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Spin systems and Gibbs distributions

finite graph 𝐺 = (𝑉, 𝐸) Parameters

vertex: random variable in 𝑞 = {0,1, … , 𝑞 − 1}

external field: vector 𝑏 ∈ ℝ!"
# in each vertex

interaction: symmetric matrix 𝐴 ∈ ℝ!"
#×# on each edge

𝐴
𝑏

Gibbs distribution

∀𝜎 ∈ 𝑞 ! , 𝜇 𝜎 ∝(
"∈!

𝑏(𝜎") (
$% &," ∈(

𝐴(𝜎&, 𝜎")

configuration weight𝑤(𝜎)



Example: graph coloring

proper 𝒒-colouring in graph 𝑮 = (𝑽, 𝑬)
• Each vertex 𝑣 ∈ 𝑉 take a colour 𝜎% ∈ [𝑞]
• Each edge {𝑢, 𝑣} ∈ 𝐸 is not monochromatic

𝜎& ≠ 𝜎%

𝑏 =
1
⋮
1

𝐴 =
0 ⋯ 1
⋮ 0 ⋮
1 ⋯ 0

constant
vector

𝐴 𝑖, 𝑖 = 0
𝐴 𝑖, 𝑗 = 1

𝜇 𝜎 ∝ -1 if 𝜎 is a proper colouring
0 otherwise

uniform distribution over
all proper 𝑞-colourings in 𝐺



Examples: hardcore model and Ising model

Hardcore model in 𝑮with parameter 𝝀 > 𝟎

∀𝜎 ∈ 0,1 ' s.t. 𝑆( = {𝑣 ∈ 𝑉 ∣ 𝜎% = 1 } is an independent set

𝜇 𝜎 ∝ 𝜆|*!|

Ising model in 𝑮with parameter 𝜷 > 𝟎

∀𝜎 ∈ 0,1 ', 𝜇 𝜎 ∝ 𝛽+(()

𝑚 𝜎 = |{ 𝑢, 𝑣 ∈ 𝐸 ∣ 𝜎& = 𝜎%}| is #monochromatic edges



Sampling problem for spin systems

Output: a random sample 𝑋 ∈ 𝑞 ! such that

𝑑"! 𝑋, 𝜇 =
1
2 0
#∈ % !

Pr 𝑋 = 𝜎 − 𝜇 𝜎 ≤ 𝜖

Input: ① a graph 𝐺 = (𝑉, 𝐸), vector 𝑏 ∈ ℝ&'
% , symmetric matrix 𝐴 ∈ ℝ&'

%×%

specify Gibbs distribution 𝜇 𝜎 ∝;
)∈!

𝑏(𝜎)) ;
*+ ,,) ∈.

𝐴(𝜎,, 𝜎))

Input: ② an error bound 𝜖 ≥ 0

• Approximate sampling problem: return random samples with bounded error 𝜖 > 0 𝜖 = /
0123 4

• Perfect sampling problem: return random samples without error 𝜖 = 0



Sampling problem for spin systems
Input: ① a sub-exp growth graph 𝐺 = (𝑉, 𝐸), vector 𝑏 ∈ ℝ&'

% , symmetric matrix 𝐴 ∈ ℝ&'
%×%

specify Gibbs distribution 𝜇 𝜎 ∝;
)∈!

𝑏(𝜎)) ;
*+ ,,) ∈.

𝐴(𝜎,, 𝜎))

Input: ② an error bound 𝜖 ≥ 0

Sub-exp growth graph

A family of graphs 𝒢 has sub-exp growth if

∃ a sub-exp function 𝑠: ℕ → ℕ s.t. ∀𝐺 = 𝑉, 𝐸 ∈ 𝒢,

∀𝑣 ∈ 𝑉, ℓ ∈ ℕ, 𝐵ℓ 𝑣 ≤ 𝒔 ℓ = 𝐞𝐱𝐩(𝒐(ℓ))

𝐵ℓ 𝑣 = 𝑢 ∈ 𝑉 dist6 𝑣, 𝑢 ≤ ℓ ball of radius ℓ centred at 𝑣

𝑣 ℓ

𝐵ℓ 𝑣



Sampling problem for spin systems
Input: ① a sub-exp growth graph 𝐺 = (𝑉, 𝐸), vector 𝑏 ∈ ℝ&'

% , symmetric matrix 𝐴 ∈ ℝ&'
%×%

specify Gibbs distribution 𝜇 𝜎 ∝;
)∈!

