### Perfect sampling from spatial mixing

Weiming Feng University of Edinburgh

Joint work with

Heng Guo (University of Edinburgh) Yitong Yin (Nanjing University)

Probability, Information Theory and Computing Workshop April 21<sup>st</sup> 2023 TU Dortmund, Germany (online talk)

### Spin systems and Gibbs distributions

finite graph G = (V, E)

Parameters



vertex: random variable in  $[q] = \{0, 1, ..., q - 1\}$  **external field**: vector  $b \in \mathbb{R}^q_{\geq 0}$  in each vertex **interaction**: symmetric matrix  $A \in \mathbb{R}^{q \times q}$  on each ec

**interaction**: symmetric matrix  $A \in \mathbb{R}_{\geq 0}^{q \times q}$  on each edge

$$\forall \sigma \in [q]^V, \qquad \mu(\sigma) \propto \prod_{v \in V} b(\sigma_v) \prod_{e=\{u,v\} \in E} A(\sigma_u, \sigma_v)$$
  
for a configuration Gibbs distribution weight  $w(\sigma)$ 

## Example: graph coloring



proper q-colouring in graph G = (V, E)

- Each vertex  $v \in V$  take a colour  $\sigma_v \in [q]$
- Each edge  $\{u, v\} \in E$  is not monochromatic  $\sigma_u \neq \sigma_v$

$$b = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & 0 & \vdots \\ 1 & \cdots & 0 \end{bmatrix}$$

 $\mu(\sigma) \propto \begin{cases} 1 & \text{if } \sigma \text{ is a proper colouring} \\ 0 & \text{otherwise} \end{cases}$ 

constantA(i,i) = 0vectorA(i,j) = 1

**uniform distribution** over all proper q-colourings in G

### Examples: hardcore model and Ising model



Hardcore model in *G* with parameter  $\lambda > 0$ 

 $\forall \sigma \in \{0,1\}^V \text{ s.t. } S_\sigma = \{ v \in V \mid \sigma_v = 1 \} \text{ is an independent set}$  $\mu(\sigma) \propto \lambda^{|S_\sigma|}$ 



Ising model in *G* with parameter meta>0

 $\forall \sigma \in \{0,1\}^V, \mu(\sigma) \propto \beta^{m(\sigma)}$ 

 $m(\sigma) = |\{\{u, v\} \in E \mid \sigma_u = \sigma_v\}|$  is #monochromatic edges

**Input**: ① a graph G = (V, E), vector  $b \in \mathbb{R}^{q}_{\geq 0}$ , symmetric matrix  $A \in \mathbb{R}^{q \times q}_{\geq 0}$ 

specify *Gibbs distribution* 
$$\mu(\sigma) \propto \prod_{v \in V} b(\sigma_v) \prod_{e=\{u,v\} \in E} A(\sigma_u, \sigma_v)$$

(2) an error bound  $\epsilon \geq 0$ 

**Output:** a random sample  $X \in [q]^V$  such that

$$d_{TV}(X,\mu) = \frac{1}{2} \sum_{\sigma \in [q]^V} |\Pr[X = \sigma] - \mu(\sigma)| \le \epsilon$$

- Approximate sampling problem: return random samples with bounded error  $\epsilon > 0 \left( \epsilon = \frac{1}{\text{poly}(n)} \right)$
- **Perfect** sampling problem: return random samples without error  $\epsilon = 0$

**Input**: ① a *sub-exp growth* graph G = (V, E), vector  $b \in \mathbb{R}^q_{\geq 0}$ , symmetric matrix  $A \in \mathbb{R}^{q \times q}_{\geq 0}$ 

specify **Gibbs distribution** 
$$\mu(\sigma) \propto \prod_{v \in V} b(\sigma_v) \prod_{e = \{u, v\} \in E} A(\sigma_u, \sigma_v)$$

(2) an error bound  $\epsilon \geq 0$ 

#### Sub-exp growth graph

A family of graphs G has sub-exp growth if

 $\exists a \text{ sub-exp} function s: \mathbb{N} \to \mathbb{N} \text{ s.t. } \forall G = (V, E) \in \mathcal{G},$ 

