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Hardcore model

Graph 𝐺 = (𝑉, 𝐸)
• 𝑛 vertices
• max degree Δ

Fugacity: 𝜆 > 0

1 𝜆 𝜆

𝜆 𝜆 𝜆!

Gibbs distribution: ∀ ind. set in 𝑆 ⊆ 𝑉,

𝜇 𝑆 =
𝜆|$|

𝑍

Partition function

𝑍 = )
%&'.)*+ $

𝜆|$|

Ø We view the hardcore model as a distribution over 0,1 ,



Sampling problem and computation phase transition

Input: hardcore model on 𝐺 = (𝑉, 𝐸) with fugacity 𝜆 > 0, error bound 𝜖 > 0

Output: a random configuration 𝑋 ∈ 0,1 ,

𝑋 − 𝜇 -, ≤ 𝜖

𝜆! Δ − 1 =
Δ − 1 (#$%)

Δ − 2 # ≈
𝑒
Δ

𝜆 > 𝜆!
No poly-time sampler unless

NP=RP

• [Sly 2010]
• [Sly and Sun, 2012 ]
• [Galanis, Štefankovič and Vigoda, 2012]

𝜆 < 𝜆!
Poly-time samplers

• Recursion [Weitz 2006]

• Zero-freeness of polynomials
[Barvinok 2016] [Patel and Regts, 2017]

• MCMC [Anari, Liu and Oveis Gharan, 2020]

Simplest!



MCMC: Glauber dynamics

Start from arbitrary ind. set 𝑋 ∈ 0,1 ,

For each 𝑡 from 1 to 𝑇
• Pick 𝑣 ∈ 𝑉 uniformly at random

• Resample 𝑋. ∼ 𝜇.(⋅ |𝑋,/.)

𝑣

Pr 𝑋" = 1 = 𝜆/(1 + 𝜆)
Pr 𝑋" = 0 = 1/(1 + 𝜆)

𝑣

𝑋" = 0

Ø Convergence: 𝑋 ∼ 𝜇 as 𝑇 → ∞

Ø Mixing time: which 𝑇9%: = 𝑇 ;
<= guarantees 𝑋 − 𝜇 -, ≤

;
<=

Ø Rapid mixing if 𝑇9%: = poly 𝑛

Ø Decay of TV distance: 𝑇 𝜖 ≤ 𝑇9%: log
;
>



Mixing time of Glauber dynamics

𝑂?(𝑛 log 𝑛)𝜆 < (1 − 𝛿) ;
@/; 

Condition 𝜆 < (1 − 𝛿) A
@/A 𝑂?(𝑛 log 𝑛)

[Luby and Vigoda, 1999]
[Dyer and Greenhill, 1999]

Uniqueness Condition 

𝜆 < 1 − 𝛿 𝜆B(Δ − 1) ≈ (1 − 𝛿)
𝑒
Δ

𝑂?(𝑛 log 𝑛)
[Anari, Liu and Oveis Gharan, 2020]
[Chen, Liu and Vigoda, 2021]
[Chen and Eldan, 2022]
[Chen, Feng, Yin and Zhang, 2022]

[Bubley and Dyer, 1997]

Ø Mixing of Glauber dynamics: If 𝜆 < 1 − 𝛿 𝜆B Δ − 1
        rapid mixing for arbitrary hardcore models with max degree Δ

Ø Hardness for sampling: If 𝜆 > 𝜆B(Δ − 1), 
              there is a sequence of graphs with max degree Δ s.t. sampling is hard  

Work for the Worst Case

Dobrushin’s 
Condition 



Hardcore model on random graphs
Question: Fix real numbers 𝑑 > 1 and 𝜆 < 𝜆! 𝑑 ≈ '

(
. Draw random sample from

 hardcore model on Erdős–Rényi random graph 𝐺 𝑛, )
*

• average degree is 𝑑 but w.h.p. max degree is Δ = Θ( !"# $
!"# !"# $

), 𝜆 ≫ %
&
≈ 𝜆'(Δ − 1)

Previous sampling algorithms: (running time w.h.p. over 𝐺(𝑛, 𝑑/𝑛))

Sampling in time 𝑛+(,-. )) if 𝜆 < 𝜆!(𝑑) [Sinclair, Srivastava and Yin, 2013]

• extend Weitz’s algorithm to random graphs

Sampling in time 𝑛%/0 if 𝜆 < 𝜆!(𝑑) [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

• 𝜃 > 0 is an arbitrary small constant

• sample from marginals of low-degree vertices then sample configuration for others

Block dynamics 𝑂(𝑛 log 𝑛) mixing time if 𝜆 < %
)

[Efthymiou, Hayes, Štefankovič and Vigoda 2018]

• Partition vertices into blocks and update block per iteration



Our results

Theorem (Hardcore Model) [Efthymiou and F., This work]

             Let 𝑑 > 1 and 𝜆 < 𝜆!(𝑑) be two real constants.  W.h.p. over 𝐺 ∼ 𝐺 𝑛, )
*

. 