𝑏(𝜎)) ;
*+ ,,) ∈.

𝐴(𝜎,, 𝜎))

Input: ② an error bound 𝜖 ≥ 0

Example: let 𝑑 ∈ ℕ, any finite sub-graph 𝐺 = (𝑉, 𝐸) of ℤ7 has sub-exp growth

∀𝑣 ∈ 𝑉, ℓ ∈ ℕ, 𝐵ℓ 𝑣 ≤ 2ℓ + 1 7 = poly ℓ = exp(𝑜(ℓ))



Sampling problem for spin systems

Output: a random sample 𝑋 ∈ 𝑞 ! such that

𝑑"! 𝑋, 𝜇 =
1
2 0
#∈ % !

Pr 𝑋 = 𝜎 − 𝜇 𝜎 ≤ 𝜖

𝜇 satisfies
??? condition

poly-time sampling
algorithm exists

Question:

Input: ① a sub-exp growth graph 𝐺 = (𝑉, 𝐸), vector 𝑏 ∈ ℝ&'
% , symmetric matrix 𝐴 ∈ ℝ&'

%×%

specify Gibbs distribution 𝜇 𝜎 ∝;
)∈!

𝑏(𝜎)) ;
*+ ,,) ∈.

𝐴(𝜎,, 𝜎))

Input: ② an error bound 𝜖 ≥ 0



Previous work: Strong spatial mixing v.s. approximate sampling

𝜎! ≠ 𝜏!

𝜎#\% = 𝜏#\%

𝑣
ℓ

• Partial configurations 𝜎, 𝜏 ∈ 𝑞 8 on Λ ⊆ 𝑉
𝑆 = {𝑤 ∈ Λ ∣ 𝜎9 ≠ 𝜏9}

• Vertex 𝑣 ∈ 𝑉 with distance to disagreement
ℓ = min{dist6 𝑣,𝑤 ∣ 𝑤 ∈ 𝑆}

• Strong Spatial Mixing (SSM)
𝑑"! 𝜇)# , 𝜇): ≤ 𝛼exp(−𝛽ℓ)

marginals on 𝑣
conditional on 𝜎 or 𝜏

TV distance
Influence on 𝑣

exponential decay
𝛼, 𝛽 = Θ(1)



Previous work: Strong spatial mixing v.s. approximate sampling

𝜎! ≠ 𝜏!

𝜎#\% = 𝜏#\%

𝑣
ℓ

• Partial configurations 𝜎, 𝜏 ∈ 𝑞 8 on Λ ⊆ 𝑉
𝑆 = {𝑤 ∈ Λ ∣ 𝜎9 ≠ 𝜏9}

• Vertex 𝑣 ∈ 𝑉 with distance to disagreement
ℓ = min{dist6 𝑣,𝑤 ∣ 𝑤 ∈ 𝑆}

• Strong Spatial Mixing (SSM)
𝑑"! 𝜇)# , 𝜇): ≤ 𝛼exp(−𝛽ℓ)

Some sufficient conditions for SSM on graph 𝐺 with max degree Δ

• 𝑞-colouring: (𝑞 > 2Δ) or (triangle-free and 𝑞 > 1.763Δ)

• hardcore: 𝜆 < 𝜆; Δ = <=/ ('())

(<=?)'
≈ *

<

• Ising model: <=?
<
< 𝛽 < <

<=?



Previous work: Strong spatial mixing v.s. approximate sampling

𝜎! ≠ 𝜏!

𝜎#\% = 𝜏#\%

𝑣
ℓ

• Partial configurations 𝜎, 𝜏 ∈ 𝑞 8 on Λ ⊆ 𝑉
𝑆 = {𝑤 ∈ Λ ∣ 𝜎9 ≠ 𝜏9}

• Vertex 𝑣 ∈ 𝑉 with distance to disagreement
ℓ = min{dist6 𝑣,𝑤 ∣ 𝑤 ∈ 𝑆}

• Strong Spatial Mixing (SSM)
𝑑"! 𝜇)# , 𝜇): ≤ 𝛼exp(−𝛽ℓ)

Theorem [Dyer, Sinclair, Vigoda and Weitz 2004]

SSM sub-exp growth near-liner time
approximate sampler



Previous work: Strong spatial mixing v.s. approximate sampling

𝜎! ≠ 𝜏!