 $\forall v \in V, \ell \in \mathbb{N}, |B_{\ell}(v)| \leq s(\ell) = \exp(o(\ell))$ 

 $B_{\ell}(v) = \{ u \in V \mid \text{dist}_{G}(v, u) \leq \ell \}$ ball of radius  $\ell$  centred at v



**Input**: ① a *sub-exp growth* graph G = (V, E), vector  $b \in \mathbb{R}^q_{\geq 0}$ , symmetric matrix  $A \in \mathbb{R}^{q \times q}_{\geq 0}$ 

specify **Gibbs distribution** 
$$\mu(\sigma) \propto \prod_{v \in V} b(\sigma_v) \prod_{e=\{u,v\} \in E} A(\sigma_u, \sigma_v)$$

(2) an error bound  $\epsilon \geq 0$ 

**Example**: let  $d \in \mathbb{N}$ , any **finite sub-graph** G = (V, E) of  $\mathbb{Z}^d$  has sub-exp growth

 $\forall v \in V, \ell \in \mathbb{N}, \qquad |B_{\ell}(v)| \le (2\ell + 1)^d = \operatorname{poly}(\ell) = \exp(o(\ell))$ 



**Input**: ① a *sub-exp growth* graph G = (V, E), vector  $b \in \mathbb{R}^{q}_{\geq 0}$ , symmetric matrix  $A \in \mathbb{R}^{q \times q}_{\geq 0}$ 

specify **Gibbs distribution** 
$$\mu(\sigma) \propto \prod_{v \in V} b(\sigma_v) \prod_{e=\{u,v\} \in E} A(\sigma_u, \sigma_v)$$

(2) an error bound  $\epsilon \geq 0$ 

**Output:** a random sample  $X \in [q]^V$  such that

$$d_{TV}(X,\mu) = \frac{1}{2} \sum_{\sigma \in [q]^V} |\Pr[X = \sigma] - \mu(\sigma)| \le \epsilon$$





- Partial configurations  $\sigma, \tau \in [q]^{\Lambda}$  on  $\Lambda \subseteq V$  $S = \{ w \in \Lambda \mid \sigma_w \neq \tau_w \}$
- Vertex  $v \in V$  with distance to **disagreement**  $\ell = \min\{\text{dist}_G(v, w) \mid w \in S\}$
- Strong Spatial Mixing (SSM)  $d_{TV}(\mu_v^{\sigma}, \mu_v^{\tau}) \leq \alpha \exp(-\beta \ell)$   $\uparrow \uparrow \uparrow \uparrow \uparrow$ TV distance marginals on v exponential decay Influence on v conditional on  $\sigma$  or  $\tau$   $\alpha, \beta = \Theta(1)$



- Partial configurations  $\sigma, \tau \in [q]^{\Lambda}$  on  $\Lambda \subseteq V$  $S = \{ w \in \Lambda \mid \sigma_w \neq \tau_w \}$
- Vertex  $v \in V$  with distance to **disagreement**  $\ell = \min\{\text{dist}_G(v, w) \mid w \in S\}$
- Strong Spatial Mixing (**SSM**)  $d_{TV}(\mu_v^{\sigma}, \mu_v^{\tau}) \leq \alpha \exp(-\beta \ell)$

**Some sufficient conditions** for SSM on graph G with max degree  $\Delta$ 

• q-colouring: ( $q > 2\Delta$ ) or (triangle-free and  $q > 1.763\Delta$ )

• hardcore: 
$$\lambda < \lambda_{c}(\Delta) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$$

• Ising model: 
$$\frac{\Delta - 2}{\Delta} < \beta < \frac{\Delta}{\Delta - 2}$$



- Partial configurations  $\sigma, \tau \in [q]^{\Lambda}$  on  $\Lambda \subseteq V$  $S = \{ w \in \Lambda \mid \sigma_w \neq \tau_w \}$
- Vertex  $v \in V$  with distance to **disagreement**  $\ell = \min\{\text{dist}_G(v, w) \mid w \in S\}$
- Strong Spatial Mixing (**SSM**)  $d_{TV}(\mu_v^{\sigma}, \mu_v^{\tau}) \leq \alpha \exp(-\beta \ell)$

