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Hardcore model

Graph G = (V,E) E g m
1 A A

* nvertices
* max degree A

Fugacity: 4 > 0 E m m
A A 2

Gibbs distribution: Vv ind. setin s € v,  Partition function
S| 7 = 2 q
u(S) = — /

/ ind.set S

> We view the hardcore model as a distribution over {0,1}”




Sampling problem and computation phase transition

Input: hardcore model on G = (V, E) with fugacity 4 > 0, error bound € > 0

Output: a random configuration X € {0,1}
X —ullpy <€

A <A 1> A,

Poly-time samplers .
Y P No poly-time sampler unless

e Recursion [Weitz 2006] NP=RP

 Zero-freeness of polynomials

[Barvinok 2016] [Patel and Regts, 2017] * [Sly 2010]

o . [Sly and Sun, 2012 ]
* MCMO)iAnari, Liu and Oveis Gharan, 2020] | [Galanis, Stefankovi¢ and Vigoda, 2012]

' /
Simplest. (A — 1)@

(A—2)4

e
AC(A_1)= zK



MCMC: Glauber dynamics

%

Start from arbitrary ind. set X € {0,1}"
Foreacht from1to T &

 Pick v € V uniformly at random PriX, =11 =1/(1+2)

* Resample X, ~ u, (- | Xy—y) Pr(X, =0]=1/(1+ )

» Convergence: X ~pasT — o

» Mixing time: which Tp,ix = T( ) guarantees || X — ullry < —

4e
> Rapid mixing if Ty,ijx = poly(n)

> Decay of TV distance: T(€) < Tpix log =

€



Mixing time of Glauber dynamics

Dobrushin’s

1
Condition A< (1-9) A1l ‘ Os(nlogn) [Bubley and Dyer, 1997]

L 2 [Luby and Vigoda, 1999]
Condition 1 < (1 — ) 5= mm) Os(nlogn) Dyer and Greenhill, 1999]

Anari, Liu and Oveis Gharan, 2020]
Chen, Liu and Vigoda, 2021]

Chen and Eldan, 2022]

Chen, Feng, Yin and Zhang, 2022]

Uniqueness Condition

|
|
/1<(1—5)/1C(A—1)z(1—6)% = 05("10*‘3”){

» Mixing of Glauber dynamics: If 1 < (1 —6)A.(A — 1) Work for the Worst Case
rapid mixing for arbitrary hardcore models with max degree A

» Hardness for sampling: If A > A.(A — 1),
there is a sequence of graphs with max degree A s.t. sampling is hard



Hardcore model on random graphs

e

Question: Fix real numbersd >1and 1 < 1.(d) = " Draw random sample from

hardcore model on Erdés—Rényi random graph G (n, %)

logn

 average degree is d but w.h.p. max degree is A = 0( ), A> % ~ A(A—1)

loglogn
Previous sampling algorithms: (running time w.h.p. over G(n,d/n))

Sampling in time n%1°8 %) if 2 < A.(d) [Sinclair, Srivastava and Yin, 2013]

« extend Weitz’s algorithm to random graphs

Sampling in time n'*9 if 1 < A.(d) [Bezdkova, Galanis, Goldberg and Stefankovi¢, 2022]
« 6 > 0is an arbitrary small constant

« sample from marginals of low-degree vertices then sample configuration for others

Block dynamics O(nlogn) mixing time if 1 < % [Efthymiou, Hayes, Stefankovi¢ and Vigoda 2018]
* Partition vertices into blocks and update block per iteration



Our results

Theorem (Hardcore Model) [Efthymiou and F., This work]

Letd > 1 and 4 < A,.(d) be two real constants. W.h.p. over G ~ G (n, %)

C
The mixing time of Glauber dynamics is n' loglogn = pl+o() ¢ = C(4,d).

Theorem (Monomer-Dimer Model) [Efthymiou and F., This work]
Let d > 1 and 4 > 0 be two constants. W.h.p. over G ~ G (n, %)

The mixing time of Glauber dynamics is n1t°).

Monomer-Dimer Model V matching M € E, u(M) o AIM



Proof overview

6-Fractional Block dynamics (0 < 0 < 1)
* Pick § € V with |S| = n uniformly at random .
* Block dynamics picks constant

O Resample XS ~ IJS('| Xv—s) fraction of vertices

* Glauber dynamics picks 1 vertex

Chen-Liu-Vigoda’s framework for proving mixing

Spectral Independence (SI) Mixing of Mixing of
Marginal lower bound block dynamics Glauber dynamics

'~ S o _ /1 'S ~ o _ /1
Marginal lower bound Comparison of Markov chains:
requires A = 0(1) require A =0(1)

One challenge for random graphs: w.h.p. A = 0 (lolgolgog n)



Proof overview

6-Fractional Block dynamics
b - . _ .
Pick S € V with |S| = 6n uniformly at random Block dynamics picks constant

* Resample X5 ~ pus(:l Xy_s) fraction of vertices

* Glauber dynamics picks 1 vertex

Chen-Liu-Vigoda’s framework for proving mixing
Complete S| Mixing of Mixing of
A mild marginal condition block dynamics Glauber dynamics

