Perfect sampling from spatial mixing

Weiming Feng
University of Edinburgh

Joint work with
Heng Guo (University of Edinburgh)
Yitong Yin (Nanjing University)

Probability, Information Theory and Computing Workshop

$$
\text { April } 21^{\text {st }} 2023
$$

TU Dortmund, Germany (online talk)

Spin systems and Gibbs distributions

finite graph $G=(V, E)$
Parameters

vertex: random variable in $[q]=\{0,1, \ldots, q-1\}$
external field: vector $b \in \mathbb{R}_{\geq 0}^{q}$ in each vertex
interaction: symmetric matrix $A \in \mathbb{R}_{\geq 0}^{q \times q}$ on each edge

Example: graph coloring

proper \boldsymbol{q}-colouring in graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$

- Each vertex $v \in V$ take a colour $\sigma_{v} \in[q]$
- Each edge $\{u, v\} \in E$ is not monochromatic

$$
\sigma_{u} \neq \sigma_{v}
$$

$b=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right] \quad A=\left[\begin{array}{ccc}0 & \cdots & 1 \\ \vdots & 0 & \vdots \\ 1 & \cdots & 0\end{array}\right]$
$\mu(\sigma) \propto\left\{\begin{array}{l}1 \text { if } \sigma \text { is a proper colouring } \\ 0 \text { otherwise }\end{array}\right.$
constant vector

$$
A(i, i)=0
$$

$$
A(i, j)=1
$$

uniform distribution over all proper q-colourings in G

Examples: hardcore model and Ising model

Hardcore model in \boldsymbol{G} with parameter $\boldsymbol{\lambda}>\mathbf{0}$
$\forall \sigma \in\{0,1\}^{V}$ s.t. $S_{\sigma}=\left\{v \in V \mid \sigma_{v}=1\right\}$ is an independent set

$$
\mu(\sigma) \propto \lambda^{\left|S_{\sigma}\right|}
$$

Ising model in \boldsymbol{G} with parameter $\boldsymbol{\beta}>\mathbf{0}$

$$
\forall \sigma \in\{0,1\}^{V}, \mu(\sigma) \propto \beta^{m(\sigma)}
$$

$$
m(\sigma)=\left|\left\{\{u, v\} \in E \mid \sigma_{u}=\sigma_{v}\right\}\right| \text { is \#monochromatic edges }
$$

Sampling problem for spin systems

Input: (1) a graph $G=(V, E)$, vector $b \in \mathbb{R}_{\geq 0}^{q}$, symmetric matrix $A \in \mathbb{R}_{\geq 0}^{q \times q}$

$$
\text { specify Gibbs distribution } \quad \mu(\sigma) \propto \prod_{v \in V} b\left(\sigma_{v}\right) \prod_{e=\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right)
$$

(2) an error bound $\epsilon \geq 0$

Output: a random sample $X \in[q]^{V}$ such that

$$
d_{T V}(X, \mu)=\frac{1}{2} \sum_{\sigma \in[q]^{V}}|\operatorname{Pr}[X=\sigma]-\mu(\sigma)| \leq \epsilon
$$

- Approximate sampling problem: return random samples with bounded error $\epsilon>0\left(\epsilon=\frac{1}{\operatorname{poly}(n)}\right)$
- Perfect sampling problem: return random samples without error $\epsilon=0$

Sampling problem for spin systems

Input: (1) a sub-exp growth graph $G=(V, E)$, vector $b \in \mathbb{R}_{\geq 0}^{q}$, symmetric matrix $A \in \mathbb{R}_{\geq 0}^{q \times q}$

$$
\text { specify Gibbs distribution } \quad \mu(\sigma) \propto \prod_{v \in V} b\left(\sigma_{v}\right) \prod_{e=\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right)
$$

(2) an error bound $\epsilon \geq 0$

Sub-exp growth graph

A family of graphs \mathcal{G} has sub-exp growth if
\exists a sub-exp function $s: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $\forall G=(V, E) \in \mathcal{G}$,

$$
\forall v \in V, \ell \in \mathbb{N},\left|B_{\ell}(v)\right| \leq s(\ell)=\exp (o(\ell))
$$