Theorem [Dyer, Sinclair, Vigoda and Weitz 2004]





- Partial configurations  $\sigma, \tau \in [q]^{\Lambda}$  on  $\Lambda \subseteq V$  $S = \{ w \in \Lambda \mid \sigma_w \neq \tau_w \}$
- Vertex  $v \in V$  with distance to **disagreement**  $\ell = \min\{\text{dist}_G(v, w) \mid w \in S\}$
- Strong Spatial Mixing (**SSM**)  $d_{TV}(\mu_v^{\sigma}, \mu_v^{\tau}) \leq \alpha \exp(-\beta \ell)$

Theorem [Dyer, Sinclair, Vigoda and Weitz 2004]



### Our results



Main result [This work]

Constants  $q \in \mathbb{N}$ ,  $b \in \mathbb{R}^{q}_{\geq 0}$  and  $A \in \mathbb{R}^{q \times q}_{\geq 0}$ . There exists an algorithm such that

- given any graph G = (V, E) with sub-exp growth
- output a **perfect sample** from Gibbs distribution  $\mu$  in time O(n), n = |V|

**Remark**: the linear running time  $C \cdot n$  of the algorithm

the *constant* C = C(q, b, A, s) depends on

- number of spins q, external vector b and interaction matrix A
- parameters in sub-exp function  $s: \mathbb{N} \to \mathbb{N}$  (recall  $|B_{\ell}(v)| \le s(\ell) = \exp(o(\ell))$ )

*C* does *not* depend on *n* 

### Our results



Main result [This work]

Constants  $q, b \in \mathbb{R}^{q}_{\geq 0}$  and  $A \in \mathbb{R}^{q \times q}_{\geq 0}$ . There exists an algorithm such that

- given any graph G = (V, E) with sub-exp growth
- output a **perfect sample** from Gibbs distribution  $\mu$  in time O(n), n = |V|

**Remark**: the linear running time  $C \cdot n$  of the algorithm

*Example*: if G = (V, E) is a **finite subgraph of**  $\mathbb{Z}^d$ , then the constant

C = C(q, A, b, d)

#### Applications for spin systems

| Model       | Graph                           | Parameters                                             |
|-------------|---------------------------------|--------------------------------------------------------|
| q-colouring | sub-exp growth                  | $q > 2\Delta$                                          |
| q-colouring | sub-exp growth<br>triangle-free | $q > 1.763\Delta$                                      |
| hardcore    | sub-exp growth                  | $\lambda < \lambda_c(\Delta) \approx \frac{e}{\Delta}$ |
| Ising       | sub-exp growth                  | $1 - \frac{2}{\Delta} < \beta < 1 + \frac{2}{\Delta}$  |

Our algorithm also works for general graphs, but with a stronger SSM condition

*Example*: *q*-colouring on general graphs

- our condition:  $q \ge \Delta^2 \Delta + 2$
- state-of-the-art:  $q = \Omega(\Delta)$  [Jain, Sah, Sawhney, 2021] [Liu, Sinclair, Srivastava, 2019]

| Techniques                                                    | Graph   | #Colours      | Running time                |
|---------------------------------------------------------------|---------|---------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19] | general | $q > 2\Delta$ | $n^{\mathrm{poly}(\Delta)}$ |

| Techniques                                                       | Graph   | #Colours                 | Running time                |
|------------------------------------------------------------------|---------|--------------------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19]    | general | $q > 2\Delta$            | $n^{\mathrm{poly}(\Delta)}$ |
| Coupling from the past & Bounding chain<br>[PW96, Hubero4,JSS21] | general | $q > (8/3 + o(1))\Delta$ | $	ilde{O}_{q,\Delta}(n)$    |

| Techniques                                                        | Graph   | #Colours                 | Running time                |
|-------------------------------------------------------------------|---------|--------------------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19]     | general | $q > 2\Delta$            | $n^{\mathrm{poly}(\Delta)}$ |
| Coupling from the past & Bounding chain<br>[PW96, Hubero4, JSS21] | general | $q > (8/3 + o(1))\Delta$ | $	ilde{O}_{q,\Delta}(n)$    |
| Randomness recycler [Huber, Fill, 2000]                           | general | $q = \Omega(\Delta^4)$   | $O_{q,\Delta}(n)$           |

