisfying assignment to ΦX ;
• µΦY : the uniform distribution over all satisfying assignment to ΦY .

It is straightforward to verify µΦX = µXV \{v⋆} and µΦY = µYV \{v⋆} . For any subset S ⊆ V , we use µS ,ΦX
(and µS ,ΦY) to denote the marginal distribution on S projected from µΦX (and µΦY).

Recall that Φ = (V , [q]V , C) is the original input CSP formula of Algorithm 1. Recall that H = (V , E)
denotes the (multi-)hypergraph that models Φ, where E ≜ {vbl (c) | c ∈ C}. Note that H also models
ΦX and ΦY , because Φ,ΦX ,ΦY have the same sets of variables and constraints. We assume that given
any hyperedge e ∈ E, we can find the unique constraint in c ∈ C represented by e . For each hyperedge
e ∈ E, define the volume of e with respect to ΦX and ΦY as

VolΦX (e) ≜
∏
u ∈e

��QX
u

�� and VolΦY (e) ≜
∏
u ∈e

��QY
u

�� .
By Condition 3.4 and (32), initially, we have for any hyperedge e ∈ E,

VolΦX (e) ≥ 3000q2d6k6 and VolΦY (e) ≥ 3000q2d6k6.(37)
Let γ be a threshold such that

γ ≜ 32eq2d3k3 ≤ 3000q2d6k6.(38)

Consider an atomic constraint c ∈ C. Let σ ∈ [q]vbl(c) denote the unique configuration forbidden
by c , i.e. c(σ) = False. The constraint c is said to be satisfied by the value xu ∈ [q] of variable u if
u ∈ vbl (c) and σu , xu . In other words, given the condition that u takes the value xu , the constraint c

29

must be satisfied. A constraint c is said to be satisfied by τ ∈ [q]S for some subset S ⊆ V if c is satisfied
by some τu , where u ∈ S ∩ vbl (c).

The coupling procedure Capt is given in Algorithm 3.

Algorithm 3: The coupling procedure Capt
Input :CSP formulas ΦX = (V ,QX = (QX

u)u ∈V , C) and ΦY = (V ,QY = (QY
u)u ∈V , C), a

hypergraph H = (V , E) modeling ΦX and ΦY , two variables v0,v⋆ ∈ V , a threshold
parameter γ in (38);

Output :a pair of assignments X Capt,Y Capt ∈ [q]V .
1 V1 ← {v0}, V2 ← V \V1, Vset ← �, Vfrozen ← � and Efrozen ← �;
2 let X Capt and Y Capt be two empty assignments;
3 while ∃e ∈ E s.t. e ∩V1 , �, (e ∩V2) \ (Vset ∪Vfrozen) , � do
4 let e be the first such hyperedge and u be the first variable in (e ∩V2) \ (Vset ∪Vfrozen);
5 extend X Capt and Y Capt to variable u by sampling (X Captu ,Y

Capt
u) from the optimal coupling

between µu ,ΦX and µu ,ΦY ;
6 update ΦX by setting QX

u ← {X
Capt
u }, update ΦY by setting QY

u ← {Y
Capt
u };

7 Vset ← Vset ∪ {u};
8 if X Captu , Y

Capt
u then

9 V1 ← V1 ∪ {u},V2 ← V \V1;

10 for e ∈ E s.t. the constraint c represented by e is satisfied by both X Captu and Y Captu do
11 E ← E \ {e}, update ΦX and ΦY by removing constraint c from C, i.e. C ← C \ {c} ;
12 for e ∈ E s.t. VolΦX (e) ≤ γ or VolΦY (e) ≤ γ do
13 Vfrozen ← Vfrozen ∪ ((e ∩V2) \Vset);
14 for e ∈ E s.t. (e ∩V2) \ (Vset ∪Vfrozen) = � do
15 Efrozen ← Efrozen ∪ {e};
16 while ∃e ∈ Efrozen s.t. e ∩V1 , � and e ∩Vfrozen , � do
17 V1 ← V1 ∪ (e ∩Vfrozen), V2 ← V \V1, Vfrozen ← Vfrozen \ e;

18 extend X Capt and Y Capt to the set V2 \Vset by sampling (X CaptV2\Vset,Y
Capt
V2\Vset) from the optimal

coupling between µV2\Vset,ΦX and µV2\Vset,ΦY ;
19 extend X Capt and Y Capt to the set V1 \Vset by sampling (X CaptV1\Vset,Y

Capt
V1\Vset) from the optimal

coupling between µV1\Vset,ΦX (· | X Capt) and µV1\Vset,ΦY (· | Y Capt);
20 return (X Capt,Y Capt);

The coupling procedure Capt starts from two empty assignments X Capt and Y Capt , then gradually
extends these assignments, finally outputs two full assignments on V . The following three basic sets
of variables are maintained by the coupling.

• V1/V2: V1 is a superset of discrepancy variables, which contains all variables w such that the
coupling onw may be failed i.e. X Captw , Y

Capt
w ; V2 = V \V1 is the complement of set V1;

• Vset: the set of variables whose values are already assigned by the coupling procedure.
In addition, the coupling procedure Capt also maintains two CSP formulas ΦX = (V ,QX , C)),ΦY =

(V ,QY , C) and a hypergraph H = (V , E)modeling these two formulas. In each step, we pick a suitable
variable u (Line 4), extend X Capt and Y Capt to variable u (Line 5). We then remove all the constraints
(together with corresponding hyperedges2) satisfied by both X

Capt
u and Y Captu (Line 11), update ΦX and

2Remark that E is a multi-set of hyperedges. Once a hyperedge e is removed from E in Line 11, we only remove a single
copy of e representing the constraint c .

30

ΦY by setting QX
u ← {X

Capt
u } and QY

u ← {Y
Capt
u } (Line 6). In other words, we force u in ΦX to take the

value X Captu , and force u in ΦY to take the value Y Captu .
The coupling procedure Capt guarantees that the volume of all hyperedges e ∈ E cannot be too small

in the whole procedure. This property is controlled by the parameter γ . Thus, the coupling procedure
Capt is adaptive with respect to the current volumes of hyperedges. Specifically, the following two sets
are maintained during the coupling.

• Vfrozen: the set of frozen variables, which is a set of unassigned variables in V2, where each
w ∈ Vfrozen is incident to a hyperedge e such that the volume of e is below the threshold γ .
• Efrozen: the multi-set of frozen hyperedges such that for each hyperedge e ∈ Efrozen, all unas-

signed variables in e ∩V2 are frozen.
Once the volume of some hyperedge e is below the threshold γ (Line 12), we froze all unassigned
variables in e ∩V2 (Line 13). Once a variable becomes frozen, the coupling cannot assign values to this
variable. If in a hyperedge e , all unassigned variables in e ∩ V2 are frozen, then the coupling cannot
assign values to any unassigned variables e , the hyperedge e becomes frozen (Line 14 and Line 15).
Finally, once a frozen hyperedge both contains frozen variables and variables in V1, we put all frozen
variables in this hyperedge into V1 (Line 16 and Line 17).

Once the while-loop in Algorithm 3 terminates, we then sample assignments for variables inV2 \Vset
and V1 \Vset from the conditional distributions (Line 18 and Line 19).

Lemma 8.3. The coupling procedure Capt satisfies the following properties:
• the coupling procedure will terminate eventually;
• the output X Capt ∈ [q]V follows µXV \{v } and the output Y Capt ∈ [q]V follows µYV \{v } ;
• for any time of the coupling procedure and any e in the current set E, it holds that

VolΦX (e) ≥
γ

q
and VolΦY (e) ≥

γ

q
;

• for any variable u ∈ V , if X Captu , Y
Capt
u in the final output, then u ∈ V1.

Proof. We prove that the coupling Capt must terminate. Consider the while-loop in Line 16 and Line 17.
After the Line 17, the hyperedge e cannot satisfy the condition in Line 16 (because e∩Vfrozen = �), thus
the while-loop in Line 16 and Line 17 will terminate eventually. Consider the main while-loop (Line 3).
After each loop, the size of Vset will increase by 1. Note that the size of Vset cannot be greater than n.
Hence, the coupling Capt will terminate eventually.

We prove that the output X Capt ∈ [q]V follows the distribution µXV \{v } . The result for the output
Y Capt ∈ [q]V can be proved in a similar way. Consider the input CSP formula ΦX = (V ,C, (QX

u)u ∈V)
defined in (36). It holds that the uniform distribution µΦX of all satisfying assignments toΦX is precisely
the distribution µXV \{v } . Suppose Vset = {u1,u2, . . . ,uℓ}, where ui is the i-th variable whose value is
assigned by the coupling Capt. The following properties holds:

• the value of u1 is sampled from the marginal distribution µu1,ΦX ;
• for each 1 ≤ i < ℓ, once ui gets the value X Captui , we fix QX

ui as {X Captui } (Line 6) and remove a
subset of constraints satisfied by currentX Captu (Line 11); after updated ΦX , we sample the value
of ui+1 from the marginal distribution µui+1,ΦX ;
• given the assignment of Vset, the assignments of V2 \ Vset and V1 \ Vset are sampled from the

conditional distributions in Line 18 and Line 19.
Note that for each ui , the marginal distribution µui ,ΦX is precisely the distribution µXV \{v } projected on
ui conditional on the value of uj is fixed as X Captuj for all j < i . By the chain rule, the outputX Capt ∈ [q]V
follows the distribution µXV \{v } .

We now prove the third property. By (37) and (38), initially, for all e ∈ E, it holds that VolΦX (e) >
γ
q

and VolΦY (e) >
γ
q . Suppose during the coupling procedure, there is a time such that some hyperedge

e in the current set E satisfies VolΦX (e) <
γ
q or VolΦY (e) <

γ
q . Without loss generality, we assume

31

VolΦX (e) <
γ
q . The case VolΦY (e) <

γ
q follows from symmetry. Recall

VolΦX (e) ≜
∏
u ∈e

��QX
u

�� .
Note that the volume VolΦX (e) decreases only if we update QX

u for some u ∈ e in Line 6. Note that for
anyu ∈ V , it holds that

��QX
u

�� ≤ q. In Line 6, once the coupling setsQX
u ← {X

Capt
u }, the volume VolΦX (e)

decreases by at most a factor q. If VolΦX (e) <
γ
q , the following event must occur

• event B: the main while-loop pick a variable u ∈ e after VolΦX (e) < γ .
We show that the event B cannot occur. Consider the first time that VolΦX (e) < γ . After Line 12 and
Line 13, it must hold that

e ⊆ V1 ∪Vset ∪Vfrozen.(39)
Note that the coupling Capt only adds variables intoV1 andVset, but never deletes variables fromV1 and
Vset. Also note that if a variable is removed from Vfrozen, it must be added into V1(Line 17). Thus, (39)
holds up to the end of the coupling. Consider the variable u in event B, u must satisfy u ∈ V2 \ (Vset ∪
Vfrozen). However, by (39), there is no such variable u in hyperedge e . Contradiction.

Finally, we prove the last property. In this proof, we consider V1,V2,Vset,Vfrozen, E, Efrozen when the
main while-loop in Capt terminates. We claim that the following properties holds:

• (I) for any u ∈ V2 ∩Vset, X
Capt
u = Y

Capt
u ;

• (II) for any e ∈ E such that e ∩V1 , � and e ∩V2 , �, e ∩V2 ⊆ Vset .
Consider the CSP formulasΦX andΦY in Line 18. Note that bothΦX andΦY aremodeled by hypergraph
H = (V , E). Define a set of variables

R =
⋃
e ∈E

e∩V1,�,e∩V2,�

(e ∩V2).

Recall µΦX and µΦY are the uniform distributions of satisfying assignments to ΦX and ΦY . By the
definition ofR, conditional on any assignmentσ ∈ [q]R on setR, the assignment onV2\R is independent
with the assignment on V1. By property (I) and (II), it holds that R ⊆ V2 ∩Vset and X

Capt
R = Y

Capt
R . Since

R ⊆ Vset and X
Capt
R = Y

Capt
R , for any u ∈ R,

��QX
u

�� = ��QY
u

�� = 1 and QX
u = QY

u . Hence, in ΦX and ΦY ,
variables in R are fixed as a same value in [q]. Thus, µV2\Vset,ΦX and µV2\Vset,ΦY are identical distributions.
By Line 18,

X
Capt
V2\Vset = Y

Capt
V2\Vset(40)

Combining property (I) and (40) proves that X CaptV2
= Y

Capt
V2

. This proves the last property.
We finish the prove by proving properties (I) and (II). The property (I) is trivial, because for any

u ∈ Vset, if X
Capt
u , Y

Capt
u , then by Line 9, it must hold that u ∈ V1. We then prove property (II). Suppose

there is an hyperedge e such that e ∩V1 , �, e ∩V2 , � and e violates property (II). We define a set
S(e) = (e ∩V2) \Vset = (e \V1) \Vset , �.

There are only two possibilities for the set S(e), we show neither of them is possible.
• S(e) ⊈ Vfrozen: in this case, e satisfies the condition in the main while-loop (Line 3), the main

while-loop cannot terminate; contradiction.
• S(e) ⊆ Vfrozen: in this case, by Line 14 and Line 15, e ∈ Efrozen; hence, e satisfies the condition

in Line 16, then by Line 17, all variables in e ∩Vfrozen are removed from Vfrozen and added into
V1, thus there is no such non-empty subset S(e) ⊆ e such that S(e) ⊆ Vfrozen; contradiction.

Hence, such non-empty subset S(e) does not exist, which implies property (II) holds. □

By Lemma 8.3 and the coupling lemma (Lemma 2.2), to bound the Iv⋆ in (33), we can bound

Iv⋆ = dTV
(
µ
XV \{v⋆}
v⋆

, µ
YV \{v⋆}
v⋆

)
≤ PrCapt [v⋆ ∈ V1] ,(41)

where V1 denotes the set V1 at the end of the coupling Capt.
32

In the rest of the proof, our task is to bounding the RHS of (41). From now, we use hypergraph
H = (V , E) to model the input CSP formulas ΦX and ΦY in Algorithm 3. For any v ∈ V , define

Nvtx(v) ≜ {u , v | ∃e ∈ E s.t. u,v ∈ e}.

We say a variable u is incident to a hyperedge e if u ∈ e; a sequence of variables v0,v1, . . . ,vℓ is a path
in hypergraph H if vi ∈ Nvtx(vi−1) for all 1 ≤ i ≤ ℓ. We define the failed variables and failed edges.

Definition 8.4. Consider the time when the main while-loop in coupling procedure Capt terminates.

• A variable u ∈ V is said to be failed if u ∈ Vset and X
Capt
u , Y

Capt
u .

• A hyperedge e ∈ E is said to be failed if both of the following two properties hold:
(1) the constraint represented by e is not satisfied by both X Capt and Y Capt ;
(2) VolΦX (e) < γ or VolΦY (e) < γ .

Lemma 8.5. For any u ∈ V1, there exists a path u0,u1, . . . ,uℓ ∈ V in H such that

• u0 = v0 is the initial disagreement variable, uℓ = u and ui ∈ V1 for all 0 ≤ i ≤ ℓ;
• for any 1 ≤ i ≤ ℓ, either ui is failed or ui is incident to a failed hyperedge ei .