$B_{\ell}(v)=\left\{u \in V \mid \operatorname{dist}_{G}(v, u) \leq \ell\right\}$ ball of radius ℓ centred at v

Sampling problem for spin systems

Input: (1) a sub-exp growth graph $G=(V, E)$, vector $b \in \mathbb{R}_{\geq 0}^{q}$, symmetric matrix $A \in \mathbb{R}_{\geq 0}^{q \times q}$

$$
\text { specify Gibbs distribution } \mu(\sigma) \propto \prod_{v \in V} b\left(\sigma_{v}\right) \prod_{e=\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right)
$$

(2) an error bound $\epsilon \geq 0$

Example: let $d \in \mathbb{N}$, any finite sub-graph $G=(V, E)$ of \mathbb{Z}^{d} has sub-exp growth

$$
\forall v \in V, \ell \in \mathbb{N}, \quad\left|B_{\ell}(v)\right| \leq(2 \ell+1)^{d}=\operatorname{poly}(\ell)=\exp (o(\ell))
$$

Sampling problem for spin systems

Input: (1) a sub-exp growth graph $G=(V, E)$, vector $b \in \mathbb{R}_{\geq 0}^{q}$, symmetric matrix $A \in \mathbb{R}_{\geq 0}^{q \times q}$

$$
\text { specify Gibbs distribution } \quad \mu(\sigma) \propto \prod_{v \in V} b\left(\sigma_{v}\right) \prod_{e=\{u, v\} \in E} A\left(\sigma_{u}, \sigma_{v}\right)
$$

(2) an error bound $\epsilon \geq 0$

Output: a random sample $X \in[q]^{V}$ such that

$$
d_{T V}(X, \mu)=\frac{1}{2} \sum_{\sigma \in[q]^{V}}|\operatorname{Pr}[X=\sigma]-\mu(\sigma)| \leq \epsilon
$$

poly-time sampling algorithm exists

Previous work: Strong spatial mixing v.s. approximate sampling

- Partial configurations $\sigma, \tau \in[q]^{\Lambda}$ on $\Lambda \subseteq V$

$$
S=\left\{w \in \Lambda \mid \sigma_{w} \neq \tau_{w}\right\}
$$

- Vertex $v \in V$ with distance to disagreement

$$
\ell=\min \left\{\operatorname{dist}_{G}(v, w) \mid w \in S\right\}
$$

- Strong Spatial Mixing (SSM)

Previous work: Strong spatial mixing v.s. approximate sampling

- Partial configurations $\sigma, \tau \in[q]^{\Lambda}$ on $\Lambda \subseteq V$

$$
S=\left\{w \in \Lambda \mid \sigma_{w} \neq \tau_{w}\right\}
$$

- Vertex $v \in V$ with distance to disagreement

$$
\ell=\min \left\{\operatorname{dist}_{G}(v, w) \mid w \in S\right\}
$$

- Strong Spatial Mixing (SSM)

$$
d_{T V}\left(\mu_{v}^{\sigma}, \mu_{v}^{\tau}\right) \leq \alpha \exp (-\beta \ell)
$$

Some sufficient conditions for SSM on graph G with max degree Δ

- q-colouring: $(q>2 \Delta)$ or (triangle-free and $q>1.763 \Delta)$
- hardcore: $\lambda<\lambda_{c}(\Delta)=\frac{(\Delta-1)^{(\Delta-1)}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$
- Ising model: $\frac{\Delta-2}{\Delta}<\beta<\frac{\Delta}{\Delta-2}$

Previous work: Strong spatial mixing v.s. approximate sampling

- Partial configurations $\sigma, \tau \in[q]^{\Lambda}$ on $\Lambda \subseteq V$

$$
S=\left\{w \in \Lambda \mid \sigma_{w} \neq \tau_{w}\right\}
$$

- Vertex $v \in V$ with distance to disagreement

$$
\ell=\min \left\{\operatorname{dist}_{G}(v, w) \mid w \in S\right\}
$$

- Strong Spatial Mixing (SSM)

$$
d_{T V}\left(\mu_{v}^{\sigma}, \mu_{v}^{\tau}\right) \leq \alpha \exp (-\beta \ell)
$$