𝜎#\% = 𝜏#\%

𝑣
ℓ

• Partial configurations 𝜎, 𝜏 ∈ 𝑞 8 on Λ ⊆ 𝑉
𝑆 = {𝑤 ∈ Λ ∣ 𝜎9 ≠ 𝜏9}

• Vertex 𝑣 ∈ 𝑉 with distance to disagreement
ℓ = min{dist6 𝑣,𝑤 ∣ 𝑤 ∈ 𝑆}

• Strong Spatial Mixing (SSM)
𝑑"! 𝜇)# , 𝜇): ≤ 𝛼exp(−𝛽ℓ)

Theorem [Dyer, Sinclair, Vigoda and Weitz 2004]

SSM Markov chain
optimal mixing

sub-exp growth



Our results

SSM
sub-exp growth graph linear time

perfect sampler

Main result [This work]

Constants 𝑞 ∈ ℕ, 𝑏 ∈ ℝ&'
% and 𝐴 ∈ ℝ&'

%×% . There exists an algorithm such that

• given any graph 𝐺 = (𝑉, 𝐸)with sub-exp growth

• output a perfect sample from Gibbs distribution 𝜇 in time𝑂(𝑛), 𝑛 = |𝑉|

Remark: the linear running time 𝐶 ⋅ 𝑛 of the algorithm

the constant 𝐶 = 𝐶(𝑞, 𝑏, 𝐴, 𝑠) depends on

• number of spins 𝑞, external vector 𝑏 and interaction matrix 𝐴
• parameters in sub-exp function 𝑠: ℕ → ℕ (recall 𝐵ℓ 𝑣 ≤ 𝑠 ℓ = exp(𝑜(ℓ)))

𝐶 does not depend on 𝑛



Our results

SSM
sub-exp growth graph linear time

perfect sampler

Main result [This work]

Constants 𝑞, 𝑏 ∈ ℝ&'
% and 𝐴 ∈ ℝ&'

%×% . There exists an algorithm such that

• given any graph 𝐺 = (𝑉, 𝐸)with sub-exp growth

• output a perfect sample from Gibbs distribution 𝜇 in time𝑂(𝑛), 𝑛 = |𝑉|

Remark: the linear running time 𝐶 ⋅ 𝑛 of the algorithm

Example: if 𝐺 = (𝑉, 𝐸) is a finite subgraph of ℤ𝒅, then the constant

𝐶 = 𝐶(𝑞, 𝐴, 𝑏, 𝑑)



Model Graph Parameters

𝑞-colouring sub-exp growth 𝑞 > 2Δ

𝑞-colouring
sub-exp growth

triangle-free 𝑞 > 1.763Δ

hardcore sub-exp growth 𝜆 < 𝜆; Δ ≈
𝑒
Δ

Ising sub-exp growth 1 −
2
Δ < 𝛽 < 1 +

2
Δ

Our algorithm also works for general graphs, but with a stronger SSM condition

Example: 𝑞-colouring on general graphs

• our condition: 𝑞 ≥ Δ? − Δ + 2

• state-of-the-art: 𝑞 = Ω(Δ) [Jain, Sah, Sawhney, 2021] [Liu, Sinclair, Srivastava, 2019]

Applications for spin systems



Other techniques & our technical contribution

Techniques Graph #Colours Running time

Reduction to deterministic approximate 
counting [JVV86,LSS19] general 𝑞 > 2Δ 𝑛+,-.(/)
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Other techniques & our technical contribution

Techniques Graph #Colours Running time

Reduction to deterministic approximate 
counting [JVV86,LSS19] general 𝑞 > 2Δ 𝑛+,-.(/)

Coupling from the past & Bounding chain
[PW96, Huber04,JSS21] general 𝑞 > (8/3 + o(1))Δ P𝑂0,/(𝑛)

Randomness recycler [Huber, Fill, 2000] general 𝑞 = Ω(Δ2) 𝑂0,/(𝑛)

Depth-First-Sampling [Anand, Jerrum, 2021]
sub-exp
growth

𝑞 > 2Δ
𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)

The Depth-First-Sampling algorithm could recover our main result

SSM
sub-exp growth graph linear time

perfect sampler



Other techniques & our technical contribution

Techniques Graph #Colours Running time

Reduction to deterministic approximate 
counting [JVV86,LSS19] general 𝑞 > 2Δ 𝑛+,-.(/)