Proof. SupposeV1 = {v0,v1,v2, . . . ,vm}, wherev0 is the initial disagreement variable andvi is the i-th
variable added into set V1. If a set of variables are added into V1 at the same time (Line 17), we break
tie arbitrarily. We prove the first part of the lemma by induction on the index i .

The base case is i = 0, the first part of the lemma holds for the path that only contains v0.
Assuming the lemma holds up to index i , we prove the lemma for index i + 1. Consider the time

when vi+1 is added into the set V1. There are following two possibilities.
• vi+1 is added in Line 9. Consider the hyperedge e in Line 4. It holds thatvi+1 ∈ e and e∩V1 , �,

where V1 = {v0,v1, . . . ,vi }. Pick an arbitrary vj ∈ e ∩V1. By induction hypothesis, since j < i ,
there exists a path u0 = v0,u1,u2, . . . ,uℓ = vj for vj . Note that vi+1 ∈ e and vj ∈ e . We can find
the path u0 = v0,u1,u2, . . . ,uℓ = vj ,uℓ+1 = vi+1 for vi+1.
• vi+1 is added in Line 17. Consider the hyperedge e satisfying the condition in Line 16. It holds

that vi+1 ∈ e and e ∩ V1 , �, where V1 = {v0,v1, . . . ,vi }. Pick an arbitrary vj ∈ e ∩ V1. By
induction hypothesis, since j < i , there exists a path u0 = v0,u1,u2, . . . ,uℓ = vj for vj . Note
that vi+1 ∈ e and vj ∈ e . We can find the path u0 = v0,u1,u2, . . . ,uℓ = vj ,uℓ+1 = vi+1 for vi+1.

We now prove the second part of the lemma. It suffices to show that for any u ∈ V1 \ {v0}, either u
is failed or u is incident to a failed hyperedge e . Note that a variable u is added intoV1 in either Line 9
or Line 17. If u is added in Line 9, then it holds that X Captu , Y

Capt
u , thus u is a failed variable. Suppose u

is added in Line 17. Before the execution of Line 17, u ∈ Vfrozen must be a frozen variable. Consider the
moment that u becomes frozen. By Line 13, u must belong to a hyperedge e such that e is not satisfied
by bothX Capt and Y Capt (otherwise, e is deleted in Line 11) andmin{VolΦX (e),VolΦY (e)} < γ . Note that
after Line 13, e ⊆ V1 ∪Vset ∪Vfrozen. After that, in the main while-loop, the coupling Capt cannot assign
values to any unassigned variables in e . Thus, this hyperedge e is not satisfied by both X Capt and Y Capt
up to the main while-loop in Capt terminates. Hence, e is a failed hyperedge and u is incident to e . □

Lemma 8.5 says if a variable belongs toV1, there exists a path satisfying the condition in Lemma 8.5.
However, the failure probability of such path is not easy to bound. We next modify such path into a
sequence whose failure probability is easy to bound.

Define the length of a path by the number of variables in this path minus 1, e.g. the length of the
pathv1,v2, . . . ,vℓ is ℓ− 1. For any two variables u,w ∈ V , the distance between u andw inH , denoted
as distH (u,w), is the length of the shortest path betweenu andw inH . We extend the notion of distance
to subsets of variables. For any variable u ∈ V and subsets S,T ⊆ V , define

distH (u, S) ≜ min
w ∈S

distH (u,w);

distH (S,T) ≜ min
w ∈S ,w ′∈T

distH (w,w ′).

33

For such distance function distH (·, ·), the triangle inequality may not hold for any subsets. But we will
use the following two specific triangle inequalities.

∀u1,u2,u3 ∈ V , distH (u1,u2) ≤ distH (u1,u3) + distH (u3,u2)(42)
∀u ∈ V , S,T ⊆ V distH (S,T) ≤ distH (S,u) + distH (u,T).(43)

The inequality (42) holds trivially. Suppose distH (S,u) = distH (uS ,u) for uS ∈ S and distH (u,T) =
distH (u,uT) for uT ∈ T . By (42), we have

distH (S,T)
(⋆)
≤ distH (uS ,uT) ≤ distH (uS ,u) + distH (u,uT) = distH (S,u) + distH (u,T),

where (⋆) holds because uS ∈ S and uT ∈ T . Remark that (43) covers (42), because S and T may only
contain a single variable.

We have the following lemma.

Lemma 8.6. For any u ∈ V1 \ {v0}, there exists a sequence of sets S1, S2, . . . , Sℓ , where each Si is either a
hyperedge or a set containing a single variable, such that

• S1, S2, . . . , Sℓ are mutually disjoint;
• distH (v0, S1) ≤ 2 and distH (u, Sℓ) = 0;
• for any 1 ≤ i ≤ ℓ − 1, distH (Si , Si+1) ≤ 2.
• for each 1 ≤ i ≤ ℓ, Si either contains a failed variable or Si is a failed hyperedge.

Proof. Fix a variable u ∈ V1 \ {v0}. Let v0,v1, . . . ,vm where vm = u denote the path in Lemma 8.5. For
each 1 ≤ i ≤ m if vi is not a failed variable, we use ei to denote the failed hyperedge incident to vi ; if
vi is a failed variable, we let ei = {vi }. We first show that how to construct the sequence S1, S2, . . . , Sℓ ,
then we show that such sequence satisfies the properties in the lemma.

Let S be an empty stack. Let P denote the path (v1,v2, . . . ,vm). Remark that P does not contain
variable v0. We repeat the following procedure until P becomes an empty path. We pick the last
variable in the path P , denote this variable as vi . We search for the minimum index j such that j < i
and ei ∩ ej , �. Here are two cases depending on whether such index j exists.

• If such index j does not exist, then push ei into the stack S, remove vi from the path P .
• If such index j exists, then push ei into the stack S, remove all vt for j ≤ t ≤ i from the path P .

Let S1, S2, . . . , Sℓ be the elements in stack S from top to bottom.
We now prove that all Si are disjoint. Suppose there are two indices j < i such that Si ∩ S j , �.

Suppose Si = ei∗ and S j = ej∗ . It holds that i∗ > j∗. ej∗ must be removed when processing ei∗ , thus ej∗
cannot be added into stack S. Contradiction. This proves the first property.

We now prove the second property. Note that u ∈ em and Sℓ = em , thus dist(u, Sℓ) = 0. To bound
distH (v0, S1), we consider two cases.

• Case S1 = e1. Note that v0 and v1 are adjacent in H , i.e. distH (v0,v1) = 1. It holds that
v1 ∈ S1 = e1. Hence, distH (v0, S1) ≤ distH (v0,v1) = 1;
• Case S1 , e1. Suppose S1 = et . In this case, it must hold that e1 ∩ et , �, thus distH (v1, et) ≤
distH (v1,v∗) = 1. where v∗ ∈ e1 ∩ et is an arbitrary variable. Note that distH (v0,v1) = 1. By
triangle inequality in (43), we have distH (v0, et) ≤ distH (v0,v1) + distH (v1, et) ≤ 2.

Finally, we bound the distance distH (Si , Si+1). Suppose Si+1 = ej and Si = ej′ . Here are two cases.
• Case j ′ = j − 1: Note that distH (vj ,vj′) = 1, vj ∈ ej and vj′ ∈ ej′ . We have distH (ej , ej′) ≤
distH (vj ,vj′) ≤ 1. Hence, distH (Si , Si+1) = distH (ej , ej′) ≤ 1.
• Case j ′ < j−1: Consider themomentwhen Si+1 = ej is added intoS. It must hold that ej′+1∩ej ,
�. Note that vj′ ∈ ej′ and distH (vj′,vj′+1) = 1 . We have distH (ej′,vj′+1) ≤ distH (vj′,vj′+1) = 1.
Note that vj′+1 ∈ ej′+1 and ej′+1 ∩ ej , �. It holds that distH (vj′+1, ej) ≤ distH (vj′+1,v∗) = 1,
where v∗ ∈ ej′+1 ∩ ej is an arbitrary variable. By triangle inequality in (43), distH (ej′, ej) ≤
dist(ej′,vj′+1) + distH (vj′+1, ej) ≤ 2.

Combining two cases proves the third property.
For the last property, by Lemma 8.5, it is easy to see that each Si is either a failed hyperedge or a set

containing a single failed variable. □
34

We say a sequence of sets S1, S2, . . . , Sℓ is a percolation sequence (PS) if the following three properties
are satisfied:

• S1, S2, . . . , Sℓ are mutually disjoint;
• distH (v0, S1) ≤ 2;
• for any 1 ≤ i ≤ ℓ − 1, distH (Si , Si+1) ≤ 2.

We say a percolation sequence S1, S2, . . . , Sℓ is a percolation sequence for v⋆ if distH (v⋆, eℓ) = 0, i.e.
v⋆ ∈ eℓ . For any Si in sequence, we say Si fails if either Si contains a failed variable or Si is a failed
hyperedge. By (35) and Lemma 8.6, we have

Iv⋆ ≤ PrCapt
[
X
Capt
v⋆
, Y

Capt
v⋆

]
≤

∑
PS for v⋆:S1,S2, ...,Sℓ

PrCapt [∀1 ≤ i ≤ ℓ, Si fails] .(44)

The following lemma bounds the probability that all elements in a PS fail.

Lemma 8.7. Fix a percolation sequence (PS) S1, S2, . . . , Sℓ to v⋆. It holds that

PrCapt [∀1 ≤ i ≤ ℓ, Si fails] ≤
∏

1≤i≤ℓ
Si contains a single variable

1
8k3d2

∏
1≤i≤ℓ

Si is a hyperedge

1
8k3d3

.

We need the following technical lemma to prove Lemma 8.7. We introduce a parameter s to write γ
defined in (38) as

γ = seq2dk, where s ≜ 32k2d2.(45)

Lemma 8.8. During the coupling procedure Capt, the CSP formulas ΦX = (V , (QX
u)u ∈V , C) and ΦY =

(V , (QY
u)u ∈V , C) always satisfies that for any u ∈ V \ (Vset ∪ {v0}), QY

u = Q
X
u and for any j ∈ QX

u = Q
Y
u ,

1
qu

(
1 − 4

sk

)
≤ µu ,ΦX (j) ≤

1
qu

(
1 +

4
sk

)
1
qu

(
1 − 4

sk

)
≤ µu ,ΦY (j) ≤

1
qu

(
1 +

4
sk

)
,

(46)

where qu =
��QX

u

�� = ��QY
u

��, thus dTV (
µu ,ΦX , µu ,ΦY

)
≤ 4

sk .
Furthermore, for any optimal coupling (x,y) ∈ QX

u ×QY
u between µu ,ΦX and µu ,ΦY , it holds that

∀j ∈ QX
u = Q

Y
u Pr [x = j ∨ y = j] = max

{
µu ,ΦX (j), µu ,ΦY (j)

}
≤ 1

qu

(
1 +

4
sk

)
.

Proof. Initially, the input ΦX and ΦY satisfyQX
u = Q

Y
u for any u ∈ V \ {v0}. Consider each update step

in Line 6. After the value of u is assigned, we put the variable u into Vset in Line 7. It still holds that
QY
v = Q

X
v for any v ∈ V \ (Vset ∪ {v0}). By Lemma 8.3, at any time, for any e in current E, it holds that

VolΦX (e) =
∏
u ∈e

qu ≥
γ

q
= seqdk

VolΦY (e) =
∏
u ∈e

qu ≥
γ

q
= seqdk .

We now prove (46) for ΦX . The result for ΦY can be proved in a similar way. LetD denote the product
distribution such that each variablev ∈ V takes a value fromQX

v uniformly at random. Let Bc to denote
the bad event that the constraint c is not satisfied. Let B = (Bc)c ∈C denote the collection of bad events.
Let Γ(·) be defined as in the Lovász local lemma (Theorem 2.1). For each c ∈ C, let x(Bc) = 1

sqdk . For
each constraint c ∈ C,

PrD [Bc] =
∏

u ∈vbl(c)

1
qu
≤ 1

seqdk
≤ 1

sqdk

(
1 − 1

sqdk

)sqdk−1
≤ 1

sqdk

(
1 − 1

sqdk

)dk−1
≤ x(Bc)

∏
Bc′ ∈Γ(Bc)

(1 − x(Bc ′)),

35

where the last inequality holds because the maximum degree of the dependency graph is at most
k(d − 1) ≤ dk − 1. Fix a j ∈ QX

u = QY
u . Let A denote the event that v takes the value j. Note that

|Γ(A)| ≤ d . By Lovász local lemma (Theorem 2.1), we have

µu ,ΦX (j) = PrµΦX [A] ≤
1
qu

(
1 − 1

sqdk

)−d
≤ 1

qu
exp

(
2

sqk

)
≤ 1

qu

(
1 +

4
sqk

)
,

which implies the upper bound in (46). Let A′ denote the event that v does not take the value j. Note
that |Γ(A′)| ≤ d . By Lovász local lemma (Theorem 2.1), we have

PrµΦX [A
′] ≤

(
1 − 1

qu

) (
1 − 1

sqdk

)−d
≤

(
1 − 1

qu

)
exp

(
2

sqk

)
≤

(
1 − 1

qu

) (
1 +

4
sqk

)
.

We have

µu ,ΦX (j) = 1 − PrµΦX [A
′] ≥ 1 −

(
1 − 1

qu

) (
1 +

4
sqk

)
=

1
qu

(
1 − 4qu

sqk
+

4
sqk

)
≥ 1

qu

(
1 − 4

sk

)
,

where the last inequality holds because qu ≤ q. This proves the lower bound in (46). The inequalities
in (46) imply

dTV
(
µu ,ΦX , µu ,ΦY

)
≤ 1

2

∑
j ∈QX

u =QY
u

��µu ,ΦX (j) − µu ,ΦY (j)�� = 4
sk
.

Let (x,y) ∈ QX
u ×QY

u be the optimal coupling between µu ,ΦX and µu ,ΦY . It holds that

Pr [x = y] = 1 − dTV
(
µu ,ΦX , µu ,ΦY

)
Define a set S = {j ∈ QX

u = Q
Y
u | µu ,ΦX (j) ≥ µu ,ΦY (j)}. Note that

∑
j ∈QX

u
µu ,ΦX (j) =

∑
j ∈QY

u
µu ,ΦY (j) = 1.

We have dTV
(
µu ,ΦX , µu ,ΦY

)
=

∑
j ∈S (µu ,ΦX (j) − µu ,ΦY (j)), which implies

Pr [x = y] = 1 −
∑
j ∈S
(µu ,ΦX (j) − µu ,ΦY (j)) =

(
1 −

∑
j ∈S

µu ,ΦX (j)
)
+

∑
j ∈S

µu ,ΦY (j)

=
∑

j ∈QX
u \S

µu ,ΦX (j) +
∑
j ∈S

µu ,ΦY (j)

=
∑
j ∈QX

u

min{µu ,ΦX (j), µu ,ΦY (j)}.(47)

On the other hand, since (x,y) ∈ QX
u ×QY

u as a valid coupling, we have

∀j ∈ QX
u , Pr [x = y = j] ≤ min{µu ,ΦX (j), µu ,ΦY (j)}.