Theorem [Dyer, Sinclair, Vigoda and Weitz 2004]

Previous work: Strong spatial mixing v.s. approximate sampling

- Partial configurations $\sigma, \tau \in[q]^{\Lambda}$ on $\Lambda \subseteq V$

$$
S=\left\{w \in \Lambda \mid \sigma_{w} \neq \tau_{w}\right\}
$$

- Vertex $v \in V$ with distance to disagreement

$$
\ell=\min \left\{\operatorname{dist}_{G}(v, w) \mid w \in S\right\}
$$

- Strong Spatial Mixing (SSM)

$$
d_{T V}\left(\mu_{v}^{\sigma}, \mu_{v}^{\tau}\right) \leq \alpha \exp (-\beta \ell)
$$

Theorem [Dyer, Sinclair, Vigoda and Weitz 2004]

Our results

linear time perfect sampler

Main result [This work]

Constants $q \in \mathbb{N}, b \in \mathbb{R}_{\geq 0}^{q}$ and $A \in \mathbb{R}_{\geq 0}^{q \times q}$. There exists an algorithm such that

- given any graph $G=(V, E)$ with sub-exp growth
- output a perfect sample from Gibbs distribution μ in time $O(n), n=|V|$

Remark: the linear running time $C \cdot n$ of the algorithm
the constant $C=C(q, b, A, s)$ depends on

- number of spins q, external vector b and interaction matrix A
- parameters in sub-exp function $s: \mathbb{N} \rightarrow \mathbb{N}$ (recall $\left.\left|B_{\ell}(v)\right| \leq s(\ell)=\exp (o(\ell))\right)$
C does not depend on n

Our results

linear time perfect sampler

Main result [This work]

Constants $q, b \in \mathbb{R}_{\geq 0}^{q}$ and $A \in \mathbb{R}_{\geq 0}^{q \times q}$. There exists an algorithm such that

- given any graph $G=(V, E)$ with sub-exp growth
- output a perfect sample from Gibbs distribution μ in time $O(n), n=|V|$

Remark: the linear running time $C \cdot n$ of the algorithm
Example: if $G=(V, E)$ is a finite subgraph of \mathbb{Z}^{d}, then the constant

$$
C=C(q, A, b, d)
$$

Applications for spin systems

Model	Graph	Parameters
q-colouring	sub-exp growth	$q>2 \Delta$
q-colouring	sub-exp growth triangle-free	$q>1.763 \Delta$
hardcore	sub-exp growth	$\lambda<\lambda_{c}(\Delta) \approx \frac{e}{\Delta}$
Ising	sub-exp growth	$1-\frac{2}{\Delta}<\beta<1+\frac{2}{\Delta}$

Our algorithm also works for general graphs, but with a stronger SSM condition
Example: q-colouring on general graphs

- our condition: $q \geq \Delta^{2}-\Delta+2$
- state-of-the-art: $q=\Omega(\Delta)$ [Jain, Sah, Sawhney, 2021] [Liu, Sinclair, Srivastava, 2019]

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly }(\Delta)}$

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly(} \Delta)}$
Coupling from the past \& Bounding chain $[P W 96$, Hubero4,JSS21]	general	$q>(8 / 3+o(1)) \Delta$	$\tilde{O}_{q, \Delta}(n)$

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly }(\Delta)}$
Coupling from the past \& Bounding chain $[P W 96, ~ H u b e r o 4, J S S 21] ~$	general	$q>(8 / 3+\mathrm{o}(1)) \Delta$	$\tilde{O}_{q, \Delta}(n)$
Randomness recycler [Huber, Fill, 2000]	general	$q=\Omega\left(\Delta^{4}\right)$	$O_{q, \Delta}(n)$

