On the mixing time of Glauber dynamics for the hard-core and related models on G(n, d/n)

Weiming Feng University of Edinburgh

Joint work with Charilaos Efthymiou University of Warwick

ICALP 2023, Paderborn, Germany July 12, 2023

Hardcore model

Gibbs distribution: \forall ind. set in $S \subseteq V$, $\mu(S) = \frac{\lambda^{|S|}}{Z}$ **Partition function** $Z = \sum_{\text{ind.set } S} \lambda^{|S|}$

 \succ We view the hardcore model as a <u>distribution over $\{0,1\}^V$ </u>

Sampling problem and computation phase transition

Input: hardcore model on G = (V, E) with fugacity $\lambda > 0$, error bound $\epsilon > 0$

Output: a random configuration $X \in \{0,1\}^V$

 $\|X - \mu\|_{TV} \le \epsilon$

 $\lambda < \lambda_c$

Poly-time samplers

- Recursion [Weitz 2006]
- Zero-freeness of polynomials [Barvinok 2016] [Patel and Regts, 2017]
- MCMC [Anari, Liu and Oveis Gharan, 2020] Simplest!

$$l_c(\Delta - 1) = \frac{(\Delta - 1)^{(\Delta - 1)}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta}$$

 $\lambda > \lambda_c$

No poly-time sampler unless **NP=RP**

- [Sly 2010]
- [Sly and Sun, 2012]
- [Galanis, Štefankovič and Vigoda, 2012]

MCMC: Glauber dynamics

Start from arbitrary ind. set $X \in \{0,1\}^V$

For each t from 1 to T

- Pick $v \in V$ uniformly at random
- Resample $X_{v} \sim \mu_{v}(\cdot | X_{V-v})$

 $Pr[X_{v} = 1] = \lambda/(1 + \lambda)$ $Pr[X_{v} = 0] = 1/(1 + \lambda)$

 $X_v = 0$

- **Convergence**: $X \sim \mu$ as $T \rightarrow \infty$
- > Mixing time: which $T_{\text{mix}} = T\left(\frac{1}{4e}\right)$ guarantees $||X \mu||_{TV} \le \frac{1}{4e}$
- > **Rapid mixing** if $T_{mix} = poly(n)$
- ► Decay of TV distance: $T(\epsilon) \le T_{\text{mix}} \log \frac{1}{\epsilon}$

Mixing time of Glauber dynamics

Dobrushin's Condition $\lambda < (1 - \delta) \frac{1}{\Delta - 1} \implies O_{\delta}(n \log n)$ [Bubley and Dyer, 1997]

Condition
$$\lambda < (1 - \delta) \frac{2}{\Delta - 2} \implies O_{\delta}(n \log n)$$
 [Luby and Vigoda, 1999]
[Dyer and Greenhill, 1999]

Uniqueness Condition $\lambda < (1 - \delta)\lambda_c(\Delta - 1) \approx (1 - \delta)\frac{e}{\Delta} \longrightarrow O_{\delta}(n \log n)$ [Anari, Liu and Oveis Gharan, 2020] [Chen, Liu and Vigoda, 2021] [Chen and Eldan, 2022] [Chen, Feng, Yin and Zhang, 2022]

➢ Mixing of Glauber dynamics: If $\lambda < (1 - \delta)\lambda_c(\Delta - 1)$ Work for the Worst Case rapid mixing for arbitrary hardcore models with max degree Δ

➤ Hardness for sampling: If λ > $\lambda_c (\Delta - 1)$, there is a sequence of graphs with max degree Δ s.t. sampling is hard

Hardcore model on random graphs

Question: Fix real numbers d > 1 and $\lambda < \lambda_c(d) \approx \frac{e}{d}$. Draw random sample from hardcore model on *Erdős–Rényi* random graph $G\left(n, \frac{d}{n}\right)$

• average degree is d but w.h.p. max degree is $\Delta = \Theta(\frac{\log n}{\log \log n}), \ \lambda \gg \frac{e}{\Delta} \approx \lambda_c(\Delta - 1)$

Previous sampling algorithms: (running time *w*.*h*.*p*. over G(n, d/n))