This implies that

∀j ∈ QX
u Pr [x = y = j] = min{µu ,ΦX (j), µu ,ΦY (j)}.(48)

Fix a j ∈ QX
u . Without loss of generality, assume µu ,ΦX (j) ≥ µu ,ΦY (j) (the case µu ,ΦX (j) < µu ,ΦY (j)

follows from symmetry). By (48), y = j implies x = j. Thus x = j ∨ y = j if and only if x = j. Thus,

Pr [x = j ∨ y = j] = max
{
µu ,ΦX (j), µu ,ΦY (j)

}
≤ 1

qu

(
1 +

4
sk

)
. □

Now, we are ready to prove Lemma 8.7.

Proof of Lemma 8.7. Given S = S1, S2, . . . , Sℓ , we define a set of variables vbl (S) = ∪ℓi=1Si . For each
1 ≤ i ≤ ℓ, sample a random real number ri ∈ [0, 1] uniformly and independently.

Consider the following implementation of coupling Capt. In Line 5, we need to sample X
Capt
u and

Y
Capt
u from the optimal coupling between marginal distributions µu ,ΦX and µu ,ΦY . If u ∈ vbl (S), then

we use the following implementation. We can find a unique Si such that u ∈ Si , because all Si are
mutually disjoint. We use random number ri to implement the optimal coupling between µu ,ΦX and

36

µu ,ΦY . Here are two case for Si : (1) Si = {u}; (2) Si is a hyperedge and u ∈ Si . We handle two cases
separately.

Suppose Si = {u}. The optimal coupling satisfies PrCapt
[
X
Capt
u , Y

Capt
u

]
= dTV

(
µu ,ΦX , µu ,ΦY

)
. The

optimal coupling can be implemented as follows.

• If ri ≤ dTV
(
µu ,ΦX , µu ,ΦY

)
, then sample a pair (X Captu ,Y

Capt
u) from the optimal coupling condi-

tional on X
Capt
u , Y

Capt
u ;

• If ri > dTV
(
µu ,ΦX , µu ,ΦY

)
, then sample a pair (X Captu ,Y

Capt
u) from the optimal coupling condi-

tional on X
Capt
u = Y

Capt
u .

By Lemma 8.8, it holds that dTV
(
µu ,ΦX , µu ,ΦY

)
≤ 4

sk =
1

8k3d2 . Define the following event for Si :

Bi : ri ≤
4
sk
=

1
8k3d2

.(49)

According to the implementation, if variable u fails in Capt, then event Bi must occur.
Suppose Si = e is a hyperedge. Suppose e represents the constraint c such that c forbids a unique

configuration σ ∈ [q]vbl(c), i.e. c(σ) = False. In addition to ri , we maintain two variables Mi and Di
for Si , whereMi ∈ [0, 1] is a real number, Di ∈ {0, 1} is a Boolean variable. Initially,Mi = 1 and Di = 0.
Suppose the coupling Capt pick a variable u ∈ e . We sample X Captu and Y

Capt
u via following procedure

Couple(u).
• If Di = 1, sample X Captu and Y Captu from the optimal coupling between µu ,ΦX and µu ,ΦY . We does

not need to use ri to implement this sampling step.
• If Di = 0, let pu = max{µu ,ΦX (σu), µu ,ΦY (σu)}, then check whether ri ≤ Mipu .

(1) if ri > Mipu , sample X Captu and Y
Capt
u from the optimal coupling between µu ,ΦX and µu ,ΦY

conditional on X
Capt
u , σu ∧ Y

Capt
u , σu ; then set Di ← 1;

(2) if ri ≤ Mipu , sample X Captu and Y
Capt
u from the optimal coupling between µu ,ΦX and µu ,ΦY

conditional on X
Capt
u = σu ∨ Y

Capt
u = σu ; then set Mi ← Mipu .

We first prove that above implementation is a valid coupling between µu ,ΦX and µu ,ΦY . Note that
if Di = 1, then there is a variable u ∈ e = Si such that e is satisfied by both X

Capt
u and Y

Capt
u , thus Di

indicates whether e is removed by the coupling. We claim

conditional on Di = 0 and Mi =mi , ri is a uniform random real number in [0,mi] .(50)

Let R denote all the randomness of the coupling Capt except the randomness of ri . We first fix R, then
prove (50) by induction. Initially, ri is sampled from [0, 1],Mi = 1,Di = 0, the property holds. Consider
one execution of Couple(u). Suppose Di = 0 andMi =mi before the execution. We show that (50) still
holds after we sampledX Captu andY Captu according to Couple(u). By induction hypothesis, ri is a uniform
random real number in [0,mi]. Note that conditional on R and Di = 0, the value of pu is fixed.3 After
the procedure Couple(u), Di = 0 if and only if ri ≤ mipu . Since ri is a uniform random real number
in [0,mi], conditional on ri ≤ mipu , ri is a uniform random real number in [0,mipu]. Since we set
mi ← mipu at the end of the procedure, thus ri is a uniform random real number in [0,mi] after the
procedure Couple(u), and (50) still holds.

To prove the validity of the implementation. First note that if Di = 1, the validity holds trivially.
If Di = 0, by (50), ri is a uniform random real number in [0,Mi]. Thus ri > Mipu with probability
1 − pu , and ri ≤ Mipu with probability pu . By Lemma 8.8, in the optimal coupling, the event X Captu =

cu ∨ Y
Capt
u = cu has probability pu . Thus, the validity holds due to the chain rule.

3This is becauseR fixes all the randomness except the randomness of ri . In our implementation, we only use ri to compare
with a threshold Mipu when we couple X Captu and Y

Capt
u in Line 5 for some u ∈ e = Si . Conditional further on Di = 0, the

results of all previous comparisons are fixed, namely, ri is smaller or equal to all the thresholdsmipu . Hence, given R and
Di = 0, the previous procedure of Capt is fully determined, which implies pu is fixed.

37

Next, for hyperedge Si = e , we define the following bad event

Bi : ri ≤
1

8d3k3
.(51)

We show that if the hyperedge Si = e fails, then Bi must occur.
Suppose Si = e is a hyperedge. Consider the input CSP formulas ΦX = (V , (QX

u)u ∈V , C) and ΦY =

(V , (QY
u)u ∈V , C). For any u , v0, let qu =

��QX
u

�� = ��QY
u

��. Suppose e represents the atomic constraint c
such that c(σ) = False for some unique σ ∈ [q]e . Suppose after the coupling procedure Capt, variables
u1,u2, . . . ,um ∈ Vset ∩ e . Since the hyperedge Si fails, it holds that

• after the coupling procedure, VolΦX (e) < γ or VolΦY (e) < γ ;
• for any 1 ≤ i ≤ m, X Captui = σui or Y

Capt
ui = σui .

The second property holds because otherwise e is satisfied by both X Capt and Y Capt , thus must be re-
moved by the coupling. According to our implementation, at the end of the coupling, we have

Di = 0 and ri ≤ Mi =

m∏
j=1

puj .

Note that s > 32 (s is defined in (45)),m ≤ k because |e | = k . By Lemma 8.8, we have
m∏
j=1

puj ≤
m∏
j=1

1
quj

(
1 +

4
sk

)
≤ exp

(
4m
sk

) m∏
j=1

1
quj
≤ e

m∏
j=1

1
quj
.

At the end of the coupling, we have VolΦX (e) < γ or VolΦY (e) < γ . But in the beginning of the coupling,
by (37), we haveVolΦX (e) ≥ 3000q2d6k6 andVolΦY (e) ≥ 3000q2d6k6. The volume of e decreases because
we update ΦX and ΦY in Line 6 foru = u1,u2, . . . ,um . Note thatv0 < Vset, thusuj , v0 for all 1 ≤ j ≤ m.
We have

m∏
j=1

quj ≥
3000q2d6k6

γ
=

3000q2d6k6

32eq2d3k3
=

3000d3k3

32e
.

If the hyperedge Si fails, then it holds that

ri ≤
m∏
j=1

puj ≤ e
m∏
j=1

1
quj
≤ 32e2

3000d3k3
≤ 1

8d3k3
.

Thus the event Bi must occur.
Combining two cases together, we have

PrCapt [∀1 ≤ i ≤ ℓ, Si fails] ≤ Pr [∀1 ≤ i ≤ ℓ,Bi]

(all ri are mutually independent) ≤
ℓ∏
i=1

Pr [Bi]

(by (49) and (51)) ≤
∏

1≤i≤ℓ
Si contains a single variable

1
8d2k3

∏
1≤i≤ℓ

Si is a hyperedge

1
8d3k3

. □

Recall a sequence of sets S1, S2, . . . , Sℓ is called a percolation sequence (PS) to u ∈ V if it satisfies first
three properties in Lemma 8.6. We call a sequence of sets S1, S2, . . . , Sℓ a percolation sequence (PS) if it
satisfies first three properties in Lemma 8.6 except distH (u, sℓ) = 0. For any Si , let

pfail(Si) =
{

1
8d2k3 if Si contains a single variable;

1
8d3k3 if Si is a hyperedge.

(52)

Combining (44) and Lemma 8.7, we have

Iv⋆ ≤
∑

PS for v⋆:e1,e2, ...,eℓ

PrCapt [∀1 ≤ i ≤ ℓ, Si fails] ≤
∑

PS for v⋆:e1,e2, ...,eℓ

ℓ∏
i=1

pfail(Si).

38

Note that the hypergraph H is same for any v⋆ ∈ V \ {v0}. We can use the above inequality with
v⋆ = v for all v ∈ V \ {v0}. This implies∑

v ∈V :v,v0

Iv ≤
∑

v ∈V :v,v0

∑
PS to v :S1,S2, ...,Sℓ

∏
1≤i≤ℓ

pfail(Si) ≤ k
∑

PS:S1,S2, ...,Sℓ

∏
1≤i≤ℓ

pfail(Si),

where the last inequality holds because there are at most k variables v that satisfies dist(v, Sℓ) = 0 (if
Sℓ contains a single variable, there are only one variable v ; if Sℓ is a hyperedge, there are k variables
v). We can enumerate all the PSs according the length. We have∑

v ∈V :v,v0

Iv ≤ k
∞∑
ℓ=1

∑
PS of length ℓ
S1,S2, ...,Sℓ

∏
1≤i≤ℓ

pfail(Si) = k
∞∑
ℓ=1

N (ℓ),

where

N (ℓ) ≜
∑

PS of length ℓ
S1,S2, ...,Sℓ

∏
1≤i≤ℓ

pfail(Si).

We then show that

N (ℓ) ≤
(
k2d2

1
8d2k3

+ k2d3
1

8d3k3

) (
k3d2

1
8d2k3

+ k3d3
1

8d3k3

)ℓ−1
.(53)

We need the following basic facts to prove (53). We may assume d,k ≥ 2, otherwise the sampling
problem is trivial. Fix a variable v ∈ V . The number of variables u satisfying distH (v,u) ≤ 2 is at most

1 + d(k − 1) + d(d − 1)(k − 1)2 ≤ k2d2.

The number of hyperedges e ′ satisfying distH (v, e ′) ≤ 2 is at most

d + d(k − 1)(d − 1) + d(d − 1)2(k − 1)2 ≤ k2d3.

Fix a hyperedge e ∈ E. The number of variables u satisfying distH (e,u) ≤ 2 is at most

k + k(d − 1)(k − 1) + k(d − 1)2(k − 1)2 ≤ k3d2.

The number of hyperedges e ′ satisfying distH (e, e ′) ≤ 2 is at most

(1 + k(d − 1)) + k(k − 1)(d − 1)2 + k(k − 1)2(d − 1)3 ≤ k3d3.

We prove (53) by induction on ℓ. Suppose ℓ = 1. It holds that distH (v0, S1) ≤ 2. By (52), we have

N (1) ≤ k2d2
1

8d2k3
+ k2d3

1
8d3k3

.

Suppose (53) holds for all ℓ ≤ k . We prove (53) for ℓ = k + 1. For PS S1, S2, . . . , Sk+1 of length k + 1,
S1, S2, . . . , Sk is a PS of length k and distH (Sk , Sk+1) ≤ 2. For any Sk , there are at most k3d2 ways to
choose Sk+1 as a variable, and at most k3d3 ways to choose Sk+1 as a hyperedge. This implies

N (k + 1) ≤ N (k)
(
k3d2

1
8d2k3

+ k3d3
1

8d3k3

)
by I.H.
≤

(
k2d2

1
8d2k3

+ k2d3
1

8d3k3

) (
k3d2

1
8d2k3

+ k3d3
1

8d3k3

)k
.

This proves (53). Now, we have∑
v ∈V :v,v0

Iv ≤ k
∞∑
ℓ=1

N (ℓ) ≤
∞∑
ℓ=1

(
k3d2

1
8d2k3

+ k3d3
1

8d3k3

)ℓ
=

∞∑
ℓ=1

(
1
4

)ℓ
≤ 1

2
.

39

8.4. Non-adaptive coupling analysis. We now analyze the general CSP formula Φ = (V ,Q, C)with
atomic constraints, where each variablev ∈ V has an arbitrary domainQv and each constraint contains
arbitrary number of variables. We will prove the following lemma is this section.

Lemma 8.9. Let Φ = (V ,Q, C) be the input CSP formula with atomic constraints in Algorithm 1. Let h =
(hv)v ∈V be the projection scheme for Φ satisfying Condition 3.4 with parameters α and β . Let qv = |Qv |,
p = maxc ∈C

∏
v ∈vbl(c)

1
qv

and D denote the maximum degree of the dependency graph of Φ. If

log
1
p
≥ 50

β
log

(
2000D4

β

)
,

then it holds that
∑
v ∈V \{v0 } dTV

(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤ 1

2 .

Fix a variable v⋆ ∈ V \ {v0}. The goal of this section is to construct a non-adaptive coupling Cnon to
bound the total variation distance dTV

(
ν
XV \{v⋆}
v⋆

,ν
YV \{v⋆}
v⋆

)
.

Recall that Φ = (V ,Q, C) is the original input CSP formula. Recall that two CSP formulas ΦX =

(V ,QX = (QX
u)u ∈V , C) and ΦY = (V ,QY = (QY

v)v ∈V , C) are defined by

QX
u =

{
h−1u (Xu) if u , v⋆;
Qu if u = v⋆,

QY
u =

{
h−1u (Yu) if u , v⋆;
Qu if u = v⋆.

(54)

By definition, (QX
u)u ∈V and (QY

u)u ∈V differ only at variablev0. Let µΦX denote the uniform distribution
over all satisfying assignments to ΦX , and µΦY denote the uniform distribution over all satisfying
assignments to ΦY . The first step for non-adaptive coupling analysis is to construct another projection
schemes on instances ΦX and ΦY . Let hX = (hXv)v ∈V denote the projection scheme for ΦX and hY =
(hYv)v ∈V denote the projection scheme for ΦY , where hXv : QX

v → ΣXv and hYv : QY
v → ΣYv . For each

v ∈ V , define
sXv ≜

��ΣXv �� , sYv ≜
��ΣYv �� , qXv =

��QX
v

�� , qYv =
��QY

v

�� .
In our analysis, we construct a pair of projection schemes hX ,hY satisfying the following condition.