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly(} \Delta)}$
Coupling from the past \& Bounding chain $[P W 96, ~ H u b e r 04, J S S 21] ~$	general	$q>(8 / 3+\mathrm{o}(1)) \Delta$	$\tilde{O}_{q, \Delta}(n)$
Randomness recycler [Huber, Fill, 2000]	general	$q=\Omega\left(\Delta^{4}\right)$	$O_{q, \Delta}(n)$
Depth-First-Sampling [Anand, Jerrum, 2021]	sub-exp growth gres	$q>2 \Delta$ $q>1.763 \Delta$ (triangle-free)	$O_{q, \Delta}(n)$

The Depth-First-Sampling algorithm could recover our main result

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly(} \Delta)}$
Coupling from the past \& Bounding chain $[P W 96, ~ H u b e r o 4, J S S 21] ~$	general	$q>(8 / 3+\mathrm{o}(1)) \Delta$	$\tilde{O}_{q, \Delta}(n)$
Randomness recycler [Huber, Fill, 2000]	general	$q=\Omega\left(\Delta^{4}\right)$	$O_{q, \Delta}(n)$
Depth-First-Sampling [Anand, Jerrum, 2021]	sub-exp growth	$q>1.763 \Delta$ (triangle-free)	$O_{q, \Delta}(n)$
Partial rejection sampling [Guo, Jerrum, Liu, 2017] Dynamic sampler [Feng, Vishnoi, Yin, 2019]	Works for other spin systems but not for colouring		

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly (}}$)
Coupling from the past \& Bounding chain [PW96, Hubero4,JSS21]	general	$q>(8 / 3+o(1)) \Delta$	$\tilde{O}_{q, \Delta}(n)$
Randomness recycler [Huber, Fill, 2000]	general	$q=\Omega\left(\Delta^{4}\right)$	$O_{q, \Delta}(n)$
Depth-First-Sampling [Anand, Jerrum, 2021]	sub-exp growth	$\begin{gathered} q>2 \Delta \\ q>1.763 \Delta \text { (triangle-free) } \end{gathered}$	$O_{q, \Delta}(n)$
Partial rejection sampling [Guo, Jerrum, Liu, 2017] Dynamic sampler [Feng, Vishnoi, Yin, 2019]	Works for other spin systems but not for colouring		
Bayes filter [This paper, 2021]	sub-exp growth	$\begin{gathered} q>2 \Delta \\ q>1.763 \Delta \text { (triangle-free) } \end{gathered}$	$O_{q, \Delta}(n)$

Other techniques \& our technical contribution

Techniques	Graph	\#Colours	Running time
Reduction to deterministic approximate counting [JVV86,LSS19]	general	$q>2 \Delta$	$n^{\text {poly (}}$)
Coupling from the past \& Bounding chain [PW96, Hubero4,JSS21]	general	$q>(8 / 3+o(1)) \Delta$	$\tilde{O}_{q, \Delta}(n)$
Randomness recycler [Huber, Fill, 2000]	general	$q=\Omega\left(\Delta^{4}\right)$	$O_{q, \Delta}(n)$
Depth-First-Sampling [Anand, Jerrum, 2021]	sub-exp growth	$\begin{gathered} q>2 \Delta \\ q>1.763 \Delta \text { (triangle-free) } \end{gathered}$	$O_{q, \Delta}(n)$
Partial rejection sampling [Guo, Jerrum, Liu, 2017] Dynamic sampler [Feng, Vishnoi, Yin, 2019]	Works for other spin systems but not for colouring		
Bayes filter [This paper]	sub-exp growth	$q>2 \Delta$ $q>1.763 \Delta$ (triangle-free)	$O_{q, \Delta}(n)$
MCMC approximate sampler [Chen, Delcourt, Moitra, Perarnau, 2019]	general	$q \geq\left(\frac{11}{6}-\epsilon_{0}\right) \Delta, \epsilon_{0} \geq 10^{-5}$	$\tilde{O}_{q, \Delta}(n)$

Open problem: close the gap between perfect sampling and approximate sampling

The perfect sampling algorithm

Maintains a random pair (X, R), where $X \in[q]^{V}$ and $R \subseteq V$ s.t.
(X, R) satisfies the conditional Gibbs property