N_

The mild marginal condition holds for

hardcore in random graphs
[Chen, Feng, Yin and Zhang, 2022]
[Chen and Eldan, 2022]




Proof overview

6-Fractional Block dynamics
* Pick § € V with |S| = n uniformly at random .
* Block dynamics picks constant

O Resample XS ~ ,ng('| Xv—s) fraction of vertices

* Glauber dynamics picks 1 vertex

Our Technique for proving mixing

Complete SI Mixing of Mixing of
A mild marginal condition block dynamics Glauber dynamics

Our contribution
> Prove the complete spectral independence for hardcore model in random graphs

Improve the Sl result in [Bezakova, Galanis, Goldberg and Stefankovi¢, 2022]

» An improved comparison between block and Glauber dynamics
Utilise the SI in the comparison step



Spectral independence

> Gibbs distribution u over {0,1}”

> Influence matrix of 4 W(u,v) = XPr [ X, =1]|X,=1] —XPr (X, =11|X, =0]
~U ~U

> n-spectral independence [Anari, Liu and Oveis Gharan, 2020]:

Amax(P) < n for u and all conditional distributions induced from u

Q O O O conditional O O O
distribution ‘
O O O @) on @)
1 unfixed vertices A
Q @ O O u=( o) QO

0—0—e—O —)

fix a configuration o € {0,1}* on A hardcore model on a subgraph

@-=0 Q-1




Spectral independence

> Gibbs distribution u over {0,1}”

> Influence matrix of 4 W(u,v) = XPr [ X, =1]1X,=1] —XPr (X, =11X, =0]
~U ~U

> n-spectral independence [Anari, Liu and Oveis Gharan, 2020]:

Amax(P) = n for u and all conditional distributions induced from u

» n-complete spectral independence [Chen, Feng, Yin and Zhang, 2021]
Complete — Spectral Independence
Spectral Independence | © | under certain external field

We focus on the Spectral Independence, complete Sl follows from a similar proof




Spectral independence in random graphs

Previous SI result for marginal [Bezikova, Galanis, Goldberg and Stefankovi¢, 2022]

Ifd >1and 1 < A.(d). W.h.p. over G ~ G (n, %),

us is O(logn)-spectrally independent, ug is the marginal of low degree vertices

» A sampling algorithm with n**% running time, 8 > 0 is an arbitrary small constant

Our SI result for Gibbs distribution [Efthymiou and F., This work]

Ifd >1and 1< A.(d). W.h.p. over G ~ G (n, %),
u is (logn)©-spectrally independent for some constant ¢ < 1

W) nl+C/loglogn — p1+o(1) mixing time for Glauber dynamics



Spectral Independence via total influence

Imax () < 1¥lloo = max > [W(v,0)] <7

uev

Our method [Efthymiou and F., 2023]
» Find a diagonal matrix D such that

1
D(v,v) = deg(v)¢, where c € (E 1)
> Establish Sl via the weighted total influence A, (¥) < |ID™'WD||, <7
Vv, z W (v, u)| deg(u)¢ < ndeg(v)©

/\ = A r\

If the deg(v) is large, deg(v)¢ in RHS is also large
v may cause large total influence

deg(u)¢ would make LHS large
In “average”, deg(u) is small



k-branching factor [Bezakova, Galanis, Goldberg and Stefankovi¢, 2022]
In G(V,E), for any v, N(v,¥) = #{simple paths from v of length ¢}

N(v,?)
Sk = 2 k!

e B

vk > d,
E— d*
Sk = ZF = Oqx (1)

£20

- /

d-ary tree
Example: branching factor in d-ary tree

> In random graph, we use branching factor to measure how much influence that can
percolate from v to all other vertices.



k-branching factor [Bezakova, Galanis, Glodberg and Stefankovi¢, 2022]
In G(V,E), for any v, N(v,¥) = #{simple paths from v of length ¢}

N, t) .
Sk = z P (A notion of average degree)
20

Branching factor in random graphs [Bezikovd, Galanis, Goldberg and Stefankovi¢, 2022]

d
Vk > d, w. h.p.over G (n, E) S < logn

n-Spectral independence for hardcore in random graphs [Efthymiou and F., 2023]

d
IfA < A.(d), w. h.p.over G (n, E) n<S5..=(ogn)c, c=c(4,d) <1

» Reduce the graph to a self-avoiding-walk tree (SAW-tree) [Weitz 2006]

> Analyse the weighted influence in SAW-tree via correction decay technique
[Sinclair, Srivastava, Stefankovi¢ and Yin 2017] [Bezdkova, Galanis, Goldberg and Stefankovi¢, 2022]



Summary and Open Problems

Mixing results

« nt*°W mixing time for hardcore model on G(n, d/n) when 1 < 2.(d)

« n1*°W mixing time for monomer-dimer model on G (n, d/n)

Spectral independence result

* (logn)“-spectral independence for hardcore model on G(n,d/n) when 4 < 1.(d)

More distributions in random graphs Thank you!
L d
* Sample g-colourings in G (n,g)

» Current best result is the 0(n?*1/1°82) mixing when q > 1.763d
[Efthymiou, Hayes, Stefankovi¢ and Vigoda 2018]