| Techniques                                                       | Graph             | #Colours                                    | Running time                |
|------------------------------------------------------------------|-------------------|---------------------------------------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19]    | general           | $q > 2\Delta$                               | $n^{\mathrm{poly}(\Delta)}$ |
| Coupling from the past & Bounding chain<br>[PW96, Hubero4,JSS21] | general           | $q > (8/3 + o(1))\Delta$                    | $	ilde{O}_{q,\Delta}(n)$    |
| Randomness recycler [Huber, Fill, 2000]                          | general           | $q = \Omega(\Delta^4)$                      | $O_{q,\Delta}(n)$           |
| Depth-First-Sampling [Anand, Jerrum, 2021]                       | sub-exp<br>growth | $q>2\Delta$ $q>1.763\Delta$ (triangle-free) | $O_{q,\Delta}(n)$           |

#### The Depth-First-Sampling algorithm could **recover** our main result



| Techniques                                                                                        | Graph                                              | #Colours                                    | Running time                |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19]                                     | general                                            | $q > 2\Delta$                               | $n^{\mathrm{poly}(\Delta)}$ |
| Coupling from the past & Bounding chain<br>[PW96, Hubero4, JSS21]                                 | general                                            | $q > (8/3 + o(1))\Delta$                    | $\tilde{O}_{q,\Delta}(n)$   |
| Randomness recycler [Huber, Fill, 2000]                                                           | general                                            | $q = \Omega(\Delta^4)$                      | $O_{q,\Delta}(n)$           |
| Depth-First-Sampling [Anand, Jerrum, 2021]                                                        | sub-exp<br>growth                                  | $q>2\Delta$ $q>1.763\Delta$ (triangle-free) | $O_{q,\Delta}(n)$           |
| Partial rejection sampling [Guo, Jerrum, Liu, 2017]<br>Dynamic sampler [Feng, Vishnoi, Yin, 2019] | Works for other spin systems but not for colouring |                                             |                             |

| Techniques                                                                                        | Graph                                              | #Colours                                       | Running time                |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19]                                     | general                                            | $q > 2\Delta$                                  | $n^{\mathrm{poly}(\Delta)}$ |
| Coupling from the past & Bounding chain<br>[PW96, Hubero4, JSS21]                                 | general                                            | $q > (8/3 + o(1))\Delta$                       | $	ilde{O}_{q,\Delta}(n)$    |
| Randomness recycler [Huber, Fill, 2000]                                                           | general                                            | $q = \Omega(\Delta^4)$                         | $O_{q,\Delta}(n)$           |
| Depth-First-Sampling [Anand, Jerrum, 2021]                                                        | sub-exp<br>growth                                  | $q>2\Delta$ $q>1.763\Delta$ (triangle-free)    | $O_{q,\Delta}(n)$           |
| Partial rejection sampling [Guo, Jerrum, Liu, 2017]<br>Dynamic sampler [Feng, Vishnoi, Yin, 2019] | Works for other spin systems but not for colouring |                                                |                             |
| Bayes filter [This paper, 2021]                                                                   | sub-exp<br>growth                                  | $q>2\Delta$<br>$q>1.763\Delta$ (triangle-free) | $O_{q,\Delta}(n)$           |