Conditional Gibbs property [Huber, Fill, 2000; Guo, Jerrum, Liu, 2017; Feng, Vishnoi, Yin 2019]
For any $\Lambda \subseteq V$, any $\sigma \in[q]^{\Lambda}$, conditional on $R=\Lambda$ and $X_{R}=\sigma, X_{V \backslash R} \sim \mu_{V \backslash R}^{\sigma}$:

$$
\forall \tau \in[q]^{V \backslash R}, \operatorname{Pr}_{(X, R)}\left[X_{V \backslash R}=\tau \mid R=\Lambda \wedge X_{R}=\sigma\right]=\mu_{V \backslash R}^{\sigma}(\tau)
$$

Remarks about Conditional Gibbs property

The distribution of (X_{R}, R) can be arbitrary, but $X_{V \backslash R}$ must follow $\mu_{V \backslash R}^{X_{R}}$ if $\left(X_{R}, R\right)$ is given.

- R is the set of "bad variables" and $V \backslash R$ is the set of "good variables"
- In general, the distribution of (X, R) is not unique
- If $R=V$, then X is arbitrary; if $R=\emptyset$, then $X \sim \mu$

The perfect sampling algorithm

Maintains a random pair (X, R), where $X \in[q]^{V}$ and $R \subseteq V$ s.t. (X, R) satisfies the conditional Gibbs property

Conditional Gibbs property [Huber, Fill, 2000; Guo, Jerrum, Liu, 2017; Feng, Vishnoi, Yin 2019]
For any $\Lambda \subseteq V$, any $\sigma \in[q]^{\Lambda}$, conditional on $R=\Lambda$ and $X_{R}=\sigma, X_{V \backslash R} \sim \mu_{V \backslash R}^{\sigma}$:

$$
\forall \tau \in[q]^{V \backslash R}, \operatorname{Pr}_{(X, R)}\left[X_{V \backslash R}=\tau \mid R=\Lambda \wedge X_{R}=\sigma\right]=\mu_{V \backslash R}^{\sigma}(\tau)
$$

modify the pair (X, R) maintain conditional Gibbs

$$
\begin{aligned}
& R=\emptyset \\
& X \sim \mu
\end{aligned}
$$

Warm-up: A simple case

Input: Gibbs distribution μ in $G=(V, E)$ (e.g., uniform distribution over q-colourings) random pair (X, R) such that

- $R=\{u\}$ and $X_{u}=$ Red
- $X_{V \backslash\{u\}} \sim \mu_{V \backslash\{u\}}(\cdot \mid u$ is Red $)$
\} conditional Gibbs property

Idealised goal: modify such $(X, R=\{u\})$ so that $R=\emptyset$ and $X \sim \mu$

$$
B: \ell \text {-ball centred at } u, \ell=O(1) ; \quad A=V \backslash B
$$

Input: $X_{A} \sim \mu_{A}(\cdot \mid u$ is Red $)$
Idealised goal: $X_{A} \sim \mu_{A}(\cdot)=\sum_{c \in[q]} \mu_{u}(c) \mu_{A}(\cdot \mid u$ is $c)$

$$
A=V \backslash B
$$

Idea: use a filter to transform the distribution
$\forall \sigma \in[q]^{A}, \quad \operatorname{Pr}\left[X_{A}\right.$ passes filter $\left.\mid X_{A}=\sigma\right] \propto \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text { is Red })} \longleftarrow \longleftarrow$ target distribution

$$
\operatorname{Pr}\left[X_{A}=\sigma \wedge X_{A} \text { passes filter }\right] \propto \mu_{A}(\sigma \mid u \text { is Red }) \cdot \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text { is Red })}=\mu_{A}(\sigma)
$$

$$
\operatorname{Pr}\left[X_{A}=\sigma \mid X_{A} \text { passes filter }\right]=\mu_{A}(\sigma)
$$