Sampling in time $n^{O(\log d)}$ if $\lambda < \lambda_c(d)$ [Sinclair, Srivastava and Yin, 2013]

• extend Weitz's algorithm to random graphs

Sampling in time $n^{1+\theta}$ if $\lambda < \lambda_c(d)$ [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

- $\theta > 0$ is an arbitrary small constant
- sample from marginals of low-degree vertices then sample configuration for others

Block dynamics $O(n \log n)$ mixing time if $\lambda < \frac{1}{d}$ [Efthymiou, Hayes, Štefankovič and Vigoda 2018]

• Partition vertices into blocks and update block per iteration

Our results

Theorem (Hardcore Model) [Efthymiou and F., This work]

Let
$$d > 1$$
 and $\lambda < \lambda_c(d)$ be two real constants. **W.h.p.** over $G \sim G\left(n, \frac{d}{n}\right)$.
The **mixing time** of **Glauber dynamics** is $n^{1+\frac{C}{\log\log n}} = n^{1+o(1)}$, $C = C(\lambda, d)$.

Theorem (Monomer-Dimer Model) [Efthymiou and F., This work]

Let d > 1 and $\lambda > 0$ be two constants. **W.h.p.** over $G \sim G\left(n, \frac{d}{n}\right)$.

The *mixing time* of *Glauber dynamics* is $n^{1+o(1)}$.

Monomer-Dimer Model \forall matching $M \subseteq E$, $\mu(M) \propto \lambda^{|M|}$

Proof overview

θ -Fractional Block dynamics ($0 < \theta < 1$)

- Pick $S \subseteq V$ with $|S| = \theta n$ uniformly at random
- Resample $X_S \sim \mu_S(\cdot | X_{V-S})$

- Glauber dynamics picks 1 vertex
- Block dynamics picks constant fraction of vertices

Chen-Liu-Vigoda's framework for proving mixing

One challenge for random graphs: w.h.p. $\Delta = \Theta\left(\frac{\log n}{\log \log n}\right)$

Proof overview

θ -Fractional Block dynamics

- Pick $S \subseteq V$ with $|S| = \theta n$ uniformly at random
- Resample $X_S \sim \mu_S(\cdot | X_{V-S})$

Chen-Liu-Vigoda's framework for proving mixing

- Glauber dynamics picks 1 vertex
- Block dynamics picks constant fraction of vertices

Proof overview

θ -Fractional Block dynamics

- Pick $S \subseteq V$ with $|S| = \theta n$ uniformly at random
- Resample $X_S \sim \mu_S(\cdot | X_{V-S})$

Our Technique for proving mixing

- Glauber dynamics picks 1 vertex
- Block dynamics picks constant fraction of vertices

Our contribution

- Prove the complete spectral independence for hardcore model in random graphs Improve the SI result in [Bezáková, Galanis, Goldberg and Štefankovič, 2022]
- An improved comparison between block and Glauber dynamics Utilise the SI in the comparison step

Spectral independence

- ▶ Gibbs distribution μ over $\{0,1\}^V$
- $\blacktriangleright \text{ Influence matrix of } \mu \quad \Psi(u,v) = \Pr_{X \sim \mu} [X_v = 1 \mid X_u = 1] \Pr_{X \sim \mu} [X_v = 1 \mid X_u = 0]$
- > η -spectral independence [Anari, Liu and Oveis Gharan, 2020]:

 $\lambda_{max}(\Psi) \leq \eta$ for μ and **all conditional distributions** induced from μ

fix a configuration $\sigma \in \{0,1\}^{\Lambda}$ on Λ

hardcore model on a subgraph

Spectral independence

- ▶ Gibbs distribution μ over $\{0,1\}^V$
- $\blacktriangleright \text{ Influence matrix of } \mu \quad \Psi(u,v) = \Pr_{X \sim \mu}[X_u = 1 \mid X_v = 1] \Pr_{X \sim \mu}[X_u = 1 \mid X_v = 0]$
- > η -spectral independence [Anari, Liu and Oveis Gharan, 2020]:

 $\lambda_{max}(\Psi) = \eta$ for μ and **all conditional distributions** induced from μ

η-complete spectral independence [Chen, Feng, Yin and Zhang, 2021]

We focus on the **Spectral Independence**, complete SI follows from a similar proof

Spectral independence in random graphs

Previous SI result for marginal [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

If
$$d > 1$$
 and $\lambda < \lambda_c(d)$. **W.h.p.** over $G \sim G\left(n, \frac{d}{n}\right)$,

 μ_S is $O(\log n)$ -spectrally independent, μ_S is the marginal of low degree vertices

A sampling **algorithm** with $n^{1+\theta}$ running time, $\theta > 0$ is an arbitrary small constant

Our SI result for Gibbs distribution [Efthymiou and F., This work]

If d > 1 and $\lambda < \lambda_c(d)$. **W.h.p.** over $G \sim G\left(n, \frac{d}{n}\right)$,

 μ is $(\log n)^c$ -spectrally independent for some constant c < 1

 $n^{1+C/\log\log n} = n^{1+o(1)}$ mixing time for **Glauber dynamics**

Spectral Independence via total influence

$$\lambda_{\max}(\Psi) \le \|\Psi\|_{\infty} = \max_{v \in V} \sum_{u \in V} |\Psi(v, u)| \le \eta$$

Our method [Efthymiou and F., 2023]

Find a *diagonal matrix D* such that

$$D(v, v) = \deg(v)^{c}$$
, where $c \in \left(\frac{1}{2}, 1\right)$

.1

► Establish SI via the *weighted total influence* $\lambda_{\max}(\Psi) \leq \|D^{-1}\Psi D\|_{\infty} \leq \eta$

$$\forall v, \qquad \sum_{u \in V} |\Psi(v, u)| \deg(u)^c \le \eta \deg(v)^c$$

If the deg(v) is large,
v may cause large total influence
$$deg(u)^c \text{ would make LHS large}$$

$$\ln "average", deg(u) \text{ is small}$$

k-branching factor [Bezáková, Galanis, Goldberg and Štefankovič, 2022] In G(V, E), for any v, $N(v, \ell) = #\{\text{simple paths from } v \text{ of length } \ell\}$

d-ary tree

Example: branching factor in d-ary tree

In random graph, we use branching factor to measure how much influence that can percolate from v to all other vertices.

k-branching factor [Bezáková, Galanis, Glodberg and Štefankovič, 2022] In G(V, E), for any v, $N(v, \ell) = #\{\text{simple paths from } v \text{ of length } \ell\}$

$$S_k = \sum_{\ell \ge 0} \frac{N(\nu, \ell)}{k^{\ell}}$$
 (A notion of average degree)

Branching factor in random graphs [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

$$\forall k > d$$
, w. h. p. over $G\left(n, \frac{d}{n}\right)$, $S_k \le \log n$

 η -Spectral independence for hardcore in random graphs [Efthymiou and F., 2023] If $\lambda < \lambda_c(d)$, w.h.p. over $G\left(n, \frac{d}{n}\right)$, $\eta \leq S_{d+\epsilon}^c = (\log n)^c$, $c = c(\lambda, d) < 1$

- Reduce the graph to a self-avoiding-walk tree (SAW-tree) [Weitz 2006]
- Analyse the weighted influence in SAW-tree via correction decay technique [Sinclair, Srivastava, Štefankovič and Yin 2017] [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

Summary and Open Problems

Mixing results

- $n^{1+o(1)}$ mixing time for hardcore model on G(n, d/n) when $\lambda < \lambda_c(d)$
- $n^{1+o(1)}$ mixing time for monomer-dimer model on G(n, d/n)

Spectral independence result

• $(\log n)^c$ -spectral independence for hardcore model on G(n, d/n) when $\lambda < \lambda_c(d)$

More distributions in random graphs

Thank you!

- Sample *q*-colourings in $G\left(n, \frac{d}{n}\right)$
 - Current best result is the $O(n^{2+1/\log d})$ mixing when q > 1.763d[Efthymiou, Hayes, Štefankovič and Vigoda 2018]