same principle

| Techniques                                                                                        | Graph                                              | #Colours                                                                        | Running time                |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|
| Reduction to deterministic approximate counting [JVV86,LSS19]                                     | general                                            | $q > 2\Delta$                                                                   | $n^{\mathrm{poly}(\Delta)}$ |
| Coupling from the past & Bounding chain<br>[PW96, Hubero4,JSS21]                                  | general                                            | $q > (8/3 + o(1))\Delta$                                                        | $	ilde{O}_{q,\Delta}(n)$    |
| Randomness recycler [Huber, Fill, 2000]                                                           | general                                            | $q = \Omega(\Delta^4)$                                                          | $O_{q,\Delta}(n)$           |
| Depth-First-Sampling [Anand, Jerrum, 2021]                                                        | sub-exp<br>growth                                  | $q>2\Delta$ $q>1.763\Delta$ (triangle-free)                                     | $O_{q,\Delta}(n)$           |
| Partial rejection sampling [Guo, Jerrum, Liu, 2017]<br>Dynamic sampler [Feng, Vishnoi, Yin, 2019] | Works for other spin systems but not for colouring |                                                                                 |                             |
| Bayes filter [This paper]                                                                         | sub-exp<br>growth                                  | $q>2\Delta$<br>$q>1.763\Delta$ (triangle-free)                                  | $O_{q,\Delta}(n)$           |
| MCMC <u>approximate</u> sampler<br>[Chen, Delcourt, Moitra, Perarnau, 2019]                       | general                                            | $q \ge \left(\frac{11}{6} - \epsilon_0\right) \Delta, \ \epsilon_0 \ge 10^{-5}$ | $\tilde{O}_{q,\Delta}(n)$   |

**Open problem**: close the *gap* between perfect sampling and approximate sampling

# The perfect sampling algorithm

Maintains a random pair (X, R), where  $X \in [q]^V$  and  $R \subseteq V$  s.t.

(X, R) satisfies the *conditional Gibbs property* 

R V\R

**Conditional Gibbs property** [Huber, Fill, 2000; Guo, Jerrum, Liu, 2017; Feng, Vishnoi, Yin 2019] For any  $\Lambda \subseteq V$ , any  $\sigma \in [q]^{\Lambda}$ , conditional on  $R = \Lambda$  and  $X_R = \sigma$ ,  $X_{V \setminus R} \sim \mu_{V \setminus R}^{\sigma}$ :  $\forall \tau \in [q]^{V \setminus R}$ ,  $\Pr_{(X,R)} [X_{V \setminus R} = \tau \mid R = \Lambda \land X_R = \sigma] = \mu_{V \setminus R}^{\sigma}(\tau)$ 

#### Remarks about Conditional Gibbs property

The distribution of  $(X_R, R)$  can be *arbitrary*, but  $X_{V\setminus R}$  must follow  $\mu_{V\setminus R}^{X_R}$  if  $(X_R, R)$  is given.

- *R* is the set of "**bad variables**" and *V*\*R* is the set of "**good variables**"
- In general, the distribution of (*X*, *R*) is **not unique**
- If R = V, then X is arbitrary; if  $R = \emptyset$ , then  $X \sim \mu$

# The perfect sampling algorithm

Maintains a random pair (X, R), where  $X \in [q]^V$  and  $R \subseteq V$  s.t.

(X, R) satisfies the *conditional Gibbs property* 

R V\R

Conditional Gibbs property [Huber, Fill, 2000; Guo, Jerrum, Liu, 2017; Feng, Vishnoi, Yin 2019] For any  $\Lambda \subseteq V$ , any  $\sigma \in [q]^{\Lambda}$ , conditional on  $R = \Lambda$  and  $X_R = \sigma$ ,  $X_{V \setminus R} \sim \mu_{V \setminus R}^{\sigma}$ :  $\forall \tau \in [q]^{V \setminus R}$ ,  $\Pr_{(X,R)} [X_{V \setminus R} = \tau \mid R = \Lambda \land X_R = \sigma] = \mu_{V \setminus R}^{\sigma}(\tau)$ 



### Warm-up: A simple case

**Input**: Gibbs distribution  $\mu$  in G = (V, E) (e.g., uniform distribution over q-colourings) random pair (X, R) such that

- $R = \{u\}$  and  $X_u = \text{Red}$   $X_{V \setminus \{u\}} \sim \mu_{V \setminus \{u\}}(\cdot \mid u \text{ is Red})$  conditional Gibbs property

**Idealised goal:** modify such  $(X, R = \{u\})$  so that  $R = \emptyset$  and  $X \sim \mu$ 

B: 
$$\ell$$
-ball centred at  $u, \ell = O(1);$   $A = V \setminus B$ 

Input:  $X_A \sim \mu_A(\cdot \mid u \text{ is } \text{Red})$ 

Idealised goal:  $X_A \sim \mu_A(\cdot) = \sum_{c \in [q]} \mu_u(c) \mu_A(\cdot | u \text{ is } c)$ 