If X_{A} passes the filter, then $X_{A} \sim \mu_{A}$

Idea: use a filter to transform the distribution
$\forall \sigma \in[q]^{A}, \quad \operatorname{Pr}\left[X_{A}\right.$ passes filter $\left.\mid X_{A}=\sigma\right] \propto \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text { is Red })} \longleftarrow \longleftarrow$ target distribution

$$
\begin{array}{r}
\text { (by Bayes'Law) } \quad \mu_{A}(\sigma \mid u \text { is Red })=\frac{\mu_{A}(u \text { is } \operatorname{Red} \mid A \leftarrow \sigma) \mu_{A}(\sigma)}{\mu_{u}(\operatorname{Red})} \\
\text { the event } A \leftarrow \sigma \text { : } \\
\text { vertices in } A \text { are coloured as } \sigma
\end{array}
$$

Idea: use a filter to transform the distribution
$\forall \sigma \in[q]^{A}$,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{A} \text { passes filter } \mid X_{A}=\sigma\right] \propto \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text { is Red })} \longleftarrow & \begin{array}{l}
\text { target distribution } \\
\text { input distribution }
\end{array} \\
& =\frac{\mu_{A}(\sigma) \mu_{u}(\operatorname{Red})}{\mu_{u}(\operatorname{Red} \mid A \leftarrow \sigma) \mu_{A}(\sigma)} \quad \text { vertices in } A \text { are coloured as } \sigma
\end{aligned}
$$

Idea: use a filter to transform the distribution
$\forall \sigma \in[q]^{A}$,

$$
\begin{aligned}
\operatorname{Pr}\left[X_{A} \text { passes filter } \mid X_{A}=\sigma\right] & \propto \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text { is Red })} \longleftarrow \\
& =\frac{\mu_{A}(\sigma) \mu_{u}(\operatorname{Red})}{\mu_{u}(\operatorname{Red} \mid A \leftarrow \sigma) \mu_{A}(\sigma)} \quad \begin{array}{c}
\text { target distribution } \\
\text { input distribution } \\
\text { vertices in } A \text { are coloured as } \sigma
\end{array} \\
& =\frac{\mu_{u}(\operatorname{Red})}{\mu_{u}(\text { Red } \mid A \leftarrow \sigma)} \propto \frac{1}{\mu_{u}(\text { Red } \mid A \leftarrow \sigma)} \\
& \quad\left(\mu_{u}(\operatorname{Red}) \text { is independent } \mu_{A}(\sigma)\right)
\end{aligned}
$$

$\forall \sigma \in[q]^{A}, \quad \operatorname{Pr}\left[X_{A}\right.$ passes filter $\left.\mid X_{A}=\sigma\right] \propto \frac{1}{\mu_{u}(\operatorname{Red} \mid A \leftarrow \sigma)}=\frac{1}{\mu_{u}\left(\operatorname{Red} \mid \partial B \leftarrow \sigma_{\partial B}\right)}$
(by conditional independence)
$\partial B \subseteq A$ is the outside boundary of B
$\partial B=\left\{w \notin B \mid \exists w^{\prime} \in B\right.$ st $\left.\left\{w, w^{\prime}\right\} \in E\right\}$
∂B separates B and $A \backslash \partial B$ in graph G
conditional independence
$\forall \sigma \in[q]^{A}, \quad \operatorname{Pr}\left[X_{A}\right.$ passes filter $\left.\mid X_{A}=\sigma\right] \propto \frac{1}{\mu_{u}(\operatorname{Red} \mid A \leftarrow \sigma)}=\frac{1}{\mu_{u}\left(\operatorname{Red} \mid \partial B \leftarrow \sigma_{\partial B}\right)}$
(by conditional independence)

$\partial B \subseteq A$ is the outside boundary of B
 $\partial B=\left\{w \notin B \mid \exists w^{\prime} \in B\right.$ st $\left.\left\{w, w^{\prime}\right\} \in E\right\}$

∂B separates B and $A \backslash \partial B$ in graph G
conditional independence

$$
\forall \sigma \in[q]^{A}, \quad \operatorname{Pr}\left[X_{A} \text { passes filter } \mid X_{A}=\sigma\right]=\frac{\min _{\tau \in[q]^{\partial B}} \mu_{u}(\operatorname{Red} \mid \partial B \leftarrow \tau)}{\mu_{u}\left(\operatorname{Red} \mid \partial B \leftarrow \sigma_{\partial B}\right)} \leq 1
$$