Coupling from the past & Bounding chain
[PW96, Huber04,JSS21] general 𝑞 > (8/3 + o(1))Δ P𝑂0,/(𝑛)

Randomness recycler [Huber, Fill, 2000] general 𝑞 = Ω(Δ2) 𝑂0,/(𝑛)

Depth-First-Sampling [Anand, Jerrum, 2021]
sub-exp
growth

𝑞 > 2Δ
𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)

Partial rejection sampling [Guo, Jerrum, Liu, 2017]
Dynamic sampler [Feng,Vishnoi,Yin, 2019]

Works for other spin systems but not for colouring

Bayes filter [This paper, 2021]
sub-exp
growth

𝑞 > 2Δ
𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)



same principle

Other techniques & our technical contribution

Techniques Graph #Colours Running time

Reduction to deterministic approximate 
counting [JVV86,LSS19] general 𝑞 > 2Δ 𝑛+,-.(/)

Coupling from the past & Bounding chain
[PW96, Huber04,JSS21] general 𝑞 > (8/3 + o(1))Δ P𝑂0,/(𝑛)
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growth
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𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)

Partial rejection sampling [Guo, Jerrum, Liu, 2017]
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Works for other spin systems but not for colouring

Bayes filter [This paper, 2021]
sub-exp
growth

𝑞 > 2Δ
𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)



Other techniques & our technical contribution

Techniques Graph #Colours Running time

Reduction to deterministic approximate 
counting [JVV86,LSS19] general 𝑞 > 2Δ 𝑛+,-.(/)

Coupling from the past & Bounding chain
[PW96, Huber04,JSS21] general 𝑞 > (8/3 + o(1))Δ P𝑂0,/(𝑛)

Randomness recycler [Huber, Fill, 2000] general 𝑞 = Ω(Δ2) 𝑂0,/(𝑛)

Depth-First-Sampling [Anand, Jerrum, 2021]
sub-exp
growth

𝑞 > 2Δ
𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)

Partial rejection sampling [Guo, Jerrum, Liu, 2017]
Dynamic sampler [Feng,Vishnoi,Yin, 2019]

Works for other spin systems but not for colouring

Bayes filter [This paper]
sub-exp
growth

𝑞 > 2Δ
𝑞 > 1.763Δ (triangle-free)

𝑂0,/(𝑛)

MCMC approximate sampler
[Chen, Delcourt, Moitra, Perarnau, 2019] general 𝑞 ≥ 33

4
− 𝜖5 Δ, 𝜖5 ≥ 1067 P𝑂0,/(𝑛)

Open problem: close the gap between perfect sampling and approximate sampling



The perfect sampling algorithm

Maintains a random pair 𝑋, 𝑅 , where 𝑋 ∈ 𝑞 ! and 𝑅 ⊆ 𝑉 s.t.

(𝑋, 𝑅) satisfies the conditional Gibbs property

Conditional Gibbs property [Huber, Fill, 2000; Guo, Jerrum, Liu, 2017; Feng, Vishnoi,Yin 2019 ]

For any Λ ⊆ 𝑉, any 𝜎 ∈ 𝑞 ", conditional on 𝑅 = Λ and 𝑋# = 𝜎, 𝑋!\# ∼ 𝜇!\#
% :

∀𝜏 ∈ 𝑞 !\#, Pr
&,#

𝑋!\# = 𝜏 𝑅 = Λ ∧ 𝑋# = 𝜎 = 𝜇!\#
% (𝜏)

Remarks about Conditional Gibbs property
The distribution of (𝑋#, 𝑅) can be arbitrary, but 𝑋!\# must follow 𝝁𝑽\𝑹

𝑿𝑹 if (𝑋#, 𝑅) is given.

• 𝑅 is the set of “bad variables” and 𝑉\𝑅 is the set of “good variables”
• In general, the distribution of (𝑋, 𝑅) is not unique
• If 𝑅 = 𝑉, then 𝑋 is arbitrary; if 𝑅 = ∅, then 𝑋 ∼ 𝜇

𝑅
𝑉\𝑅



The perfect sampling algorithm

Maintains a random pair 𝑋, 𝑅 , where 𝑋 ∈ 𝑞 ! and 𝑅 ⊆ 𝑉 s.t.