Condition 8.10. Let Φ = (V ,Q, C) be the original input CSP formula of Algorithm 1 and h = (hv)v ∈V
be the original projection scheme for Φ satisfying Condition 3.4 with parameters α and β . The projection
scheme hX for ΦX and the projection scheme hY for ΦY satisfy the following conditions:

• both hX and hY are balanced, i.e. for each v ∈ V and cXv ∈ ΣXv ,
⌊
qXv /sXv

⌋
≤

��(hXv)−1(cXv)�� ≤⌈
qXv /sXv

⌉
; for each v ∈ V and cYv ∈ ΣYv ,

⌊
qYv /sYv

⌋
≤

��(hYv)−1(cYv)�� ≤ ⌈
qYv /sYv

⌉
;

• ΣXv0
= ΣYv0

; and hXu = h
Y
u for all u ∈ V \ {v0};

• hXv⋆
= hYv⋆

= hv⋆ , where hv⋆ is the original projection scheme h restricted on variable v⋆;
• for any constraint c ∈ C,

min
©­«

∑
v ∈vbl(c)

log

⌊
qXv
sXv

⌋
,

∑
v ∈vbl(c)

log

⌊
qYv
sYv

⌋ª®¬ ≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ ;(55)

for any constraint c ∈ C satisfying v⋆ < vbl (c),

min
©­«

∑
v ∈vbl(c)

log
qXv⌈

qXv /sXv
⌉ , ∑

v ∈vbl(c)
log

qYv⌈
qYv /sYv

⌉ª®¬ ≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ ;(56)

for any constraint c ∈ C satisfying v⋆ ∈ vbl (c),

min
©­«log

⌊
qXv⋆

sXv⋆

⌋
+

∑
v ∈vbl(c)\{v⋆ }

log
qXv⌈

qXv /sXv
⌉ , log ⌊

qYv⋆

sYv⋆

⌋
+

∑
v ∈vbl(c)\{v⋆ }

log
qYv⌈

qYv /sYv
⌉ª®¬

≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ ,(57)

40

where qXv =
��QX

v

��,qYv = ��QY
v

�� and qv = |Qv | for all v ∈ V .

Condition 8.10 is a variation of Condition 3.4. The lower bound in (56) can be transformed to the
upper bounds on

∑
v ∈vbl(c)

⌈
qXv /sXv

⌉
and

∑
v ∈vbl(c)

⌈
qYv /sYv

⌉
. Thus, (56) and (55) are similar to (6) and (7)

in Condition 3.4. Moreover, for constraint c ∈ C satisfying v⋆ ∈ vbl (c), we need an extra condition
in (57). The purpose of this extra condition is to handle the case that |vbl (c)| can be very large.

The following lemma shows that the projection schemes satisfying Condition 8.10 exist under a
Lovász local lemma condition. Since we only use hX and hY for analysis, we only need to show such
projection schemes exist, we do not need an algorithm to construct specific projection schemes.

Lemma 8.11. Let Φ = (V ,Q, C) be the original input CSP formula of Algorithm 1 and h = (hv)v ∈V be
the original projection scheme for Φ satisfying Condition 3.4 with parameters α and β . Let qv = |Qv | and
D denote the maximum degree of the dependency graph of Φ. Let p ≜ maxc ∈C

∏
v ∈vbl(c)

1
qv

. Suppose

log
1
p
≥ 55

β
(logD + 3).

There exist projection schemes hX ,hY for ΦX ,ΦY satisfying Condition 8.10.

The proof of Lemma 8.11 is deferred to Section 8.4.2.
Let hX = (hXv)v ∈V and hY = (hYv)v ∈V denote the projection schemes for ΦX and ΦY , where hXv :

QX
v → ΣXv and hYv : QY

v → ΣYv . Suppose hX and hY satisfy Condition 8.10. By Condition 8.10, for any
variable v ∈ V , ΣXv = ΣYv and sXv = sYv =

��ΣXv �� = ��ΣYv ��. Denote

∀v ∈ V , s ′v ≜ sXv = s
Y
v and Σ′v ≜ ΣXv = ΣYv ;

Σ′ ≜
⊗
v ∈V

Σ′v .

Recall µΦX and µΦY are the uniform distributions over all satisfying assignments to ΦX and ΦY . We
define the following two projected distributions:

• νX : the projected distribution (defined in Definition 3.2) over Σ′ =
⊗

v ∈V Σ′v induced from the
instance ΦX and the projection scheme hX ;
• νY : the projected distribution (defined in Definition 3.2) over Σ′ =

⊗
v ∈V Σ′v induced from the

instance ΦY and the projection scheme hY .
For any variablev ∈ V , let νv ,X and νv ,Y denote the marginal distributions onv projected from νX and
νY . Recall the goal of this section is to bound dTV

(
ν
XV \{v⋆}
v⋆

,ν
YV \{v⋆}
v⋆

)
. By Condition 8.10, hXv⋆

= hYv⋆
=

hv⋆ . By the definitions ΦX , ΦY and the projected distribution in Definition 3.2,

ν
XV \{v⋆}
v⋆

= νv⋆,X and ν
YV \{v⋆}
v⋆

= νv⋆,Y .

Recall that Φ = (V ,Q, C) is the original input CSP formula of Algorithm 1. Recall that H = (V , E)
denotes the (multi-)hypergraph that models Φ, where E ≜ {vbl (c) | c ∈ C}. Note that H also models
ΦX andΦY , becauseΦ,ΦX ,ΦY have the same sets of variables and constraints. Let e ∈ E be a hyperedge
and u ∈ e a variable in e . Let X Cnonu ,Y Cnonu ∈ Σ′u be two values. Let ce ∈ C denote the atomic constraint
represented by e . Let σ ∈ Qe denote the unique configuration forbidden by ce , i.e. ce (σ) = False. We
say e is satisfied by X Cnonu if σu < (hXu)−1(X Cnonu), because in the projected distribution νX , conditional
on the value of u is X Cnonu , the constraint ce must be satisfied. Similarly, We say e is satisfied by Y Cnonu
if σu < (hYu)−1(Y Cnonu). The coupling procedure Cnon is given in Algorithm 4.

The input of the coupling Cnon contains CSP formulas ΦX and ΦY , together with projection schemes
hX and hY satisfying Condition 8.10. We also give an index function ID : V → [n] such that each
variable has a distinct index and the variable v⋆ has the largest index. The coupling will use this index
to pick the variable in Line 5. Compared with the adaptive coupling in Algorithm 3, the coupling
Cnon is non-adaptive, i.e. it does not need to maintain the current volume of each hyperedge. Instead,
the coupling Cnon is given projection schemes hX and hY in advance. Once the coupling Cnon picks
a variable u, it assigns the values in Σ′u to variable u, where the domain Σ′u is determined by hX and
hY . The coupling Cnon will put u intoV1 if the coupling on u fails. After that, the coupling will remove

41

Algorithm 4: The coupling procedure Cnon
Input :CSP formulas ΦX = (V ,QX = (QX

u)u ∈V , C) and ΦY = (V ,QY = (QY
v)v ∈V , C), the

hypergraph H = (V , E) modeling ΦX and ΦY , projection schemes hX and hY
satisfying Condition 8.10, variables v0,v⋆ ∈ V , an index function ID : V → [n] such
that ID(u) , ID(v) for all u , v and ID(v⋆) = n.

Output :a pair of assignments X Cnon,Y Cnon ∈ Σ′.
1 sample X Cnonv0 ∼ νv0,X and Y Cnonv0 ∼ νv0,Y independently;
2 V1 ← {v0}, V2 ← V \V1, Vset ← {v0};
3 remove all e from E s.t. the constraint c represented by e is satisfied by both X Cnonv0 and Y Cnonv0 ;
4 while ∃e ∈ E s.t. e ∩V1 , �, (e ∩V2) \Vset , � do
5 let e be the first such hyperedge and u the variable in (e ∩V2) \Vset with lowest ID;
6 sample (cX , cY) ∈ Σ′u × Σ′u from the optimal coupling between νu ,X (· | X Cnon) and

νu ,Y (· | Y Cnon) and extend X Cnon and Y Cnon to u by setting (X Cnonu ,Y Cnonu) ← (cX , cY);
7 Vset ← Vset ∪ {u};
8 if X Cnonu , Y Cnonu then
9 V1 ← V1 ∪ {u},V2 ← V \V1;

10 for e ∈ E s.t. the constraint c represented by e is satisfied by both X Cnonu and Y Cnonu do
11 E ← E \ {e}
12 for e ∈ E s.t. e ⊆ Vset do
13 V1 ← V1 ∪ {e},V2 ← V \V1;

14 extend X Cnon and Y Cnon to the set V2 \Vset by sampling (X CnonV2\Vset,Y
Cnon
V2\Vset) from the optimal

coupling between νV2\Vset,X (· | X Cnon) and νV2\Vset,Y (· | Y Cnon);
15 return (X Cnon,Y Cnon);

all the hyperedges satisfied by both X Cnonu and Y Cnonu in Line 11. If all variables in a hyperedge e are
assigned values and e is still not satisfied, the coupling Cnon puts e intoV1 in Line 13. Remark that after
the while-loop, Cnon only samples the value for V2 \Vset because V1 ⊆ Vset.
Lemma 8.12. The coupling procedure Cnon satisfies the following properties:

• the coupling procedure will terminate eventually;
• the output X Cnon ∈ Σ′ follows νX and the output Y Cnon ∈ Σ′ follows νY ;
• for any variable u ∈ V , if X Cnonu , Y Cnonu in the final output, then u ∈ V1.

Proof. After each execution of the while-loop, the size of Vset will increase by 1. The size of Vset is at
most n. Thus, the coupling procedure will terminate eventually.

We prove the second property for X Cnon . The result for Y Cnon can be proved in a similar way. In
Line 1, the coupling samples the X Cnonv0 independently from the distribution νv0,X . Given the current
configurationX Cnon , the coupling picks an unassigned variableu, then drawX Cnonu from the conditional
marginal distribution νu ,X (· | X Cnon) in Line 6. Finally, the coupling samplesX CnonV \V2 from the conditional
distribution. Note that V1 ⊆ Vset. When the coupling terminates, all variables v ∈ V gets a value
X Cnonv ∈ Σ′v . By the chain rule, the output X Cnon ∈ Σ′ follows the law νX .

To prove the last property, we show that after the while loop, it holds that
• X CnonV2∩Vset = Y

Cnon
V2∩Vset ;

• νV2\Vset,X (· | X Cnon) andνV2\Vset,Y (· | Y Cnon) are identical distributions, thus all variables inV2\Vset
can be coupled perfectly.

Combining these two properties proves the last property in the lemma. The first property is easy to
verify, because if X Cnonu , Y Cnonu , then u must be added into V1 in Line 9. To prove the second property,
we claim that, after the while-loop, there is no hyperedge e ∈ E such that e ∩V1 , � and e ∩V2 , �.
Suppose such hyperedge e exists. There are two possibilities for such hyperedge.

42

• (e ∩V2) \Vset , �: In this case, the while-loop cannot terminate. Contradiction.
• (e ∩V2) \Vset = �: Note that it always holds that V1 ⊆ Vset. In this case, it holds that e ⊆ Vset.

Note that e ∩V1 , � and e ∩V2 , �. Hence, after the Line 1, there is no such hyperedge e . If
such hyperedge e exists, it must be produced by the while-loop. Since e ⊆ Vset, such hyperedge
e will either be removed in Line 11, or added into V1 in Line 13 (after which e ∩V2 = �). This
implies that such hyperedge does not exist when the while-loop terminates. Contradiction.

Hence, after thewhile-loop, all variables are divided into two partsV1 andV2. Besides, all the constraints
c ∈ C such that vbl (c) ∩V1 , � and vbl (c) ∩V2 , � are satisfied by bothX Cnon and Y Cnon . This implies,
conditional on X Cnon , the variables in V2 is independent with the variables in V1, and the same result
holds for Y Cnon . Note that two instances ΦX and ΦY differ only at variable v0, two projection schemes
hX andhY also differ only atv0, andv0 ∈ V1. SinceX CnonV2∩Vset = Y

Cnon
V2∩Vset , νV2\Vset,X (· | X

Cnon) = νV2\Vset,X (· |
X CnonV2∩Vset) and νV2\Vset,Y (· | Y

Cnon) = νV2\Vset,Y (· | Y
Cnon
V2∩Vset) are identical distributions. □

For each hyperedge e ∈ E, we say e is failed in coupling Cnon if the following condition holds.

Definition 8.13. A hyperedge e ∈ E fails in the coupling Cnon if one of the following two events occur.
• Type-I failure: there is a variable u ∈ e \ {v0} such that the coupling picks e and u in Line 5,

and X Cnonu , Y Cnonu after the coupling.
• Type-II failure: consider the time when the while-loop terminates. It holds that e ⊆ Vset and

the constraint represented by e is not satisfied by both X Cnon and Y Cnon .

Let Lin(H) denote the line graph of H , where each vertex in Lin(H) is a hyperedge in H , two hyper-
edges e, e ′ ∈ E are connected if e ∩ e ′ , �. Let Link (H) denote the k-th power graph of Lin(H), two
hyperedges e and e ′ are adjacent in Link (H) if their distance in Lin(H) is no more than k . For each
variable, we use N (v) to denote the set of hyperedges incident to v :

N (v) ≜ {e ∈ E | v ∈ e}.
For any k ≥ 1, define

N k (v) ≜
{
e ∈ E | ∃e ′ ∈ N (v) s.t. distLin(H)(e, e ′) ≤ k − 1

}
,(58)

where distLin(H)(e, e ′) denotes the length of the shortest path between e and e ′ in graph Lin(H). Remark
that N (v) = N 1(v) by definition.

When the coupling Cnon terminates, each variable v ∈ V1 satisfies the following property.

Lemma 8.14. For any v ∈ V1 \ {v0}, there exists a path e1, e2, . . . , eℓ in Lin2(H) such that
• e1 ∈ N 2(v0) and v ∈ eℓ ;
• for all 1 ≤ i ≤ ℓ, the hyperedge ei fails in the coupling.

Proof. LetV1 = {v0,v1,v2, . . . ,vm} denote the variables inV1, where vi is the i-th variables added into
V1. Remark that if a set of variables are added intoV1 at the same time (Line 13), we break tie arbitrarily.
We prove the lemma by induction on index i .

The base case is v0, the lemma holds for v0 trivially. Suppose the lemma holds for v0,v1, . . . ,vk−1.
We prove the lemma for variable vk . The variable vk is added into V1 either in Line 9 or Line 13.