Bayes filter: simple case

- Reveal the configuration $X_{\partial B}$
- flip a coin such that

- If the outcome is HEADS, then
- resample $X_{B} \sim \mu_{B}\left(\cdot \mid X_{\partial B}\right)$
- Return the pair (X, \varnothing)
- If the outcome is not HEAD, then
- Return the pair $(X,\{u\} \cup \partial B)$

(pass the Bayes filter, then $X_{A} \sim \mu_{A}$)

$$
\left(X_{B} \sim \mu_{B}^{X_{A}}=\mu_{B}^{X_{\partial B}}, \text { then } X \sim \mu\right)
$$

(not pass the Bayes filter)
(Bayes filter only reveal $X_{\partial B}, R=\{u\} \cup \partial B$)

General case

- Pick the vertex $u \in R$ with the lowest index
- Define set $S=R \backslash\{u\}$
R
$u \in R$

$$
S=R \backslash\{u\}
$$

General case

- Pick the vertex $u \in R$ with the lowest index
- Define set $S=R \backslash\{u\}$
- Consider the Gibbs distribution

$$
\pi=\mu_{V \backslash S}\left(\cdot \mid S \leftarrow \sigma_{S}\right)
$$

- $\left(X_{V \backslash S},\{u\}\right)$ satisfies conditional Gibbs w.r.t. π
$(\{u\}=R \backslash S) \quad X_{V \backslash\{u\}} \sim \pi_{V \backslash\{u\}}\left(\cdot \mid u \leftarrow \sigma_{u}\right)$
- Back to the simple case that R only contains 1 vertex

Analysis of running time

Bayes Filter

$$
\operatorname{Pr}[\mathrm{HEADS}]=\frac{\mu_{\min }}{\mu_{u}\left(X_{u} \mid X_{\partial B}\right)}=\frac{\mu_{u}\left(X_{u} \mid \partial B \leftarrow \tau^{*}\right)}{\mu_{u}\left(X_{u} \mid \partial B \leftarrow X_{\partial B}\right)}
$$

$$
\mu_{\min }=\min \left\{\mu_{u}\left(X_{u} \mid \tau\right) \mid \tau \in[q]^{\partial B}\right\} \text { is achieved by } \tau^{*}
$$

$$
\operatorname{Pr}[\operatorname{HEADS}]=1-\exp (-\Omega(\ell))
$$

Pass the Bayes filter
Not pass the Bayes filter

Eliminate vertex u from R
Add ∂B into R, where $|\partial B|=\exp (o(\ell))$

Choose $\ell=O(1)$ such that the size of R decays in expectation in every step

Analysis of running time

Bayes Filter

$$
\operatorname{Pr}[\mathrm{HEADS}]=\frac{\mu_{\min }}{\mu_{u}\left(X_{u} \mid X_{\partial B}\right)}=\frac{\mu_{u}\left(X_{u} \mid \partial B \leftarrow \tau^{*}\right)}{\mu_{u}\left(X_{u} \mid \partial B \leftarrow X_{\partial B}\right)}
$$

$$
\mu_{\min }=\min \left\{\mu_{u}\left(X_{u} \mid \tau\right) \mid \tau \in[q]^{\partial B}\right\} \text { is achieved by } \tau^{*}
$$

$$
\operatorname{Pr}[\mathrm{HEADS}]=1-\exp (-\Omega(\ell))
$$

Pass the Bayes filter
Not pass the Bayes filter

Eliminate vertex u from R
Add ∂B into R, where $|\partial B|=\exp (o(\ell))$

Q: Is the Weak Spatial Mixing (WSM) enough for this analysis?
A: No, in the general case, we do analysis on conditional distributions.

Open Problems

Uniform q-colourings on graph $G=(V, E)$ with max degree Δ

- Perfect sampler when $q>2 \Delta$ with running time $\tilde{O}_{q, \Delta}(n)$??

Hardcore model on graph $G=(V, E)$ with parameter $\lambda>0$ and max degree Δ

- perfect sampler when $\lambda_{c}<\lambda_{c}(\Delta)$ with running time $\tilde{O}_{\lambda, \Delta}(n)$??