(𝑋, 𝑅) satisfies the conditional Gibbs property
𝑅

𝑉\𝑅

𝑅 = 𝑉
arbitrary 𝑋 ∈ 𝑞 !

𝑅 = ∅
𝑋 ∼ 𝜇

modify the pair (𝑋, 𝑅)
maintain conditional Gibbs

algorithm

Conditional Gibbs property [Huber, Fill, 2000; Guo, Jerrum, Liu, 2017; Feng, Vishnoi,Yin 2019 ]

For any Λ ⊆ 𝑉, any 𝜎 ∈ 𝑞 ", conditional on 𝑅 = Λ and 𝑋# = 𝜎, 𝑋!\# ∼ 𝜇!\#
% :

∀𝜏 ∈ 𝑞 !\#, Pr
&,#

𝑋!\# = 𝜏 𝑅 = Λ ∧ 𝑋# = 𝜎 = 𝜇!\#
% (𝜏)



Warm-up: A simple case
Input: Gibbs distribution 𝜇 in 𝐺 = (𝑉, 𝐸) (e.g., uniform distribution over 𝑞-colourings)

random pair 𝑋, 𝑅 such that
• 𝑅 = {𝑢} and 𝑋, = Red
• 𝑋!\{,} ∼ 𝜇!\{,}(⋅∣ 𝑢 is Red)

Idealised goal: modify such (𝑋, 𝑅 = {𝑢}) so that 𝑅 = ∅ and 𝑋 ∼ 𝜇

conditional Gibbs property

ℓ

𝐵

𝐴 = 𝑉\𝐵

𝐵: ℓ-ball centred at 𝑢, ℓ = 𝑂(1); 𝐴 = 𝑉\𝐵

Input: 𝑋E ∼ 𝜇E(⋅∣ 𝑢 is Red)

Idealised goal: 𝑋E ∼ 𝜇E ⋅ = ∑;∈[%] 𝜇,(𝑐)𝜇E(⋅∣ 𝑢 is 𝑐)

SSM 𝜇E(⋅∣ 𝑢 is Red) ≈ 𝜇E(⋅)



ℓ

𝐵

𝐴 = 𝑉\𝐵

SSM 𝜇E(⋅∣ 𝑢 is Red) ≈ 𝜇E(⋅)

Idea: use a filter to transform the distribution

∀𝜎 ∈ 𝑞 E, Pr 𝑋E passes �ilter ∣ 𝑋E = 𝜎 ∝
𝜇E 𝜎

𝜇E 𝜎 𝑢 is Red
target distribution

input distribution

𝑋E ∼ 𝜇E(⋅∣ 𝑢 is Red) 𝑋E ∼ 𝜇E(⋅)
filter

Pr 𝑋E = 𝜎 ∧ 𝑋E passes �ilter ∝ 𝜇E 𝜎 𝑢 is Red ⋅
𝜇E 𝜎

𝜇E 𝜎 𝑢 is Red
= 𝜇E(𝜎)

Pr 𝑋E = 𝜎 ∣ 𝑋E passes �ilter = 𝜇E(𝜎)

If 𝑋E passes the filter, then 𝑋E ∼ 𝜇E



ℓ

𝐵

𝐴 = 𝑉\𝐵

SSM 𝜇E(⋅∣ 𝑢 is Red) ≈ 𝜇E(⋅)

Idea: use a filter to transform the distribution

𝑋E ∼ 𝜇E(⋅∣ 𝑢 is Red) 𝑋E ∼ 𝜇E(⋅)
filter

∀𝜎 ∈ 𝑞 E, Pr 𝑋E passes �ilter ∣ 𝑋E = 𝜎 ∝
𝜇E 𝜎

𝜇E 𝜎 𝑢 is Red

=
𝜇E 𝜎 𝜇,(Red)

𝜇, Red 𝐴 ← 𝜎 𝜇E(𝜎)

=
𝜇,(Red)

𝜇,(Red ∣ 𝐴 ← 𝜎)

target distribution

input distribution

(by Bayes’ Law) 𝜇E 𝜎 𝑢 is Red =
𝜇E 𝑢 is Red 𝐴 ← 𝜎 𝜇E(𝜎)