SSM 
$$\mu_A(\cdot \mid u \text{ is } \text{Red}) \approx \mu_A(\cdot)$$



SSM
$$\mu_A(\cdot | u \text{ is Red}) \approx \mu_A(\cdot)$$
 $X_A \sim \mu_A(\cdot | u \text{ is Red})$  $filter$  $X_A \sim \mu_A(\cdot | u \text{ is Red})$  $X_A \sim \mu_A(\cdot)$ Idea: use a *filter* to transform the distribution

$$\forall \sigma \in [q]^A, \qquad \Pr[X_A \text{ passes filter} \mid X_A = \sigma] \propto \frac{\mu_A(\sigma)}{\mu_A(\sigma \mid u \text{ is } \text{Red})} \xleftarrow{\text{target distribution}}$$

$$\Pr[X_A = \sigma \land X_A \text{ passes filter}] \propto \mu_A(\sigma \mid u \text{ is } \text{Red}) \cdot \frac{\mu_A(\sigma)}{\mu_A(\sigma \mid u \text{ is } \text{Red})} = \mu_A(\sigma)$$

 $\Pr[X_A = \sigma \mid X_A \text{ passes filter}] = \mu_A(\sigma)$ 

If  $X_A$  passes the filter, then  $X_A \sim \mu_A$ 

SSM
$$\mu_A(\cdot | u \text{ is Red}) \approx \mu_A(\cdot)$$
 $X_A \sim \mu_A(\cdot | u \text{ is Red})$  $filter$  $X_A \sim \mu_A(\cdot | u \text{ is Red})$  $filter$  $X_A \sim \mu_A(\cdot)$  $A = V \setminus B$ Idea: use a *filter* to transform the distribution

 $\forall \sigma \in [q]^A, \quad \Pr[X_A \text{ passes filter} \mid X_A = \sigma] \propto \frac{\mu_A(\sigma)}{\mu_A(\sigma \mid u \text{ is } \text{Red})} \xleftarrow{\text{target distribution}}$ 

(by Bayes' Law) 
$$\mu_A(\sigma \mid u \text{ is } \text{Red}) = \frac{\mu_A(u \text{ is } \text{Red} \mid A \leftarrow \sigma)\mu_A(\sigma)}{\mu_u(\text{Red})}$$

the event  $A \leftarrow \sigma$ : vertices in A are coloured as  $\sigma$ 

$$SSM \longrightarrow \mu_{A}(\cdot | u \text{ is Red}) \approx \mu_{A}(\cdot)$$

$$X_{A} \sim \mu_{A}(\cdot | u \text{ is Red}) \int filter X_{A} \sim \mu_{A}(\cdot)$$

$$X_{A} \sim \mu_{A}(\cdot | u \text{ is Red}) \int filter X_{A} \sim \mu_{A}(\cdot)$$

$$X_{A} \sim \mu_{A}(\cdot)$$

$$W_{A}(\sigma) \leftarrow \text{target distribution}$$

$$\forall \sigma \in [q]^{A}, \quad \Pr[X_{A} \text{ passes filter} \mid X_{A} = \sigma] \propto \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text{ is Red})} \xleftarrow{\text{target distribution}} \text{ input distribution}$$
$$(by Bayes' Law) \qquad = \frac{\mu_{A}(\sigma)\mu_{u}(\text{Red})}{\mu_{u}(\text{Red} \mid A \leftarrow \sigma)\mu_{A}(\sigma)} \qquad \begin{array}{c} \text{target distribution} \\ \text{input distribution} \\ \text{the event } A \leftarrow \sigma: \\ \text{vertices in } A \text{ are coloured as } \sigma \end{array}$$

$$SSM \longrightarrow \mu_{A}(\cdot | u \text{ is Red}) \approx \mu_{A}(\cdot)$$

$$X_{A} \sim \mu_{A}(\cdot | u \text{ is Red}) \qquad filter \qquad X_{A} \sim \mu_{A}(\cdot)$$