        The mixing time of Glauber dynamics is                     , 𝐶 = 𝐶(𝜆, 𝑑).𝑛%/
1

,-. ,-. * = 𝑛%/2(%)

Theorem (Monomer-Dimer Model) [Efthymiou and F., This work]

             Let 𝑑 > 1 and 𝜆 > 0 be two constants. W.h.p. over 𝐺 ∼ 𝐺 𝑛, )
*

. 

             The mixing time of Glauber dynamics is             .𝑛!"#(!)

Monomer-Dimer Model        ∀ matching 𝑀 ⊆ 𝐸,   𝜇 𝑀 ∝ 𝜆|4|



Proof overview

𝜃-Fractional Block dynamics 𝟎 < 𝜽 < 𝟏
• Pick 𝑆 ⊆ 𝑉 with 𝑆 = 𝜃𝑛 uniformly at random
• Resample 𝑋$ ∼ 𝜇$(⋅∣ 𝑋,/$)

Marginal lower bound
requires Δ = 𝑂(1)

Comparison of Markov chains:
require Δ = 𝑂(1)

Mixing of
block dynamics

Mixing of
Glauber dynamics

Spectral Independence (SI)
Marginal lower bound

Chen-Liu-Vigoda’s framework for proving mixing

One challenge for random graphs: w.h.p. Δ = Θ ,-. *
,-. ,-. *

• Glauber dynamics picks 1 vertex

• Block dynamics picks constant 
fraction of vertices



Proof overview

𝜃-Fractional Block dynamics
• Pick 𝑆 ⊆ 𝑉 with 𝑆 = 𝜃𝑛 uniformly at random
• Resample 𝑋$ ∼ 𝜇$(⋅∣ 𝑋,/$)

Mixing of
block dynamics

Mixing of
Glauber dynamics

Complete SI
A mild marginal condition

The mild marginal condition holds for
hardcore in random graphs

[Chen, Feng, Yin and Zhang, 2022]
[Chen and Eldan, 2022]

Chen-Liu-Vigoda’s framework for proving mixing

• Glauber dynamics picks 1 vertex

• Block dynamics picks constant 
fraction of vertices



Proof overview

𝜃-Fractional Block dynamics
• Pick 𝑆 ⊆ 𝑉 with 𝑆 = 𝜃𝑛 uniformly at random
• Resample 𝑋$ ∼ 𝜇$(⋅∣ 𝑋,/$)

Mixing of
Glauber dynamics

Our Technique for proving mixing

Complete SI
A mild marginal condition

Mixing of
block dynamics

Our contribution

Ø Prove the complete spectral independence for hardcore model in random graphs
Improve the SI result in [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

Ø An improved comparison between block and Glauber dynamics
Utilise the SI in the comparison step

• Glauber dynamics picks 1 vertex

• Block dynamics picks constant 
fraction of vertices



Spectral independence
Ø Gibbs distribution 𝜇 over 0,1 5

Ø Influence matrix of 𝜇 

Ø 𝜂-spectral independence [Anari, Liu and Oveis Gharan, 2020]: 

𝜆678 Ψ ≤ 𝜂 for 𝜇 and all conditional distributions induced from 𝜇

Ψ 𝑢, 𝑣 = Pr
9∼;

𝑋< = 1 𝑋= = 1 − Pr
9∼;

[𝑋< = 1 ∣ 𝑋= = 0]

fix a configuration 𝜎 ∈ 0,1 ( on Λ
= 0 = 1

conditional 
distribution

on
unfixed vertices Λ

𝜇((⋅∣ 𝜎)

hardcore model on a subgraph



Spectral independence
Ø Gibbs distribution 𝜇 over 0,1 5

Ø Influence matrix of 𝜇 

Ø 𝜂-spectral independence [Anari, Liu and Oveis Gharan, 2020]: 

𝜆678 Ψ = 𝜂 for 𝜇 and all conditional distributions induced from 𝜇

Ψ 𝑢, 𝑣 = Pr
9∼;

𝑋= = 1 𝑋< = 1 − Pr
9∼;

[𝑋= = 1 ∣ 𝑋< = 0]