Appendix

Unified Bayes filter

- Pick the vertex $u \in R$ with the lowest index

$$
u \in R^{\bigcirc} \quad V \backslash R
$$

Unified Bayes filter

- Pick the vertex $u \in R$ with the lowest index
- Define the regime

$$
B=B_{\ell}(u) \backslash R \cup\{u\}
$$

R

$$
u \in R^{\bigcirc} \quad V \backslash R
$$

Unified Bayes filter

- Pick the vertex $u \in R$ with the lowest index
- Define the regime

$$
B=B_{\ell}(u) \backslash R \cup\{u\}
$$

- Compute the minimum probability
$\mu_{\text {min }}=\min \left\{\mu_{u}\left(X_{u} \mid \tau\right) \mid \tau \in[q]^{\partial B}: \tau_{\partial B \cap R}=X_{\partial B \cap R}\right\}$
- Flip a coin such that (Bayes Filter)

R

$$
u \in R^{\bigcirc} \quad V \backslash R
$$

$$
\operatorname{Pr}[\mathrm{HEADS}]=\frac{\mu_{\min }}{\mu_{u}\left(X_{u} \mid \partial B \leftarrow X_{\partial B}\right)}
$$

Unified Bayes filter

- Pick the vertex $u \in R$ with the lowest index
- Define the regime

$$
B=B_{\ell}(u) \backslash R \cup\{u\}
$$

- Compute the minimum probability

$$
\mu_{\min }=\min \left\{\mu_{u}\left(X_{u} \mid \tau\right) \mid \tau \in[q]^{\partial B}: \tau_{\partial B \cap R}=X_{\partial B \cap R}\right\}
$$

- Flip a coin such that (Bayes Filter)

R

$$
u \in R^{\bigcirc} \quad V \backslash R
$$

$$
\operatorname{Pr}[\mathrm{HEADS}]=\frac{\mu_{\min }}{\mu_{u}\left(X_{u} \mid \partial B \leftarrow X_{\partial B}\right)}
$$

- If the outcome is HEADS, then

Resample $X_{B} \sim \mu_{B}\left(\cdot \mid \partial B \leftarrow X_{\partial B}\right)$
Return ($X, R \backslash\{u\}$)

- If the outcome is not HEADS, then

Return $(X, R \cup \partial B)$

Bayes Filter

$$
\begin{gathered}
\operatorname{Pr}[\operatorname{HEADS}]=\frac{\mu_{\min }}{\mu_{u}\left(X_{u} \mid X_{\partial B}\right)}=\frac{\mu_{u}\left(X_{u} \mid \partial B \leftarrow \tau^{*}\right)}{\mu_{u}\left(X_{u} \mid \partial B \leftarrow X_{\partial B}\right)} \\
\mu_{\min }=\min \left\{\mu_{u}\left(X_{u} \mid \tau\right) \mid \tau \in[q]^{\partial B}: \tau_{\partial B \cap R}=X_{\partial B \cap R}\right\}
\end{gathered}
$$

$$
\tau^{*} \text { and } X_{\partial B} \text { disagree only at blue regime }
$$

$$
\operatorname{Pr}[\operatorname{HEADS}]=\frac{\mu_{u}\left(X_{u} \mid \partial B \leftarrow \tau^{*}\right)}{\mu_{u}\left(X_{u} \mid \partial B \leftarrow X_{\partial B}\right)}=1-\exp (-\Omega(\ell))
$$

Pass the Bayes filter
Not pass the Bayes filter

Eliminate vertex u from R
Add ∂B into R, where $|\partial B| \leq\left|S_{\ell}(v)\right|=\exp (o(\ell))$

$$
\begin{aligned}
\mathbb{E}[\mid \text { new } R|-|R|| R] & =-\operatorname{Pr}[\text { HEADS }]+(1-\operatorname{Pr}[\operatorname{HEADS}]) \cdot|\partial B| \\
& =-1+\exp (-\Omega(\ell))+\exp (-\Omega(\ell)+o(\ell)) \\
(\ell=\Theta(1)) & <0
\end{aligned}
$$