𝜇, Red
the event 𝐴 ← 𝜎:

vertices in 𝐴 are coloured as 𝜎



∀𝜎 ∈ 𝑞 E, Pr 𝑋E passes �ilter ∣ 𝑋E = 𝜎 ∝
𝜇E 𝜎

𝜇E 𝜎 𝑢 is Red

=
𝜇E 𝜎 𝜇,(Red)

𝜇, Red 𝐴 ← 𝜎 𝜇E(𝜎)

=
𝜇,(Red)

𝜇,(Red ∣ 𝐴 ← 𝜎)

(by Bayes’ Law)
the event 𝐴 ← 𝜎:

vertices in 𝐴 are coloured as 𝜎

ℓ

𝐵

𝐴 = 𝑉\𝐵

SSM 𝜇E(⋅∣ 𝑢 is Red) ≈ 𝜇E(⋅)

Idea: use a filter to transform the distribution

𝑋E ∼ 𝜇E(⋅∣ 𝑢 is Red) 𝑋E ∼ 𝜇E(⋅)
filter

target distribution

input distribution



∀𝜎 ∈ 𝑞 E, Pr 𝑋E passes �ilter ∣ 𝑋E = 𝜎 ∝
𝜇E 𝜎

𝜇E 𝜎 𝑢 is Red

=
𝜇E 𝜎 𝜇,(Red)

𝜇, Red 𝐴 ← 𝜎 𝜇E(𝜎)

=
𝜇,(Red)

𝜇,(Red ∣ 𝐴 ← 𝜎)

(by Bayes’ Law)
the event 𝐴 ← 𝜎:

vertices in 𝐴 are coloured as 𝜎

ℓ

𝐵

𝐴 = 𝑉\𝐵

SSM 𝜇E(⋅∣ 𝑢 is Red) ≈ 𝜇E(⋅)

Idea: use a filter to transform the distribution

𝑋E ∼ 𝜇E(⋅∣ 𝑢 is Red) 𝑋E ∼ 𝜇E(⋅)
filter

target distribution

input distribution

(cancel 𝜇E(𝜎)) ∝
1

𝜇,(Red ∣ 𝐴 ← 𝜎)

(𝜇,(Red) is independent with 𝜎)



∀𝜎 ∈ 𝑞 +, Pr 𝑋+ passes ;ilter ∣ 𝑋+ = 𝜎 ∝
1

𝜇, Red 𝐴 ← 𝜎
=

1
𝜇,(Red ∣ 𝜕𝐵 ← 𝜎-.)

(by conditional independence)

𝜕𝐵 ⊆ 𝐴 is the outside boundary of 𝐵
𝜕𝐵 = {𝑤 ∉ 𝐵 ∣ ∃𝑤H ∈ 𝐵 st 𝑤,𝑤H ∈ 𝐸} ℓ

𝐵

𝐴 = 𝑉\𝐵
𝜕𝐵 separates 𝐵 and 𝐴\𝜕𝐵 in graph 𝐺

conditional independence



𝜕𝐵 ⊆ 𝐴 is the outside boundary of 𝐵
𝜕𝐵 = {𝑤 ∉ 𝐵 ∣ ∃𝑤H ∈ 𝐵 st 𝑤,𝑤H ∈ 𝐸}

∀𝜎 ∈ 𝑞 E, Pr 𝑋_ passes Silter ∣ 𝑋_ = 𝜎 =
min

:∈ % 89
𝜇, Red 𝜕𝐵 ← 𝜏

𝜇, Red 𝜕𝐵 ← 𝜎IJ
≤ 1

𝜕𝐵 separates 𝐵 and 𝐴\𝜕𝐵 in graph 𝐺

conditional independence

ℓ = 𝑂(1)

𝐵 = 𝑂(1)

∀𝜎 ∈ 𝑞 +, Pr 𝑋+ passes ;ilter ∣ 𝑋+ = 𝜎 ∝
1

𝜇, Red 𝐴 ← 𝜎
=

1
𝜇,(Red ∣ 𝜕𝐵 ← 𝜎-.)