• Suppose vk is added into V1 in Line 9. Variable vk must be picked in Line 5. Consider the
hyperedge e picked in Line 5. The hyperedge e fails in type-I because vk ∈ e and X Cnonvk , Y Cnonvk .
Besides, it holds that vk ∈ e and vj ∈ e for some j < k . If j = 0, the lemma holds trivially. If
0 < j < k , by induction hypothesis, there is a path e1, e2, . . . , et for vj . Since vj ∈ et and vj ∈ e ,
the lemma holds for vk with the path e1, e2, . . . , et , e .
• Suppose vk is added into V1 in Line 13. Let e denote the hyperedge in Line 13. It holds that

that vk ∈ e . By Line 12, e ⊆ Vset. Since e is not deleted in Line 3 or Line 11, the constraint
represented by e is not satisfied by both X Cnon and Y Cnon . This property holds up to the end
of the coupling. Thus e fails in type-II. Since e ⊆ Vset and vk , v0, the while-loop must have
picked a hyperedge e ′ andvk ∈ e ′ in Line 5. Thus, e ′ contains a variablevj for j < k (e ′may not
fail). If j = 0, then e ∈ N 2(v0), and the lemma holds forvk with single hyperedge e . If 0 < j < k ,

43

by induction hypothesis, there is a path e1, e2, . . . , et for vj . Since et ∩ e ′ , � and e ′ ∩ e , �, e
and et are adjacent in Lin2(H). the lemma holds for vk with the path e1, e2, . . . , et , e .

Combining two cases proves the lemma. □

If the X Cnonv⋆
, Y Cnonv⋆

, we have the following result.

Lemma 8.15. If X Cnonv⋆
, Y Cnonv⋆

, then there exists a path e1, e2, . . . , eℓ in Lin2(H) such that
• e1 ∈ N 2(v0) and v⋆ ∈ eℓ ;
• for all 1 ≤ i ≤ ℓ − 1, the hyperedge ei fails in the coupling;
• the hyperedge eℓ is not satisfied by both X CnonS and Y CnonS , where S = eℓ \ {v⋆}.

Proof. If X Cnonv⋆
, Y Cnonv⋆

, by Lemma 8.12, it must hold that v⋆ ∈ V1 and v⋆ is added into V1 in Line 9,
because v⋆ , v0, and if v⋆ is added intoV1 in Line 13, then X Cnonv⋆

= Y Cnonv⋆
. Consider the moment when

v⋆ is added intoV1. Suppose the while-loop picks the hyperedge e⋆. It must hold that v⋆ ∈ e⋆ and the
while loop picks v⋆ to sample its values in X Cnon and Y Cnon . In Line 5, the algorithm always picks the
variable in e⋆ with lowest ID and the ID ofv⋆ is the n. This implies all (e⋆∩V2) \Vset = {v⋆}. Note that
V1 ⊆ Vset. Thus, all variables in e⋆ \ {v⋆} get the value and e⋆ is not satisfied in both X CnonS and Y CnonS ,
where S = e⋆ \ {v⋆}. Otherwise, e⋆ is removed in Line 3 or Line 11, the while-loop cannot pick e⋆.

Let V1 = {v0,v1,v2, . . . ,vm} denote the variables in V1, where vi is the i-th variables added into V1.
Remark that if a set of variables are added into V1 at the same time (Line 13), we break tie arbitrarily.
Suppose v⋆ = vk . Since e⋆ is picked in Line 5, it must hold that vj ∈ e⋆ for some j < k . If j = 0,
the lemma holds with single hyperedge e⋆. If 0 < j < k , there exists a path e1, e2, . . . , eℓ−1 in Lin2(H)
satisfying the condition in Lemma 8.14 for vj . Since vj ∈ eℓ−1 and vj ∈ e⋆, the lemma holds with the
path e1, e2, . . . , eℓ−1, e⋆. □

We modify the path in Lemma 8.15 to the following sequence of hyperedges, which will be used in
the analysis.

Corollary 8.16. If X Cnonv⋆
, Y Cnonv⋆

, then there exists a path e1, e2, . . . , eℓ in Lin3(H) such that
• e1 ∈ N 3(v0), v⋆ ∈ eℓ , and e1, e2, . . . , eℓ are mutually disjoint.
• for all 1 ≤ i ≤ ℓ − 1, the hyperedge ei fails in the coupling;
• the hyperedge eℓ is not satisfied by both X CnonS and Y CnonS , where S = eℓ \ {v⋆}.

Proof. Let e ′1, e ′2, . . . , e ′m denote the path in Lemma 8.15. We first show that how to construct the path
e1, e2, . . . , eℓ in Lin3(H), then we show that such path satisfies the properties in the corollary.

Let S be an empty stack. Let P denote the sequence (e ′1, e ′2, . . . , e ′m). We pick the last hyperedge in
the path P , denote this hyperedge as e ′i . We push e ′i into the stack S. We search for the minimum index
j such that j < i and e ′i ∩ e ′j , �. Here are two cases depending on whether such index j exists.

• If such index j does not exist, remove e ′i from the path P .
• If such index j exists, remove all e ′k for j ≤ k ≤ i from the path P .

Repeat the above procedure until P becomes an empty sequence. Let e1, e2, . . . , eℓ be the elements in
stack S from top to bottom.

It is easy to verify eℓ = e ′m . By Lemma 8.15,v⋆ ∈ eℓ and eℓ satisfies the last property in the corollary.
It is also easy to see all e1, e2, . . . , eℓ are mutually disjoint. By Lemma 8.15, the hyperedge ei fails in the
coupling for all 1 ≤ i ≤ ℓ − 1. We only need to prove the following two properties

• e1 ∈ N 3(v0);
• e1, e2, . . . , eℓ forms a path in Lin3(H).

We first prove e1 ∈ N 3(v0). If e1 = e ′1, then the property holds trivially. Suppose e1 = e ′k for some
k > 1. When the procedure adds e ′k into the stack, the hyperedge e ′1 must be removed. This implies
e ′k ∩ e

′
1 , �. By Lemma 8.15, e ′1 ∈ N 2(v0). It holds that e1 = e ′k ∈ N

3(v0).
Next, we prove that e1, e2, . . . , eℓ forms a path in Lin3(H). Consider two adjacent hyperedges ei−1

and ei . Suppose ei = e ′j and ei−1 = e ′k . If j = k + 1, since e ′j and e ′k are adjacent in Lin2(H), ei and ei−1
are adjacent in Lin3(H). Suppose j > k + 1. In this case, e ′k+1 is removed and e ′k is not removed, thus
e ′j ∩ e ′k+1 , �. Since e

′
k and e ′k+1 are adjacent in Lin2(H), e ′j and e ′k are adjacent in Lin3(H). □

44

Fix a path e1, e2, . . . , eℓ in Lin3(H) such that it satisfies the first property except v⋆ ∈ eℓ in Corol-
lary 8.16, i.e. e1 ∈ N 3(v0), and e1, e2, . . . , eℓ are mutually disjoint. We call such path a percolation
path (PP). We say a percolation path e1, e2, . . . , eℓ is a percolation path for v⋆ if v⋆ ∈ eℓ .
Definition 8.17. Fix a percolation path e1, e2, . . . , eℓ . For each 1 ≤ i ≤ ℓ, a hyperedge ei is bad if

• for 1 ≤ i ≤ ℓ − 1: the hyperedge ei fails in the coupling Cnon (Definition 8.13);
• for i = ℓ: the hyperedge eℓ is not satisfied by both X CnonS and Y CnonS , where S = eℓ \ {v⋆}; and
v⋆ is assigned different values in X Cnon and Y Cnon , i.e. X Cnonv⋆

, Y Cnonv⋆
.

By Corollary 8.16, ifX Cnonv⋆
, Y Cnonv⋆

in couplingCnon, then there is a percolation path forv⋆: e1, e2, . . . , eℓ
such that ei is bad for all 1 ≤ i ≤ ℓ. We give the following key lemma in this proof.

Lemma 8.18. Suppose the original input CSP formula Φ = (V ,Q, C) of Algorithm 1 satisfies

log
1
p
≥ 50

β
log

(
2000D4

β

)
.(59)

Fix a percolation path (PP) e1, e2, . . . , eℓ for v⋆ in Lin3(H) . It holds that

PrCnon [∀1 ≤ i ≤ ℓ, ei is bad] ≤
(

1
4D3

)ℓ β

50

(
1
2

) β |eℓ |
50

,

which implies

PrCnon
[
X Cnonv⋆

, Y Cnonv⋆

]
≤

∑
e1,e2, ...eℓ is a PP for v⋆

(
1

4D3

)ℓ β

50

(
1
2

) β |eℓ |
50

.

The proof of Lemma 8.18 is deferred to Section 8.4.1. We now use Lemma 8.18 to prove Lemma 8.9.

Proof of Lemma 8.9. We will use Lemma 8.18 to show that∑
v ∈V \{v0 }

dTV
(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤ 1

2
.

By the assumption in Lemma 8.9, it holds that log 1
p ≥

50
β log

(
2000D4

β

)
. Note that the condition in

Lemma 8.18 holds. Note that log 1
p ≥

50
β log

(
2000D4

β

)
≥ 55

β (logD + 3) . By Lemma 8.11, the projection
schemes satisfying Condition 8.10 exists. By Lemma 8.12, the X Cnon in Cnon follows the distribution
νX and the Y Cnon in Cnon follows the distribution νY . By the definition of νX and νY , it holds that
νv⋆,X = ν

XV \{v⋆}
v⋆

and νv⋆,Y = ν
YV \{v⋆}
v⋆

. By the coupling lemma and Lemma 8.18, it holds that

dTV
(
ν
XV \{v⋆}
v⋆

,ν
YV \{v⋆}
v⋆

)
≤ PrCnon

[
X Cnonv⋆

, Y Cnonv⋆

]
≤

∑
e1,e2, ...eℓ is a PP for v⋆

(
1

4D3

)ℓ β

50

(
1
2

) β |eℓ |
50

.

Note that the hypergraph H is same for any v⋆ ∈ V \ {v0}. We can use the above inequality with
v⋆ = v for all v ∈ V \ {v0}. Thus,∑

v ∈V \{v0 }
dTV

(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤

∑
v ∈V \{v0 }

∑
e1,e2, ...eℓ is a PP for v

(
1

4D3

)ℓ β

50

(
1
2

) β |eℓ |
50

(by double counting) ≤
∑

e1,e2, ...eℓ is a PP

(
1

4D3

)ℓ β |eℓ |
50

(
1
2

) β |eℓ |
50

.

Note that x
(1
2

)x ≤ 1 for all x ≥ 0. We have∑
v ∈V \{v0 }

dTV
(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤

∑
e1,e2, ...eℓ is a PP

(
1

4D3

)ℓ
.

45

If e1, e2, . . . eℓ is a percolation path, then e1, e2, . . . eℓ is a path in Lin3(H) and e1 ∈ N 3(v0). Note that��N 3(v0)
�� ≤ D +D(D − 1)+D(D − 1)2 ≤ D3 (due to (58)) and the maximum degree of Lin3(H) is at most

D3. The number of such paths is at most D3ℓ . We have∑
v ∈V \{v0 }

dTV
(
ν
XV \{v }
v ,ν

YV \{v }
v

)
≤

∑
e1,e2, ...eℓ is a PP

(
1

4D3

)ℓ
≤
∞∑
ℓ=1

D3ℓ
(

1
4D3

)ℓ
≤ 1

2
. □

8.4.1. Proof of Lemma 8.18. We first introduce some notations for proving Lemma 8.18. Let Φ =
(V ,Q, C) to denote the original input CSP formula of Algorithm 1. Let D denote the maximum de-
gree of the dependency graph of Φ. For each v ∈ V , let qv = |Qv |. Let

p ≜ max
c ∈C

∏
v ∈vbl(c)

1
qv
.

Let h denote the original projection scheme for Φ satisfying Condition 3.4 with parameters α and β .
Recall thatΦX = (V ,QX = (QX

u)u ∈V , C) andΦY = (V ,QY = (QY
v)v ∈V , C) are defined in (54). Recall that

hX = (hXv)v ∈V and hY = (hYv)v ∈V denote the projection schemes for ΦX and ΦY , where hXv : QX
v → Σ′v

and hYv : QY
v → Σ′v . Recall that hX and hY satisfy Condition 8.10. For each v ∈ V , sXv = sYv = s ′v . The

following lemma gives the key property for νv ,X and νv ,Y in Line 6.

Lemma 8.19. Suppose the original input CSP formula Φ of Algorithm 1 satisfies

log
1
p
≥ 50

β
log

(
2000D4

β

)
.

Let Λ ⊆ V and v ∈ V \ Λ. Let σX ,σY ∈ Σ′Λ =
⊗

u ∈Λ Σ
′
u be two partial assignments on Λ. For any

cX , cY ∈ Σ′v , ��(hXv)−1(cX)��
qXv

(
1 − β

500D3

)
≤ νv ,X (cX | σX) ≤

��(hXv)−1(cX)��
qXv

(
1 +

β

500D3

)
,��(hYv)−1(cY)��

qYv

(
1 − β

500D3

)
≤ νv ,Y (cY | σY) ≤

��(hYv)−1(cY)��
qYv

(
1 +

β

500D3

)
.

Furthermore, if the variable v satisfies log
⌊
qXv
s ′v

⌋
≥ t + 5

4 log
(
2000D4

β

)
and log

⌊
qYv
s ′v

⌋
≥ t + 5

4 log
(
2000D4

β

)
for some t ≥ 0,then for any cX , cY ∈ Σ′v ,��(hXv)−1(cX)��

qXv

(
1 − β2−t

500D3

)
≤ νv ,X (cX | σX) ≤

��(hXv)−1(cX)��
qXv

(
1 +

β2−t

500D3

)
,��(hYv)−1(cY)��

qYv

(
1 − β2−t

500D3

)
≤ νv ,Y (cY | σY) ≤

��(hYv)−1(cY)��
qYv

(
1 +

β2−t

500D3

)
.

Proof. We prove the lemma for νv ,X (cX | σX). The result for νv ,Y (cY | σY) can be proved in a similar
way. To simplify the notation, denote σ = σX , c⋆ = cX . We define a new instance Φ̃ = (V , Q̃ =
(Q̃u)u ∈V , C):

∀u ∈ V , Q̃u =

{
(hXu)−1(σu) if u ∈ Λ;
QX
u if u < Λ.

Let µ̃ denote the uniform distribution of all satisfying assignments to Φ̃. By the definition of the pro-
jected distribution, if X ∼ µ̃, then Pr

[
Xv ∈ (hXv)−1(c⋆)

]
equals to νv ,X (c⋆ | σ). By Condition 8.10, for

any constraint c ∈ C, it holds that∑
v ∈vbl(c)

log

⌊
qXv
s ′v

⌋
≥ β

10
log

1
p
≥ 5 log

(
2000D4

β

)
.(60)

Let D denote the product distribution such that each variable u ∈ V takes a value from Q̃u uniformly
at random. For each constraint c ∈ C, let Bc denote the bad event that c is not satisfied. Let B denote

46

the collection of bad events (Bc)c ∈C . Let Γ(·) be defined as in the Lovász local lemma (Theorem 2.1).
We define a function x : B → (0, 1) such that

∀c ∈ C s.t. v < vbl (c) , x(Bc) =
β

2000D4 ;

∀c ∈ C s.t. v ∈ vbl (c) , x(Bc) =
β

⌊
qXv /s ′v

⌋
2000D4qXv

.