$$K_{A} \sim \mu_{A}(\cdot | u \text{ is Red}) \qquad filter \qquad X_{A} \sim \mu_{A}(\cdot)$$

$$K_{A} \sim \mu_{A}(\cdot$$

$$\forall \sigma \in [q]^{A}, \quad \Pr[X_{A} \text{ passes filter} \mid X_{A} = \sigma] \propto \frac{\mu_{A}(\sigma)}{\mu_{A}(\sigma \mid u \text{ is Red})} \xleftarrow{\text{input distribution}}$$

$$(by Bayes' Law) \quad = \frac{\mu_{A}(\sigma)\mu_{u}(\text{Red})}{\mu_{u}(\text{Red} \mid A \leftarrow \sigma)\mu_{A}(\sigma)} \quad \begin{array}{c} \text{the event } A \leftarrow \sigma: \\ \text{vertices in } A \text{ are coloured as } \sigma \end{array}$$

$$(cancel \ \mu_{A}(\sigma)) \quad = \frac{\mu_{u}(\text{Red})}{\mu_{u}(\text{Red} \mid A \leftarrow \sigma)} \propto \frac{1}{\mu_{u}(\text{Red} \mid A \leftarrow \sigma)}$$

 $(\mu_u(\text{Red}) \text{ is independent with } \sigma)$ 

 $\forall \sigma \in [q]^{A}, \qquad \Pr[X_{A} \text{ passes filter} \mid X_{A} = \sigma] \propto \frac{1}{\mu_{u}(\operatorname{Red} \mid A \leftarrow \sigma)} = \frac{1}{\mu_{u}(\operatorname{Red} \mid \partial B \leftarrow \sigma_{\partial B})}$ (by conditional independence)



$$\forall \sigma \in [q]^{A}, \qquad \Pr[X_{A} \text{ passes filter} \mid X_{A} = \sigma] \propto \frac{1}{\mu_{u}(\operatorname{Red} \mid A \leftarrow \sigma)} = \frac{1}{\mu_{u}(\operatorname{Red} \mid \partial B \leftarrow \sigma_{\partial B})}$$
(by conditional independence)



$$\forall \sigma \in [q]^{A}, \qquad \Pr[X_{A} \text{ passes filter} \mid X_{A} = \sigma] = \frac{\min_{\tau \in [q]^{\partial B}} \mu_{u}(\operatorname{Red} \mid \partial B \leftarrow \tau)}{\mu_{u}(\operatorname{Red} \mid \partial B \leftarrow \sigma_{\partial B})} \leq 1$$

# Bayes filter: simple case

- Reveal the configuration  $X_{\partial B}$
- flip a coin such that (Bayes filter)

R

 $\Pr[\text{HEADS}] = \frac{\min_{\tau \in [q]^{\partial B}} \mu_u(\text{Red} \mid \partial B \leftarrow \tau)}{\mu_u(\text{Red} \mid \partial B \leftarrow X_{\partial B})}$ 

- If the outcome is HEADS, then
  - resample  $X_B \sim \mu_B(\cdot | X_{\partial B})$
  - **Return** the pair (*X*, Ø)
- If the outcome is not HEAD, then
  - **Return** the pair  $(X, \{u\} \cup \partial B)$

(pass the Bayes filter, then  $X_A \sim \mu_A$ )

$$(X_B \sim \mu_B^{X_A} = \mu_B^{X_{\partial B}}, \text{ then } X \sim \mu)$$

(not pass the Bayes filter) (Bayes filter only reveal  $X_{\partial B}$ ,  $R = \{u\} \cup \partial B$ )

 $A = V \setminus B$ 

### General case



### General case



- Reveal X on R, say  $X_R = \sigma$ ;
- Pick the vertex  $u \in R$  with the lowest index
- Define set  $S = R \setminus \{u\}$
- Consider the Gibbs distribution

 $\pi = \mu_{V \setminus S}(\cdot \mid S \leftarrow \sigma_S)$ 

- $(X_{V \setminus S}, \{u\})$  satisfies conditional Gibbs w.r.t.  $\pi$  $(\{u\} = R \setminus S) \quad X_{V \setminus \{u\}} \sim \pi_{V \setminus \{u\}}(\cdot \mid u \leftarrow \sigma_u)$
- Back to the *simple case* that *R* only contains 1 vertex





Choose  $\ell = O(1)$  such that the size of *R* decays in expectation in every step



**Q**: Is the **Weak Spatial Mixing (WSM)** enough for this analysis?

A: No, in the general case, we do analysis on conditional distributions.