(by conditional independence)

ℓ

𝐵



Bayes filter: simple case

• Reveal the configuration 𝑋IJ

• flip a coin such that

Pr HEADS =
min

:∈ % 89
𝜇,(Red ∣ 𝜕𝐵 ← 𝜏)

𝜇,(Red ∣ 𝜕𝐵 ← 𝑋IJ)

• If the outcome is HEADS, then

• resample 𝑋J ∼ 𝜇J(⋅∣ 𝑋IJ)

• Return the pair (𝑋, ∅)

• If the outcome is not HEAD, then

• Return the pair (𝑋, 𝑢 ∪ 𝜕𝐵)

ℓ

𝐵

𝐴 = 𝑉\𝐵

(pass the Bayes filter, then 𝑋E ∼ 𝜇E)

(𝑋J ∼ 𝜇J
K: = 𝜇J

K89 , then 𝑋 ∼ 𝜇)

(not pass the Bayes filter)

(Bayes filter only reveal 𝑋IJ, 𝑅 = 𝑢 ∪ 𝜕𝐵)

(Bayes filter)

𝑅



General case
arbitrary (𝑋, 𝑅)

(conditional Gibbs)
new (𝑋, 𝑅)

(conditional Gibbs)

algorithm

size of 𝑅 decreases in expectation
• Reveal 𝑋 on 𝑅, say 𝑋L = 𝜎;

• Pick the vertex 𝑢 ∈ 𝑅 with the lowest index

• Define set 𝑆 = 𝑅\{𝑢}

𝑢 ∈ 𝑅

𝑅

𝑆 = 𝑅\{𝑢}

𝑉\𝑅



General case
arbitrary (𝑋, 𝑅)

(conditional Gibbs)
new (𝑋, 𝑅)

(conditional Gibbs)

algorithm

size of 𝑅 decreases in expectation
• Reveal 𝑋 on 𝑅, say 𝑋L = 𝜎;

• Pick the vertex 𝑢 ∈ 𝑅 with the lowest index

• Define set 𝑆 = 𝑅\{𝑢}

• Consider the Gibbs distribution

𝜋 = 𝜇!\M(⋅∣ 𝑆 ← 𝜎M)

• (𝑋!\M, {𝑢}) satisfies conditional Gibbs w.r.t. 𝜋

𝑋!\{,} ∼ 𝜋!\{,}(⋅∣ 𝑢 ← 𝜎,)

• Back to the simple case that 𝑅 only contains 1 vertex

𝑢 ∈ 𝑅

𝑅

𝑆 = 𝑅\{𝑢}

( 𝑢 = 𝑅\𝑆)

𝑉\𝑅



Analysis of running time

ℓ

𝐵

𝐴 = 𝑉\𝐵

Bayes Filter

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝑋IJ)
=

𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝜏∗)
𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝑋IJ)

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ is achieved by 𝜏∗

Pass the Bayes filter Eliminate vertex 𝑢 from 𝑅

Not pass the Bayes filter Add 𝜕𝐵 into 𝑅, where 𝜕𝐵 = exp(𝑜(ℓ))

Choose ℓ = 𝑂(1) such that the size of𝑹 decays in expectation in every step

SSM Pr HEADS =1 − exp(−Ω(ℓ))
[Spinka 2020]



Analysis of running time

ℓ

𝐵

𝐴 = 𝑉\𝐵

Bayes Filter

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝑋IJ)
=

𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝜏∗)
𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝑋IJ)

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ is achieved by 𝜏∗

Pass the Bayes filter Eliminate vertex 𝑢 from 𝑅

Not pass the Bayes filter Add 𝜕𝐵 into 𝑅, where 𝜕𝐵 = exp(𝑜(ℓ))

Q: Is the Weak Spatial Mixing (WSM) enough for this analysis?

A: No, in the general case, we do analysis on conditional distributions.

SSM Pr HEADS =1 − exp(−Ω(ℓ))
[Spinka 2020]



Open Problems

SSM
sub-exp growth graph linear time

perfect sampler
general graph?

Uniform 𝑞-colourings on graph 𝐺 = (𝑉, 𝐸)with max degree Δ
• Perfect sampler when 𝑞 > 2Δwith running time �𝑂%,<(𝑛) ??

Hardcore model on graph 𝐺 = (𝑉, 𝐸)with parameter 𝜆 > 0 and max degree Δ
• perfect sampler when 𝜆; < 𝜆;(Δ)with running time �𝑂R,< 𝑛 ??