Since hX is a balanced projection scheme,
���Q̃u

��� ≥ ⌊
qXu
s ′u

⌋
for all u ∈ V . For any constraint c ∈ C such

that v < vbl (c), it holds that

PrD [Bc] =
∏

u ∈vbl(c)

1

|Q̃u |
≤

∏
u ∈vbl(c)

1⌊
qXu /s ′u

⌋ ≤ β

20005D20 ≤
β

2000D4

(
1 − β

2000D4

)2000D4/β−1

≤ β

2000D4

(
1 − β

2000D4

)D
≤ x(Bc)

∏
Bc′ ∈Γ(Bc)

(1 − x(Bc ′)) ,(61)

where the last inequality holds because x(Bc) ≤ β
2000D4 for all c ∈ C. Note that v < Λ. For any c ∈ C

such that v ∈ vbl (c), by (60), it holds that

PrD [Bc] =
1

qXv

∏
u ∈vbl(c):u,v

1

|Q̃u |
≤

⌊
qXv /s ′v

⌋
qXv

∏
u ∈vbl(c)

1⌊
qXu /s ′u

⌋ ≤ ⌊
qXv /s ′v

⌋
qXv

· β

20005D20

≤
β

⌊
qXv /s ′v

⌋
2000D4qXv

(
1 − β

2000D4

)2000D4/β−1
≤

β
⌊
qXv /s ′v

⌋
2000D4qXv

(
1 − β

2000D4

)D
≤ x(Bc)

∏
Bc′ ∈Γ(Bc)

(1 − x(Bc ′)) .

Fix a value c⋆ ∈ Σ′v . Let A denote the event that v takes a value in (hXv)−1(c⋆). It holds that |Γ(A)| ≤ D.
For any Bc ∈ Γ(A), it holds that v ∈ vbl (c) and x(Bc) =

β bqXv /s ′vc
2000D4qXv

. Recall that µ̃ denotes the uniform
distribution of all satisfying assignments to Φ̃. By Lovász local lemma (Theorem 2.1),

Prµ̃ [A] = νv ,X (c⋆ | σ) ≤
��(hXv)−1(c⋆)��

qXv

(
1 −

β
⌊
qXv /s ′v

⌋
2000D4qXv

)−D
≤

��(hXv)−1(c⋆)��
qXv

exp

(
β

⌊
qXv /s ′v

⌋
1000D3qXv

)
≤

��(hXv)−1(c⋆)��
qXv

(
1 +

β
⌊
qXv /s ′v

⌋
500D3qXv

)
≤

��(hXv)−1(c⋆)��
qXv

(
1 +

β

500D3

)
.

This proves the upper bound. Let A′ denote the event that v does not take any value in (hXv)−1(c⋆),
then |Γ(A′)| ≤ D. For any Bc ∈ Γ(A′), it holds that v ∈ vbl (c) and x(Bc) =

β bqXv /s ′vc
2000D4qXv

. By Theorem 2.1,

Prµ̃ [A′] = 1 − νv ,X (c⋆ | σ) ≤
(
1 −

��(hXv)−1(c⋆)��
qXv

) (
1 −

β
⌊
qXv /s ′v

⌋
2000D4qXv

)−D
≤

(
1 −

��(hXv)−1(c⋆)��
qXv

)
exp

(
β

⌊
qXv /s ′v

⌋
1000D3qXv

)
≤

(
1 −

��(hXv)−1(c⋆)��
qXv

) (
1 +

β
⌊
qXv /s ′v

⌋
500D3qXv

)
.

Let a =
��(hXv)−1(c⋆)�� /qXv and b =

⌊
qXv /s ′v

⌋
/qXv . Since hX is a balanced projection scheme (Condi-

tion 8.10), it holds that
��(hXv)−1(c⋆)�� ≥ ⌊

qXv /s ′v
⌋
and a ≥ b. Thus

νv ,X (c⋆ | σ) ≥ 1 − (1 − a)
(
1 +

βb

500D3

)
= a

(
1 +

βb

500D3 −
βb

500aD3

)
≥ a

(
1 − βb

500aD3

)
(by a ≥ b) ≥ a

(
1 − β

500D3

)
=

��(hXv)−1(c⋆)��
qXv

(
1 − β

500D3

)
.(62)

47

This proves the lower bound.
Next, we assume

log

⌊
qXv
s ′v

⌋
≥ t +

5
4
log

(
2000D4

β

)
.(63)

For each bad event Bc , we define a function x : B → (0, 1) such that

∀c ∈ C s.t. v < vbl (c) , x(Bc) =
β

2000D4 ;

∀c ∈ C s.t. v ∈ vbl (c) , x(Bc) =
β2−t

⌊
qXv /s ′v

⌋
2000D4qXv

.

Note that for any c ∈ C, it holds that x(Bc) ≤ β
2000D4 . By the same proof, for any constraint c ∈ C such

that v < vbl (c), (61) still holds. For any constraint c ∈ C such that v ∈ vbl (c), we have

PrD [Bc] =
1

qXv

∏
u ∈vbl(c):u,v

1

|Q̃u |
≤

⌊
qXv /s ′v

⌋
qXv

∏
u ∈vbl(c)

1⌊
qXu /s ′u

⌋ ≤ ⌊
qXv /s ′v

⌋
qXv

1⌊
qXv /s ′v

⌋
(by (63) and β ≤ 1) ≤

⌊
qXv /s ′v

⌋
qXv

· β2−t

20005/4D5
≤

β2−t
⌊
qXv /s ′v

⌋
2000D4qXv

(
1 − β

2000D4

)2000D4/β−1

≤
β2−t

⌊
qXv /s ′v

⌋
2000D4qXv

(
1 − β

2000D4

)D
≤ x(Bc)

∏
Bc′ ∈Γ(Bc)

(1 − x(Bc ′)) .

Thus, the function x : B → (0, 1) satisfies the Lovász local lemma condition. By Theorem 2.1,

Prµ̃ [A] = νv ,X (c⋆ | σ) ≤
��(hXv)−1(c⋆)��

qXv

(
1 −

β2−t
⌊
qXv /s ′v

⌋
2000D4qXv

)−D
≤

��(hXv)−1(c⋆)��
qXv

exp

(
β2−t

⌊
qXv /s ′v

⌋
1000D3qXv

)
≤

��(hXv)−1(c⋆)��
qXv

(
1 +

β2−t
⌊
qXv /s ′v

⌋
500D3qXv

)
≤

��(hXv)−1(c⋆)��
qXv

(
1 +

β2−t

500D3

)
.

Furthermore,

Prµ̃ [A′] = 1 − νv ,X (c⋆ | σ) ≤
(
1 −

��(hXv)−1(c⋆)��
qXv

) (
1 −

β2−t
⌊
qXv /s ′v

⌋
2000D4qXv

)−D
≤

(
1 −

��(hXv)−1(c⋆)��
qXv

)
exp

(
β2−t

⌊
qXv /s ′v

⌋
1000D3qXv

)
≤

(
1 −

��(hXv)−1(c⋆)��
qXv

) (
1 +

β2−t
⌊
qXv /s ′v

⌋
500D3qXv

)
.

By the same proof in (62), we have

νv ,X (c⋆ | σ) ≥
��(hXv)−1(c⋆)��

qXv

(
1 − β2−t

500D3

)
. □

Now, we are ready to prove Lemma 8.18. Fix a percolation path (PP) e1, e2, . . . , eℓ in Lin3(H) . We
bound the probability that all ei are bad for 1 ≤ i ≤ ℓ. Recall s ′v = sXv = sYv for all v ∈ V . For each
hyperedge ei , define

V (ei) ≜ {v ∈ ei | s ′v , 1 and v , v0}.
Note that for variables v ∈ ei \ (V (ei) ∪ {v0}), it must hold that s ′v =

��Σ′v �� = 1. It must hold that
X Cnonv = Y Cnonv , which implies the coupling onv cannot be failed. Hence, if there is a variableu ∈ ei\{v0}
such thatX Cnonu , Y Cnonu , it must hold thatu ∈ V (ei). In the while-loop, the coupling Cnon assigns values
to variables one-by-one, using the optimal coupling between marginal distributions. Let

k(ei) ≜ |V (ei)| .
Fix an index 1 ≤ i ≤ ℓ − 1. Let c(ei) denote the constraint represented by ei . We can define k(ei) + 1
bad events B(j)i for 1 ≤ j ≤ k(ei) + 1:

48

• if 1 ≤ j ≤ k(ei): the constraint c(ei) is not satisfied by bothX Cnon and Y Cnon after j − 1 variables
in V (ei) are assigned values by Cnon, and the coupling on j-th variable fails, i.e. X Cnonvj , Y Cnonvj ,
where vj ∈ V (ei) is the j-th variable in V (ei) whose value is assigned by the coupling Cnon;
• if j = k(ei)+ 1: the constraint c(ei) is not satisfied by both X Cnon and Y Cnon after all variables in
ei are assigned values by the coupling Cnon.

Let Bi denote the event
∨k (ei)+1

j=1 B(j)i . By Definition 8.17, we have the following relation

ei is bad ⇐⇒ ei fails =⇒ Bi =

k (ei)+1∨
j=1

B(j)i .

By Definition 8.13, if ei fails in type-I, then there must exist 1 ≤ j ≤ k(ei) such that the coupling of
j-th variable in V (ei) fails and ei is not satisfied by both X Cnon and Y Cnon after j − 1 variables in V (ei)
are assigned values (otherwise, ei will be removed in Line 3 or Line 11). Hence, if ei fails in type-I,∨k (ei)

j=1 B(j)i must occur. If ei fails in type-II, then B(k (ei)+1)i must occur. This proves the above relation.
For hyperedge eℓ , let c(eℓ) denote the constraint represented by eℓ , we define the bad event Bℓ as
• Bℓ : the constraint c(eℓ) is not satisfied by both X Cnon and Y Cnon after all variables in eℓ \ {v⋆}

are assigned values by the coupling Cnon, and the coupling on v⋆ fails, i.e. X Cnonv⋆
, Y Cnonv⋆

.
By Definition 8.17, we have the following relation

eℓ is bad =⇒ Bℓ .

Let ΩB =
⊗ℓ−1

i=1 [k(ei) + 1], where [k(ei) + 1] = {1, 2, . . . ,k(ei) + 1}. We have the following relation

PrCnon [∀1 ≤ i ≤ ℓ : ei is bad] ≤ PrCnon [∀1 ≤ i ≤ ℓ : Bi] ≤
∑
z∈ΩB

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
,

where z ∈ ΩB is a (ℓ − 1)-dimensional vector and zi ∈ [k(ei) + 1]. Fix a vector z ∈ ΩB . Let
E1 = {ei | 1 ≤ i ≤ ℓ − 1 ∧ zi ≤ k(ei)}
E2 = {ei | 1 ≤ i ≤ ℓ − 1 ∧ zi = k(ei) + 1}.

We will prove that

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤

∏
ei ∈E1

((
3
4

)zi−1 1
200D3

)
×

∏
ej ∈E2

(
1

200D3

)
× ©­« β

200D3

(
1
2

) β |eℓ |
50 ª®¬ .(64)

By (64), we have

PrCnon [∀1 ≤ i ≤ ℓ : ei is bad] ≤
∑
z∈ΩB

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
(by (64)) ≤

(
1

200D3 +
1

200D3

k (ei)∑
j=1

(
3
4

) j−1)ℓ−1
× ©­« β

200D3

(
1
2

) β |eℓ |
50 ª®¬

≤
(

1
40D3

)ℓ−1 β

200D3

(
1
2

) β |eℓ |
50

≤
(

1
4D3

)ℓ β

50

(
1
2

) β |eℓ |
50

.

This proves Lemma 8.18. The rest of this section is dedicated to the proof of (64).
Note that the RHS of (64) is a product. Although all hyperedges in a percolation path are mutually

disjoint, we cannot show that all bad events B(zi)i and Bℓ are mutually independent. Because all the
bad events are defined by Cnon, they may have some correlations with each other. To prove (64), we
will use an independent random process to dominate the event that all B(zi)i and Bℓ occur.

To prove (64), we first divide the bad event Bℓ into two parts B(1)
ℓ

and B(2)
ℓ
, where B(1)

ℓ
denotes the

event that the constraint c(eℓ) is not satisfied by both X CnonS and Y CnonS , where S = eℓ \ {v⋆}, and B(2)
ℓ

49

denotes the event that the coupling on v⋆ fails, i.e. X Cnonv⋆
, Y Cnonv⋆

. It is easy to see Bℓ = B(1)
ℓ
∧ B(2)

ℓ
.

Note that v⋆ ∈ eℓ and qXv⋆
= qYv⋆

. By (57) in Condition 8.10, one of the following two conditions must
be satisfied:

min
©­«

∑
v ∈vbl(c)\{v⋆ }

log
qXv⌈

qXv /s ′v
⌉ , ∑

v ∈vbl(c)\{v⋆ }
log

qYv⌈
qYv /s ′v

⌉ª®¬ ≥ β

20
©­«

∑
v ∈vbl(c)

logqv
ª®¬ ,(65)

log

⌊
qXv⋆

s ′v⋆

⌋
= log

⌊
qYv⋆

s ′v⋆

⌋
≥ β

20
©­«

∑
v ∈vbl(c)

logqv
ª®¬ .(66)

If (65) holds, we can prove (64) by bounding the RHS of the following inequality

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤ PrCnon

[
B(1)
ℓ
∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
.(67)

If (66) holds, we can prove (64) by bounding the RHS of the following inequality

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤ PrCnon

[
B(2)
ℓ
∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
.(68)

In the rest of the proof, we mainly focus on the case when (65) holds. If (66) holds, we can modify our
proof to bound the RHS of (68), this part will be discussed later.

Assume (65) holds. We start to bound the RHS of (67). To do this, we will give a particular imple-
mentation of the coupling Cnon such that if B(1)

ℓ
and all B(zi)i occur, then some independent events must

occur in our implementation and their probabilities are easy to bound. We first sample a set R of real
numbers from [0, 1] uniformly and independently.

• For each ei ∈ E1, sample k(ei) random real numbers rei (j) ∈ [0, 1] for 1 ≤ j ≤ k(ei) uniformly
and independently.
• For each ei ∈ E2 ∪ {eℓ}, for each variable v ∈ ei , sample a random real number rv ∈ [0, 1]

uniformly and independently.
We then run the coupling Cnon in Algorithm 4, but in some particular steps, we will use the random
numbers in R to implement the sampling step in Cnon.