### **Open Problems**



Uniform q-colourings on graph G = (V, E) with max degree  $\Delta$ 

• Perfect sampler when  $q > 2\Delta$  with running time  $\tilde{O}_{q,\Delta}(n)$  ??

Hardcore model on graph G = (V, E) with parameter  $\lambda > 0$  and max degree  $\Delta$ 

• perfect sampler when  $\lambda_c < \lambda_c(\Delta)$  with running time  $\tilde{O}_{\lambda,\Delta}(n)$ ??

### Thank you! Q&A

Appendix

• Pick the vertex  $u \in R$  with the lowest index



- Pick the vertex  $u \in R$  with the lowest index
- Define the regime

 $B = B_{\ell}(u) \backslash R \cup \{u\}$ 



- Pick the vertex  $u \in R$  with the lowest index
- Define the regime

 $B = B_{\ell}(u) \backslash R \cup \{u\}$ 

- Compute the minimum probability  $\mu_{\min} = \min \left\{ \mu_u(X_u \mid \tau) \mid \tau \in [q]^{\partial B} : \tau_{\partial B \cap R} = X_{\partial B \cap R} \right\}$
- Flip a coin such that (Bayes Filter)

$$\Pr[\text{HEADS}] = \frac{\mu_{\min}}{\mu_u(X_u \mid \partial B \leftarrow X_{\partial B})}$$





- Pick the vertex  $u \in R$  with the lowest index
- Define the regime

 $B = B_{\ell}(u) \backslash R \cup \{u\}$ 

- Compute the minimum probability  $\mu_{\min} = \min \left\{ \mu_u(X_u \mid \tau) \mid \tau \in [q]^{\partial B} : \tau_{\partial B \cap R} = X_{\partial B \cap R} \right\}$
- Flip a coin such that (Bayes Filter)

$$\Pr[\text{HEADS}] = \frac{\mu_{\min}}{\mu_u(X_u \mid \partial B \leftarrow X_{\partial B})}$$

- If the outcome is HEADS, then Resample  $X_B \sim \mu_B(\cdot | \partial B \leftarrow X_{\partial B})$ Return  $(X, R \setminus \{u\})$
- If the outcome is not HEADS, then Return  $(X, R \cup \partial B)$





#### **Bayes Filter**

$$\Pr[\text{HEADS}] = \frac{\mu_{\min}}{\mu_u(X_u \mid X_{\partial B})} = \frac{\mu_u(X_u \mid \partial B \leftarrow \tau^*)}{\mu_u(X_u \mid \partial B \leftarrow X_{\partial B})}$$
$$\mu_{\min} = \min\{\mu_u(X_u \mid \tau) \mid \tau \in [q]^{\partial B} : \tau_{\partial B \cap R} = X_{\partial B \cap R}\}$$
$$\tau^* \text{ and } X_{\partial B} \text{ disagree only at blue region}$$

gree only at blue regime



$$\Pr[\text{HEADS}] = \frac{\mu_u(X_u \mid \partial B \leftarrow \tau^*)}{\mu_u(X_u \mid \partial B \leftarrow X_{\partial B})} = 1 - \exp(-\Omega(\ell))$$

Pass the Bayes filter Not pass the Bayes filter

#### Eliminate vertex u from R

Add  $\partial B$  into R, where  $|\partial B| \leq |S_{\ell}(v)| = \exp(o(\ell))$ 

R

 $u \in R$ 

R

 $V \setminus R$ 

$$\mathbb{E}[|\operatorname{new} R| - |R| | R] = -\Pr[\operatorname{HEADS}] + (1 - \Pr[\operatorname{HEADS}]) \cdot |\partial B|$$
$$= -1 + \exp(-\Omega(\ell)) + \exp(-\Omega(\ell) + o(\ell))$$
$$(\ell = \Theta(1)) < 0$$