Thank you! Q&A



Appendix



• Pick the vertex 𝑢 ∈ 𝑅 with the lowest index

• Define the regime
𝐵 = 𝐵ℓ 𝑣 \𝑅 ∪ {𝑢}

• Compute the minimum probability

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ: 𝜏IJ∩L = 𝑋IJ∩L
• Flip a coin such that (Bayes Filter)

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝑋IJ)
• If the outcome is HEADS, then

Resample 𝑋J ∼ 𝜇J(⋅∣ 𝑋IJ)
Return (𝑋, 𝑅\{𝑢})

• If the outcome is not HEADS, then
Return (𝑋, 𝑅 ∪ 𝜕𝐵)

Unified Bayes filter

𝑢 ∈ 𝑅
𝑅

𝑉\𝑅



• Pick the vertex 𝑢 ∈ 𝑅 with the lowest index

• Define the regime
𝐵 = 𝐵ℓ 𝑢 \𝑅 ∪ {𝑢}

• Compute the minimum probability

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ: 𝜏IJ∩L = 𝑋IJ∩L
• Flip a coin such that (Bayes Filter)

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝑋IJ)
• If the outcome is HEADS, then

Resample 𝑋J ∼ 𝜇J(⋅∣ 𝑋IJ)
Return (𝑋, 𝑅\{𝑢})

• If the outcome is not HEADS, then
Return (𝑋, 𝑅 ∪ 𝜕𝐵)

Unified Bayes filter

𝑢 ∈ 𝑅
𝑅

ℓ

𝐵

𝑢 ∈ 𝑅
𝑅

𝑉\𝑅

𝑉\𝑅



• Pick the vertex 𝑢 ∈ 𝑅 with the lowest index

• Define the regime
𝐵 = 𝐵ℓ 𝑢 \𝑅 ∪ {𝑢}

• Compute the minimum probability

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ: 𝜏IJ∩L = 𝑋IJ∩L
• Flip a coin such that (Bayes Filter)

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝑋IJ)
• If the outcome is HEADS, then

Resample 𝑋J ∼ 𝜇J(⋅∣ 𝑋IJ)
Return (𝑋, 𝑅\{𝑢})

• If the outcome is not HEADS, then
Return (𝑋, 𝑅 ∪ 𝜕𝐵)

Unified Bayes filter

𝑢 ∈ 𝑅
𝑅

ℓ

𝐵

𝑢 ∈ 𝑅
𝑅

𝑉\𝑅

𝑉\𝑅



• Pick the vertex 𝑢 ∈ 𝑅 with the lowest index

• Define the regime
𝐵 = 𝐵ℓ 𝑢 \𝑅 ∪ {𝑢}

• Compute the minimum probability

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ: 𝜏IJ∩L = 𝑋IJ∩L
• Flip a coin such that (Bayes Filter)

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝑋IJ)
• If the outcome is HEADS, then

Resample 𝑋J ∼ 𝜇J(⋅∣ 𝜕𝐵 ← 𝑋IJ)
Return (𝑋, 𝑅\{𝑢})

• If the outcome is not HEADS, then
Return (𝑋, 𝑅 ∪ 𝜕𝐵)

Unified Bayes filter

𝑢 ∈ 𝑅
𝑅

ℓ

𝐵

𝑢 ∈ 𝑅
𝑅

𝑉\𝑅

𝑉\𝑅



𝑢 ∈ 𝑅
𝑅

ℓ

𝐵

Bayes Filter

Pr HEADS =
𝜇NOP

𝜇,(𝑋, ∣ 𝑋IJ)
=

𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝜏∗)
𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝑋IJ)

𝜇NOP = min 𝜇,(𝑋, ∣ 𝜏) 𝜏 ∈ 𝑞 IJ: 𝜏IJ∩L = 𝑋IJ∩L
𝜏∗ and 𝑋-. disagree only at blue regime

𝑉\𝑅

SSM Pr HEADS =
𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝜏∗)
𝜇,(𝑋, ∣ 𝜕𝐵 ← 𝑋-.)

= 1 − exp(−Ω(ℓ))

Pass the Bayes filter Eliminate vertex 𝑢 from 𝑅

Not pass the Bayes filter Add 𝜕𝐵 into 𝑅, where 𝜕𝐵 ≤ 𝑆ℓ 𝑣 = exp(𝑜(ℓ))

𝔼 new 𝑅 − 𝑅 𝑅 = −Pr HEADS + 1 − Pr HEADS ⋅ 𝜕𝐵
= −1 + exp −Ω ℓ + exp −Ω ℓ + 𝑜 ℓ
< 0(ℓ = Θ(1))