We start from the special variable v0. Note that if v0 appears in the percolation path, then v0 ∈ e1.
The coupling Cnon will sample the values of v0 in Line 1. We use the real number rv0 to implement
this sampling step if and only if v0 ∈ e1 and e1 ∈ E2. Let c(e1) denote the constraint represented by
e1. Suppose c(e1) forbids the configuration σ ∈ Qe1 , i.e. (c(e1))(σ) = False. By definition, in ΦX ,
QX
v0
= h−1v0

(Xv0) and in ΦY , QY
v0
= h−1v0

(Yv0). Note that QX
v0
, QY

v0
. Thus, e1 must be satisfied in ΦX or

ΦY , because it must hold that σv0 < QX
v0

or σv0 < QY
v0
. If e1 is satisfied in both ΦX and ΦY , then the

hyperedge e1 cannot be bad. We may assume e1 is not satisfied in ΦX (i.e. σv0 ∈ QX
v0
) and e1 is satisfied

in ΦY (i.e. σv0 < Q
Y
v0
). Otherwise, we can swap the roles of X and Y in the whole analysis. We use rv0

to sample X Cnonv0 in Line 1 of Cnon. Note that there is only one j ∈ Σ′v0
such that σv0 ∈ (hXv0

)−1(j). We
can set X Cnonv0 = j if rv0 ≤ νv0,X (j). By Lemma 8.19, νv0,X (j) ≤ (1 + 1

500D3)
⌈
qXv0
/s ′v0

⌉
/qXv0

. Note that if

s ′v0
= 1, then νv0,X (j) = 1, which implies νv0,X (j) = 1 = (dq

X
v0/s

′
v0 e

qXv0
)0.95. If s ′v0

≥ 2, then
⌈
qXv0
/s ′v0

⌉
/qXv0
≤⌈

qXv0
/2

⌉
/qXv0
≤ 2

3 (because qXv0
≥ s ′v0

≥ 2), which implies

νv0,X (j) ≤ (1 +
1

500D3)
⌈
qXv0
/s ′v0

⌉
qXv0

≤ 501
500

⌈
qXv0
/s ′v0

⌉
qXv0

≤
(⌈
qXv0
/s ′v0

⌉
qXv0

)0.95
.

After Line 1, if e1 is not satisfied by both X Cnonv0 and Y Cnonv0 , then the following event must occur

rv0 ≤
(⌈
qXv0
/s ′v0

⌉
qXv0

)0.95
.(69)

During the while-loop of Cnon, we maintain an index ji for each hyperedge ei ∈ E1. Initially, all
ji = 0. Suppose the coupling Cnon picks a variable u in Line 5. Suppose u ∈ ei for some 1 ≤ i ≤ ℓ. Note

50

that such hyperedge ei is unique because all hyperedges in a percolation path are mutually disjoint.
Let c(ei) denote the constraint represented by ei . Suppose c(ei) forbids the configuration τ ∈ Qei , i.e.
(c(ei))(τ) = False. Since u , v0, by Condition 8.10, it holds that hXu = hYu . Let c⋆ ∈ Σ′u denote the
value such that τu ∈ (hXu)−1(c⋆) = (hYu)−1(c⋆). We need to sample cx ∈ Σ′u and cy ∈ Σ′u from the
optimal coupling between νu ,X (· | X Cnon) and νu ,Y (· | Y Cnon) in Line 6. By (47) and (48), the optimal
coupling satisfies the following properties,

Pr
[
cx = cy

]
=

∑
j ∈Σ′u

Pr
[
cx = cy = j

]
=

∑
j ∈Σ′u

min
(
νu ,X (j | X Cnon),νu ,Y (j | Y Cnon)

)
= 1 − dTV

(
νu ,X (· | X Cnon),νu ,Y (· | Y Cnon)

)
,

Pr
[
cx = c

⋆ ∨ cy = c⋆
]
= max

(
νu ,X (c⋆ | X Cnon),νu ,Y (c⋆ | Y Cnon)

)
.

Let tmax ≜ max
(
νu ,X (c⋆ | X Cnon),νu ,Y (c⋆ | Y Cnon)

)
and dTV ≜ dTV

(
νu ,X (· | X Cnon),νu ,Y (· | Y Cnon)

)
.

Note that either ei ∈ E1 or ei ∈ E2 ∪ {eℓ}. We will use the following procedure to implement the
sampling step in Line 6.

• Case ei ∈ E1 and u ∈ V (ei). Set ji ← ji + 1 and let r = rei (ji). If ji < zi , we sample cx and cy
such that cx = c⋆ ∨ cy = c⋆ if and only if r ≤ tmax. If ji = zi , we sample cx and cy such that
cx , cy if and only if r ≤ dTV. If ji > zi , we arbitrarily sample cx and cy from their optimal
coupling.
• Case ei ∈ E2 ∪ {eℓ}. Let r = ru . Sample cx and cy such that cx = c⋆ ∨ cy = c⋆ if and only if
r ≤ tmax.
• Otherwise, we do not use random numbers in R to implement the coupling.

We will use the following properties to analysis our implementation. Note that after we assigned
the values to variable u, if c(ei) is not satisfied by both X Cnonu and Y Cnonu , then it must hold that cx = c⋆

or cy = c⋆. Since u , v0, by Condition 8.10, QX
u = Q

Y
u and hXu = hYu . By Lemma 8.19, we can prove the

following properties. For any u with s ′u > 1, we have qXu = qYu ≥ s ′u > 1, thus

tmax ≤
⌈
qXu /s ′u

⌉
qXu

(
1 +

1
500D3

)
≤

⌈
qXu /2

⌉
qXu

(
1 +

1
500

)
≤ 2

3

(
1 +

1
500

)
≤ 3

4
.(70)

For any u ∈ V \ {v0}, since QX
u = Q

Y
u and hXu = hYu , by Lemma 8.19, it holds that

tmax ≤ min

(
1,

⌈
qXu /s ′u

⌉
qXu

(
1 +

1
500D3

))
≤ min

(
1,
501

⌈
qXu /s ′u

⌉
500qXu

)
≤

(⌈
qXu /s ′u

⌉
qXu

)0.95
;(71)

dTV ≤
1
2

∑
j ∈Σ′u

��(hXu)−1(j)��
qXu

(
2

500D3

)
=

1
500D3 ≤

1
200D3 .(72)

Inequality (71) can be proved by considering two cases. If s ′u = 1, then
(dqXu /s ′ue

qXu

)0.95
= 1, the inequality

holds trivially. If s ′u > 1, then dq
X
u /s ′ue
qXu

≤ 2
3 , this implies (71). To prove (72), note that QX

u = QY
u (thus,

qXu = qYu); and hX and hY use the same way to map QX
u = QY

u to Σ′u (i.e. hXu = hYu). Hence, we can use
the upper and lower bound in Lemma 8.19 to bound the total variation distance dTV.

Consider a hyperedge ei ∈ E1. If the event B(zi)i occurs, then by definition, c(ei) is not satisfied after
zi − 1 variables in V (ei) get the values and the coupling on zi -th variable in V (ei) fails. Note that for
all v ∈ V (ei), s ′v > 1. By (70) and (72), the bad event B(zi)i implies the following event:

• Ai : for all 1 ≤ j ≤ zi − 1, rei (j) ≤ 3
4 and rei (zi) ≤ 1

200D3 .
This bad event Ai occurs with probability

Pr [Ai] =
(
3
4

)zi−1 1
200D3 .(73)

51

Consider a hyperedge ei ∈ E2. If the event B(zi)i = B(k (ei)+1)i occurs, then by definition, c(ei) is not
satisfied after all variables in ei get the value. In our implementation, for any v ∈ ei , we use rv to
sample values for X Cnonv and Y Cnonv . By (69) and (71), the bad event B(zi)i implies

• Ai : for all v ∈ ei , rv ≤
(dqXv /s ′ve

qXv

)0.95
.

Since ei ∈ E2, it holds that v⋆ < ei . By Condition 8.10 and (59), it holds that∑
v ∈ei

log
qXv⌈

qXv /s ′v
⌉ ≥ β

10

∑
v ∈ei

logqv ≥ 5 log

(
2000D4

β

)
,

This bad event Ai occurs with probability

Pr [Ai] =
∏
v ∈ei

(⌈
qXu /s ′u

⌉
qXu

)0.95
≤

(
1

2000D20

)0.95
≤ 1

200D3 .(74)

Consider the hyperedge eℓ . If the event B(1)
ℓ

occurs, then by definition, c(eℓ) is not satisfied after all
variables in ei \ {v⋆} get the value. In our implementation, for any v ∈ eℓ , we use rv to sample values
for X Cnonv and Y Cnonv . By (69) and (71), the bad event B(1)

ℓ
implies

• Aℓ : for all v ∈ eℓ \ {v⋆}, rv ≤
(dqXv /s ′ve

qXv

)0.95
.

By (65), we have ∑
v ∈eℓ\{v⋆ }

log
qXv⌈

qXv /s ′v
⌉ ≥ β

20

∑
v ∈eℓ

logqv ,

Note that in the original input CSP formula Φ = (V ,Q, C) of Algorithm 1, the domain size of each
variable is at least 2 (otherwise,the value of such variable is fixed and we can remove such variable), it
holds that qv ≥ 2 for all v ∈ V . This implies

∑
v ∈eℓ logqv ≥ |eℓ |. By (59), it holds that

∑
v ∈eℓ logqv ≥

log 1
p ≥

50
β log

(
2000D4

β

)
. We have∑

v ∈eℓ\{v⋆ }
log

qXv⌈
qXv /s ′v

⌉ ≥ β

40
|eℓ | +

β

40
· 50
β

log

(
2000D4

β

)
=

β

40
|eℓ | +

5
4
log

(
2000D4

β

)
.

Hence, this bad event Aℓ occurs with probability

Pr [Aℓ] =
∏

v ∈eℓ\{v⋆ }

(⌈
qXv /s ′v

⌉
qXv

)0.95
≤

(
1
2

) 0.95β
40 |eℓ |

·
(

β5/4

20005/4D5

)0.95
≤

(
1
2

) β
50 |eℓ | β

200D3 ,(75)

where the last inequality holds because β ≤ 1.
Finally, if B(1)

ℓ
and all B(zi)i for 1 ≤ i ≤ ℓ − 1 occur, then Ai occurs for all 1 ≤ i ≤ ℓ. By definition,

the eventAi is determined by a subset of random variables Si ⊆ R. For any i , j, the subset Si and S j
are disjoint, thus all events Ai are mutually independent. Combining (67), (73), (74) and (75),

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤ PrCnon

[
B(1)
ℓ
∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤ Pr [∀1 ≤ i ≤ ℓ,Ai] =

ℓ∏
i=1

Pr [Ai]

≤
∏
ei ∈E1

((
3
4

)zi−1 1
200D3

)
×

∏
ej ∈E2

(
1

200D3

)
× ©­« β

200D3

(
1
2

) β |eℓ |
50 ª®¬ .

This proves (64) in case of (65).
Suppose the condition in (66) holds. In this case, we need to bound the RHS of (68). Compared

with the above proof, the only difference is that we need to bound the probability of B(2)
ℓ
, where B(2)

ℓ

denotes the coupling on v⋆ fails, i.e. X Cnonv⋆
, Y Cnonv⋆

. In this case, we have logb q
X
v⋆
s ′v⋆
c = logb q

Y
v⋆
s ′v⋆
c ≥

52

β
20

(∑
v ∈eℓ logqv

)
. Note that in the original input CSP formula of Algorithm 1, it holds that qv ≥ 2 for

allv ∈ V . This implies
∑
v ∈eℓ logqv ≥ |eℓ |. By (59), it holds that

∑
v ∈eℓ logqv ≥ log 1

p ≥
50
β log

(
2000D4

β

)
.

Thus, we have

log

⌊
qXv⋆

s ′v⋆

⌋
= log

⌊
qYv⋆

s ′v⋆

⌋
≥ β

20

(∑
v ∈eℓ

logqv

)
≥ β

40
|eℓ | +

5
4
log

(
2000D4

β

)
.

Note thatQX
v⋆
= QY

v⋆
and hXv⋆

= hYv⋆
. In Lemma 8.19, we can set the parameter t = β

40 |eℓ |. This implies
that when Cnon couples X Cnonv⋆

and Y Cnonv⋆
, the probability that the coupling fails is at most

1
2

∑
j ∈Σ′u

��(hXv⋆
)−1(j)

��
qXv⋆

(
2β

500D3

) (
1
2

) β
40 |eℓ |

≤
(
1
2

) β
50 |eℓ | β

200D3 .

The proof of this case is almost the same as the above proof. The only difference is that when coupling
v⋆, we sample a random real number rv⋆ ∈ [0, 1] uniformly and independently. We use rv⋆ to imple-
ment the coupling such that X Cnonv⋆

, Y Cnonv⋆
only if rv⋆ ≤

(1
2

) β
50 |eℓ | β

200D3 . We define the bad eventAℓ as

rv⋆ ≤
(1
2

) β
50 |eℓ | β

200D3 . By the same proof, we have

PrCnon
[
Bℓ ∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤ PrCnon

[
B(2)
ℓ
∧ ∀1 ≤ i ≤ ℓ − 1 : B(zi)i

]
≤

∏
ei ∈E1

((
3
4

)zi−1 1
200D3

)
×

∏
ej ∈E2

(
1

200D3

)
× ©­« β

200D3

(
1
2

) β |eℓ |
50 ª®¬ .

This proves (64) in case of (66).

8.4.2. Proof of Lemma 8.11. Without loss of generality, we assume
��QX

v0

�� ≤ ��QY
v0

��. Otherwise, we can
swap the roles of X and Y in this proof. Since the original projection scheme h is uniform,

0 ≤
��QY

v0

�� − ��QX
v0

�� ≤ 1.(76)

We first construct the projection scheme hX for ΦX . To do this, we introduce a CSP formula Φ̃X =

(V , Q̃X = (Q̃X
v)v ∈V , C). We first construct a projection scheme h̃X for Φ̃X , then transform h̃X to the

projection scheme hX . Recall the original projection scheme is h = (hv)v ∈V , where hv : Qv → Σv .
Recall qv = |Qv |. The CSP formula Φ̃X is define as follows:

Q̃X
u =

{
h−1u (Xu) if u , v⋆;
h−1u (j) if u = v⋆,

where j ∈ Σv⋆ is an arbitrary value satisfying
��h−1v⋆
(j)

�� = bqv⋆/sv⋆c. For each v ∈ V , let q̃Xv =
���Q̃X

v

���. Let
p̃ denote maxc ∈C

∏
v ∈vbl(c)

1
q̃Xv

. By Condition 3.4, we have for any constraint c ∈ C,∑
v ∈vbl(c)

log q̃Xv ≥ β
∑

v ∈vbl(c)
logqv .

By the condition assumed in Lemma 8.11, it holds that

log
1

p̃
≥ β log

1
p
≥ 55(logD + 3).(77)

Recall that the maximum degree of the dependency graph of Φ̃X is also D. We can use Theorem 3.8 on
instance Φ̃X such that the parameterα and β inTheorem 3.8 are set asα = 8/9 and β = 1/9. Remark that
in the proof of Theorem 3.8, we use Lovász loca lemma to prove that the projection scheme described
in theorem must exist. When α = 8/9 and β = 1/9, the condition in Theorem 3.8 becomes

log
1

p̃
≥ 25 · 93

73
(logD + 3).

53

This implies that under the condition in (77), there exists a balanced projection scheme h̃X = (h̃Xv)v ∈V ,
where h̃Xv : Q̃X

v → Σ̃Xv and s̃Xv =
��Σ̃Xv �� such that for any c ∈ C,∑

v ∈vbl(c)
log

q̃Xv⌈
q̃Xv /̃sXv

⌉ ≥ (
1 − 8

9

) ∑
v ∈vbl(c)

log q̃Xv ≥
β

9

∑
v ∈vbl(c)

logqv ;∑
v ∈vbl(c)

log

⌊
q̃Xv
s̃Xv

⌋
≥ 1

9

∑
v ∈vbl(c)

log q̃Xv ≥
β

9

∑
v ∈vbl(c)

logqv .