We focus on the Spectral Independence, complete SI follows from a similar proof

Ø 𝜂-complete spectral independence [Chen, Feng, Yin and Zhang, 2021]

Complete
Spectral Independence

Spectral Independence
under certain external field



Spectral independence in random graphs

Previous SI result for marginal [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

        If 𝑑 > 1 and 𝜆 < 𝜆!(𝑑).  W.h.p. over 𝐺 ∼ 𝐺 𝑛, )
*

,

          𝜇> is 𝑂(log 𝑛)-spectrally independent, 𝜇> is the marginal of low degree vertices

A sampling algorithm with 𝑛%/0 running time, 𝜃 > 0 is an arbitrary small constant

Our SI result for Gibbs distribution [Efthymiou and F., This work]

        If 𝑑 > 1 and 𝜆 < 𝜆!(𝑑).  W.h.p. over 𝐺 ∼ 𝐺 𝑛, )
*

,

             𝜇 is log 𝑛 !-spectrally independent for some constant 𝑐 < 1

𝑛%/1/ ,-. ,-. * = 𝑛%/2(%) mixing time for Glauber dynamics



Spectral Independence via total influence

𝜆@AB Ψ ≤ Ψ C = max
<∈5

P
=∈5

Ψ 𝑣, 𝑢 ≤ 𝜂

Our method [Efthymiou and F., 2023]

Ø Find a diagonal matrix 𝐷 such that

𝐷 𝑣, 𝑣 = deg 𝑣 ! , where 𝑐 ∈
1
2
, 1

Ø Establish SI via the weighted total influence 𝜆@AB Ψ ≤ D$%Ψ𝐷 C ≤ 𝜂

∀𝑣, P
=∈5

Ψ 𝑣, 𝑢 deg 𝑢 ! ≤ 𝜂 deg 𝑣 !

If the deg(𝑣) is large,
𝑣 may cause large total influence

deg 𝑣 ! in RHS is also large

deg 𝑢 ! would make LHS large
In “average”, deg(𝑢) is small



𝑑-ary tree

∀𝑘 > 𝑑,

𝑆E =P
ℓGH

𝑑ℓ

𝑘ℓ
= 𝑂),E(1)

Example: branching factor in d-ary tree

𝒌-branching factor [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

In 𝐺(𝑉, 𝐸), for any 𝑣, 𝑁 𝑣, ℓ = #{simple paths from 𝑣 of length ℓ}

𝑆E =P
ℓGH

𝑁(𝑣, ℓ)
𝑘ℓ

Ø In random graph, we use branching factor to measure how much influence that can 
percolate from v to all other vertices.



(A notion of average degree)

Branching factor in random graphs [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

∀𝑘 > 𝑑, w. h. p. over 𝐺 𝑛,
𝑑
𝑛
, 𝑆E ≤ log 𝑛

𝜼-Spectral independence for hardcore in random graphs [Efthymiou and F., 2023]

If 𝜆 < 𝜆! 𝑑 , w. h. p. over 𝐺 𝑛,
𝑑
𝑛 , 𝜂 ≤ 𝑆)/J! = log 𝑛 ! , 𝑐 = 𝑐 𝜆, 𝑑 < 1

Ø Reduce the graph to a self-avoiding-walk tree (SAW-tree) [Weitz 2006]

Ø Analyse the weighted influence in SAW-tree via correction decay technique
[Sinclair, Srivastava, Štefankovič and Yin 2017] [Bezáková, Galanis, Goldberg and Štefankovič, 2022]

𝒌-branching factor [Bezáková, Galanis, Glodberg and Štefankovič, 2022]

In 𝐺(𝑉, 𝐸), for any 𝑣, 𝑁 𝑣, ℓ = #{simple paths from 𝑣 of length ℓ}

𝑆E =P
ℓGH

𝑁(𝑣, ℓ)
𝑘ℓ



Summary and Open Problems
Mixing results

• 𝑛%/2(%) mixing time for hardcore model on 𝐺(𝑛, 𝑑/𝑛) when 𝜆 < 𝜆!(𝑑)

• 𝑛%/2(%) mixing time for monomer-dimer model on 𝐺(𝑛, 𝑑/𝑛)

Spectral independence result

• log 𝑛 !-spectral independence for hardcore model on 𝐺(𝑛, 𝑑/𝑛) when 𝜆 < 𝜆!(𝑑)

More distributions in random graphs

• Sample 𝑞-colourings in 𝐺 𝑛, )
*

• Current best result is the 𝑂 𝑛K/%/,-.) mixing when 𝑞 > 1.763𝑑
[Efthymiou, Hayes, Štefankovič and Vigoda 2018]

Thank you!