(78)

Note that Φ̃X and ΦX differ only at variable v⋆. Given the projection scheme h̃X and the original
projection scheme h, the projection scheme hX can be constructed as follows

hXu =

{
h̃Xu if u , v⋆;
hu if u = v⋆.

By definition, hX is a balanced projection scheme and hXv⋆
= hv⋆ . Since h̃X and hX differ only at

variable v⋆, for any constraint c ∈ C such that v⋆ < vbl (c), by (78),∑
v ∈vbl(c)

log
qXv⌈

qXv /sXv
⌉ = ∑

v ∈vbl(c)
log

q̃Xv⌈
q̃Xv /̃sXv

⌉ ≥ β

10

∑
v ∈vbl(c)

logqv ;∑
v ∈vbl(c)

log

⌊
qXv
sXv

⌋
=

∑
v ∈vbl(c)

log

⌊
q̃Xv
s̃Xv

⌋
≥ β

10

∑
v ∈vbl(c)

logqv .

For variablev⋆, it holds that
⌊
qXv⋆
/sXv⋆

⌋
=

⌊
qv⋆/sv⋆

⌋
= q̃Xv⋆

, because hX uses the same way to partition
Qv⋆ as in the original projection scheme h. Hence, for any constraint c ∈ C such that v⋆ ∈ vbl (c),∑

v ∈vbl(c)
log

⌊
qXv
sXv

⌋
≥

∑
v ∈vbl(c)

log

⌊
q̃Xv
s̃Xv

⌋
≥ β

10

∑
v ∈vbl(c)

logqv ;

log

⌊
qXv⋆

sXv⋆

⌋
+

∑
v ∈vbl(c)\{v⋆ }

log
qXv⌈

qXv /sXv
⌉ = log

⌊
qXv⋆

sXv⋆

⌋
+

∑
v ∈vbl(c)\{v⋆ }

log
q̃Xv⌈

q̃Xv /̃sXv
⌉

(
by

⌊
qXv⋆
/sXv⋆

⌋
= q̃Xv⋆

)
≥

∑
v ∈vbl(c)

log
q̃Xv⌈

q̃Xv /̃sXv
⌉

≥ β

9

∑
v ∈vbl(c)

logqv ≥
β

10

∑
v ∈vbl(c)

logqv .(79)

This implies that hX satisfies all the conditions in Condition 8.10.
Given the projection scheme hX , the projection scheme hY for ΦY can be defined as follows. For

each variable v ∈ V \ {v0}, hYv = hXv . For variable v0, we construct ΣYv0
= ΣXv0

and sYv0
=

��ΣYv0

��, then
arbitrarily map QY

v0
to ΣYv0

such that for any j ∈ ΣYv0
,
⌊
qYv0
/sYv0

⌋
≤

��(hYv0
)−1(j)

�� ≤ ⌈
qYv0
/sYv0

⌉
. It is easy

to see hY is also a balanced projection scheme and hYv⋆
= hv⋆ . It is also easy to see ΣXv0

= ΣYv0
, and

hXu = h
Y
u for all u ∈ V \ {v0}. We now only need to verify that for any c ∈ C,∑

v ∈vbl(c)
log

⌊
qYv
sYv

⌋
≥ β

10

∑
v ∈vbl(c)

logqv ;(80)

for any c ∈ C satisfying v⋆ < vbl (c),∑
v ∈vbl(c)

log
qYv⌈

qYv /sYv
⌉ ≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ ;(81)

54

and for any c ∈ C satisfying v⋆ ∈ vbl (c),

log

⌊
qYv⋆

sYv⋆

⌋
+

∑
v ∈vbl(c)\{v⋆ }

log
qYv⌈

qYv /sYv
⌉ ≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ .(82)

Note that for all u ∈ V \ {v0}, it holds that sXu = sYu and qXu = qYu . Also note that sXv0
= sYv0

. If
qXv0
= qYv0

, (80), (81) and (82) hold trivially. By (76), we assume qYv0
= qXv0

+ 1. Since qYu ≥ qXu and
sXu = s

Y
u for all u ∈ V , for any c ∈ C,∑

v ∈vbl(c)
log

⌊
qYv
sYv

⌋
≥

∑
v ∈vbl(c)

log

⌊
qXv
sXv

⌋
≥ β

10

∑
v ∈vbl(c)

logqv .

This proves (80). Note that for all u , v0, qXu = qYu and sXu = sYu . Also note that v⋆ , v0. It holds that⌊
qYv⋆

sYv⋆

⌋
=

⌊
qXv⋆

sXv⋆

⌋
and ∀v ∈ V \ {v0},

qYv⌈
qYv /sYv

⌉ = qXv⌈
qXv /sXv

⌉ .(83)

To prove (81) and (82), we only need to compare qXv0
dqXv0/sXv0e

with qYv0
dqYv0/sYv0e

. We claim

qYv0⌈
qYv0/sYv0

⌉ = qXv0
+ 1⌈

(qXv0 + 1)/sXv0

⌉ ≥ 1
2

qXv0⌈
qXv0/sXv0

⌉ .(84)

By (78), (83) and (84), for any c ∈ C such that v⋆ < vbl (c), we have∑
v ∈vbl(c)

log
qYv⌈

qYv /sYv
⌉ ≥ ©­«

∑
v ∈vbl(c)

log
qXv⌈

qXv /sXv
⌉ª®¬ − 1 ≥ β

9
©­«

∑
v ∈vbl(c)

logqv
ª®¬ − 1 ≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ ,

where the last inequality holds because β
∑
v ∈vbl(c) logqv ≥ β log 1

p ≥ 55(logD + 3) ≥ 165. This
proves (81). Similarly, for any c ∈ C such that v⋆ ∈ vbl (c), we have

log

⌊
qYv⋆

sYv⋆

⌋
+

∑
v ∈vbl(c)\{v⋆ }

log
qYv⌈

qYv /sYv
⌉ ≥ log

⌊
qXv⋆

sXv⋆

⌋
+

©­«
∑

v ∈vbl(c)\{v⋆ }
log

qXv⌈
qXv /sXv

⌉ª®¬ − 1
(by (79)) ≥ β

9
©­«

∑
v ∈vbl(c)

logqv
ª®¬ − 1 ≥ β

10
©­«

∑
v ∈vbl(c)

logqv
ª®¬ .

To prove (84), we consider two case. Recall sXv0
= sYv0

. If qXv0
cannot be divided by sXv0

, then⌈
(qXv0
+ 1)/sXv

⌉
=

⌈
qXv0
/sXv0

⌉
and (84) holds trivially. If qXv0

can be divided by sXv0
, then we need to show

qXv0
+ 1

1 + qXv0/sXv0

≥ 1
2
sXv0
,

which is equivalent to qXv0
≥ sXv0

− 2, then (84) holds because qXv0
≥ sXv0

.

8.5. Proofs of Lemma 5.2 and Lemma 5.6. Lemma 5.2 is proved by combining Lemma 2.3, Proposi-
tion 8.1 and Lemma 8.9. Note that the condition in Lemma 5.2 is log 1

p ≥
50
β log

(
2000D4

β

)
, which suffices

to imply the conditions in Proposition 8.1 and Lemma 8.9. This implies the Glauber dynamics has the
unique stationary distribution ν and the mixing rate is Tmix(ε) ≤

⌈
2n log n

ε

⌉
.

Lemma 5.6 is proved by combining Lemma 2.3, Proposition 8.1 and Lemma 8.2. Given a (k,d)-CSP
formula, the maximum degree D of the dependency graph is at most dk , thus the condition in Propo-
sition 8.1 becomes k logq ≥ 1

β log(2edk). The condition in Lemma 5.6 is k logq ≥ 1
β log

(
3000q2d6k6

)
,

which suffices to imply the conditions in Proposition 8.1 and Lemma 8.2. This implies the Glauber
dynamics has the unique stationary distribution ν and the mixing rate is Tmix(ε) ≤

⌈
2n log n

ε

⌉
.

55

References

[AI16] Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the
Lovász local lemma. J. ACM, 63(3):22, 2016.

[AIS19] Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the lovász local lemma:
Point to set correlations and their algorithmic applications. In FOCS, pages 725–744. IEEE,
2019.

[Alo91] Noga Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms,
2(4):367–378, 1991. (Conference version in FOCS’91).

[BD97] Russ Bubley and Martin E. Dyer. Path coupling: A technique for proving rapid mixing in
Markov chains. In FOCS, pages 223–231. IEEE, 1997.

[BDK06] Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. Stopping times, metrics and
approximate counting. In ICALP, volume 4051 of Lecture Notes in Computer Science, pages
108–119. Springer, 2006.

[BDK08] Magnus Bordewich, Martin E. Dyer, and Marek Karpinski. Path coupling using stopping
times and counting independent sets and colorings in hypergraphs. Random Struct. Algo-
rithms, 32(3):375–399, 2008.

[Bec91] József Beck. An algorithmic approach to the Lovász local lemma. Random Struct. Algorithms,
2(4):343–365, 1991.

[BGG+19] Ivona Bezáková, Andreas Galanis, Leslie A. Goldberg, Heng Guo, and Daniel Štefankovič.
Approximation via correlation decay when strong spatial mixing fails. SIAM J. Comput.,
48(2):279–349, 2019.

[BŠVV08] Ivona Bezáková, Daniel Štefankovič, Vijay V. Vazirani, and Eric Vigoda. Accelerating simu-
lated annealing for the permanent and combinatorial counting problems. SIAM J. Comput.,
37(5):1429–1454, 2008.

[CS00] Artur Czumaj and Christian Scheideler. Coloring nonuniform hypergraphs: a new algorith-
mic approach to the general Lovász local lemma. Random Struct. Algorithms, 17(3-4):213–
237, 2000.

[DSE09] Štefankovič Daniel, Vempala Santosh, and Vigoda Eric. Adaptive simulated annealing: A
near-optimal connection between sampling and counting. J. ACM, 56(3):18, 2009.

[EL75] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on
his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.

[FA17] Alan M. Frieze and Michael Anastos. Randomly coloring simple hypergraphs with fewer
colors. Inf. Process. Lett., 126:39–42, 2017.

[FGYZ19] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Fast sampling and counting
k-SAT solutions in the local lemma regime. arXiv preprint arXiv:1911.01319, 2019. (Full
version).

[FGYZ20] Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Fast sampling and counting
k-SAT solutions in the local lemma regime. In STOC, pages 854–867. ACM, 2020.

[FM11] Alan M. Frieze and Páll Melsted. Randomly coloring simple hypergraphs. Inf. Process. Lett.,
111(17):848–853, 2011.

[FP01] Alan M. Frisch and Timothy J. Peugniez. Solving non-Boolean satisfiability problems with
stochastic local search. In IJCAI, pages 282–290, 2001.

[GGGY20] Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Kuan Yang. Counting solutions to
random CNF formulas. In ICALP, volume 168 of LIPIcs, pages 53:1–53:14, 2020.

[GJL19] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local
lemma. J. ACM, 66(3):18:1–18:31, 2019. (Conference version in STOC’17).

[GLLZ19] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Counting hypergraph colorings in
the local lemma regime. SIAM J. Comput., 48(4):1397–1424, 2019. (Conference version in
STOC’18).

[Har19] David G. Harris. Oblivious resampling oracles and parallel algorithms for the lopsided
Lovász local lemma. In SODA, pages 841–860. SIAM, 2019.

56

[Har20] David G. Harris. New bounds for theMoser-Tardos distribution. Random Struct. Algorithms,
57(1):97–131, 2020.

[HH17] Bernhard Haeupler and David G. Harris. Parallel algorithms and concentration bounds for
the Lovász local lemma via witness-DAGs. In SODA, pages 1170–1187. SIAM, 2017.

[HS17a] David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the
Moser-Tardos distribution. ACM Trans. Algorithms, 13(3):Art. 33, 40, 2017. (Conference
version in SODA’16).

[HS17b] David G. Harris and Aravind Srinivasan. A constructive Lovász local lemma for permuta-
tions. Theory Comput., 13:Paper No. 17, 41, 2017. (Conference version in SODA’14).

[HS19] David G. Harris and Aravind Srinivasan. The Moser-Tardos framework with partial resam-
pling. J. ACM, 66(5):Art. 36, 45, 2019. (Conference version in FOCS’13).

[HSS11] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. J. ACM, 58(6):28, 2011. (Conference version in FOCS’10).

[Hub15] MarkHuber. Approximation algorithms for the normalizing constant of Gibbs distributions.
Ann. Appl. Probab., 25(2):974–985, 2015.

[HV20] Nicholas J.A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via
resampling oracles. SIAM J. Comput., 49(2):394–428, 2020. (Conference version in FOCS’15).

[JVV86] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combina-
torial structures from a uniform distribution. Theoret. Comput. Sci., 43:169–188, 1986.

[KM11] Kolipaka Kashyap, Babu Rao and Szegedy Mario. Moser and Tardos meet Lovász. In STOC,
pages 235–244, 2011.

[Kol18a] Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. SIAM J.
Comput., 47(6):2029–2056, 2018.

[Kol18b] Vladimir Kolmogorov. A faster approximation algorithm for the Gibbs partition function.
In COLT, pages 228–249. PMLR, 2018.

[LKM03] Cong Liu, Andreas Kuehlmann, and Matthew W. Moskewicz. CAMA: A multi-valued sat-
isfiability solver. In ICCAD, pages 326–333, 2003.

[LP17] David A Levin and Yuval Peres. Markov chains and mixing times. American Mathematical
Soc., 2017.

[MM09] Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford Uni-
versity Press, 2009.

[Moi19] Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical
models. J. ACM, 66(2):10:1–10:25, 2019. (Conference version in STOC’17).

[Mos09] Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC, pages 343–350,
2009.

[MR98] Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In STOC,
pages 524–529, 1998.

[MT10] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):11, 2010.

[She85] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.
[Wig19] Avi Wigderson. Mathematics and Computation: A Theory Revolutionizing Technology and

Science. Princeton University Press, 2019.

57

	1. Introduction
	1.1. Our results
	1.2. Implications to approximate counting
	1.3. Technique overview
	1.4. Open problems
	1.5. Organization of the paper

	2. Models and preliminaries
	2.1. CSP formulas defined by atomic bad events
	2.2. Lovász local lemma
	2.3. Coupling, Markov chain and mixing time

	3. state compression
	4. The sampling algorithm
	4.1. The InvSample subroutine (alg-sample)

	5. Proofs of the main results
	5.1. CSP formulas with atomic constraints
	5.2. Sharper bounds for subclasses of CSP formulas

	6. Projection construction
	7. Analysis of the Inverse Sampling subroutine
	7.1. Analysis of rejection sampling (bound Pr[B(1)t])
	7.2. Analysis of connected component (bound Pr[B(2)t])
	7.3. Proof of lemma-uniform

	8. Proof of rapid mixing
	8.1. The stationary distribution
	8.2. Path coupling analysis
	8.3. Adaptive coupling analysis
	8.4. Non-adaptive coupling analysis
	8.5. Proofs of lemma-mixing-gen and lemma-mixing-kd

	References

