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Abstract

Spin systems form an important class of undirected graphical models. For two Gibbs
distributions p and v induced by two spin systems on the same graph G = (V, E), we study
the problem of approximating the total variation distance drv (i, V) with an e-relative error.
We propose a new reduction that connects the problem of approximating the TV-distance to
sampling and approximate counting. Our applications include the hardcore model and the
antiferromagnetic Ising model in the uniqueness regime, the ferromagnetic Ising model, and
the general Ising model satisfying the spectral condition.

Additionally, we explore the computational complexity of approximating the total variation
distance drv (us,Vs) between two marginal distributions on an arbitrary subset S C V.
We prove that this problem remains hard even when both p and v admit polynomial-time
sampling and approximate counting algorithms.

1 Introduction

The total variation distance (TV-distance) is a widely used metric for quantifying the difference
between two distributions. For two discrete distributions p and v defined over the sample space
Q, the TV-distance is given by

dry (1,7) 2 3 3 o) — v(o)] = max (u(A) ~ v(4)).
[ZSY) -

Alternatively, the TV-distance can be characterized as the minimum probability of X # Y,
where X ~ pandY ~ v form a coupling of the two distributions. These different characterizations
provide a rich set of tools for analyzing the TV-distance. It is also closely related to other measures
of distance between distributions, such as the Wasserstein distance and the KL-divergence [MU17].
Consequently, the TV-distance is a fundamental quantity in many applications, including
randomized algorithms, statistical physics, and machine learning.

The problem of computing the TV-distance between two distributions has garnered consider-
able attention in machine learning and theoretical computer science. A straightforward approach
is to compute the TV-distance directly from its definition. This algorithm runs in O(|€?|) time,
assuming access to the probability mass at every point in 2. However, the problem becomes
particularly interesting when the distributions have succinct representation, as the sample space
Q) can be exponentially large relative to the size of the input. In fact, the problem is intractable
for many classes of distributions. For instance, [SV03] showed that when two distributions are
specified by circuits that sample from them, deciding whether their TV-distance is small or
large is complete for SZK (statistical zero-knowledge). More recently, Bhattacharyya, Gayen,
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Meel, Myrisiotis, Pavan, and Vinodchandran [BGM™23] proved that even for pairs of product
distributions, the exact computation of their TV-distance is #P-complete.

On the algorithmic side, the problem of approximating the TV-distance between two dis-
tributions with e-relative error was first studied in [BGM 23], where the authors proposed an
approximation algorithm for a restricted class of product distributions. Subsequently, Feng,
Guo, Jerrum, and Wang [FGJW23] developed a simple FPRAS that works for general product
distributions. Later, a deterministic FPTAS was also introduced for the same task [FLL24].
Beyond product distributions, however, the understanding of approximating the TV-distance
remains very limited. The only progress was made in [BGM™24], which showed that for two
Bayesian networks on DAGs, an FPRAS for the TV-distance exists if ezact probabilistic inference
can be performed in polynomial time. As a consequence, their algorithm can be applied when
the underlying DAG has bounded treewidth. However, the requirement of exact inference is a
strong assumption. For many natural graphical models without the bounded treewidth property,
exact inference is itself a #£P-complete problem.

In this paper, we further investigate the problem of approximating the TV-distance for spin
systems, which are a fundamental class of undirected graphical models. Canonical examples
include the hardcore model and the Ising model. Our contributions can be summarized as:

e We give a new algorithm to reduce the TV-distance approximation to sampling and
approximate counting. As a result, our algorithm applies to a broad class of hardcore and
Ising models, even if the underlying graph has unbounded treewidth.

e We analyze the computational complexity of approximating the TV-distance between two
marginal distributions of spin systems. We show that this problem is #P-hard, even in
parameter regimes where both sampling and approximate counting are tractable.

1.1 Approximating the TV-distance between two Gibbs distributions

Let G = (V, E) be a graph. A spin system S (a.k.a. Markov random field) defines a distribution
over {—1,+1}V (denoted by {£}" in short) in the following way. It defines a weight function
w = ws := {£}V — R>( that assigns each configuration o € {+}"" a weight w(c). The spin
system S induces a Gibbs distribution p = ug over {£}" such that

Vo e {£}V, u(o) 2 w(Za)7 where Z = Zg = Z w(T) is the partition function.
Te{£}V

The weight function w of a spin system is a product of factors associated with each vertex and
edge on graph GG, which can be computed exactly and efficiently. For a broad class of spin systems,
the following sampling and approximate counting oracles with TF (g), T&f(e) = poly(n/e) exist,
where n denotes the number of vertices in graph G.

Definition 1 (sampling and approximate counting oracles). Let S be a spin system on graph
G with Gibbs distribution g and partition function Z. Let Tgr,T&h : (0,1) — N be two
non-increasing cost functions.

e We say S admits a sampling oracle with cost function T(S;p if given any 0 < € < 1, it returns
a random sample X € {£}" in time Tpy (¢) with dpv (X, p) <e.

e We say S admits an approx. counting oracle with cost function T if given any 0 < & < 1,
it returns a random number Z in time TE () with Pr |(1 —e)Z < Z<(1+e)Z|>0.99.



Given two spin systems S* and S” on the same graph G that defines two Gibbs distributions
u and v respectively and an error bound 0 < € < 1, we study the following problem.

Given the assess to sampling and approximate counting oracles for both S* and S”, can we
efficiently approzimate the T'V-distance drv (p, v) within relative error (1 +¢)?

In this paper, we focuses on the following two canonical and extensively studied spin systems.

e Hardcore model: Let G = (V, E) be a graph. Let A = (\,),ev € RY, be external fields.
A configuration o € {£}V is said to be an independent set if S, = {v € V | 0, = +1}
forms an independent set in graph G. The hardcore model is specified by the pair (G, \),
which defines the weight function w such that

[loevio,—41 v if 0 is an independent set;

0 otherwise.

Vo e {£}V, w(o) 2 {

e Ising model: Let G = (V, E) be a graph. Let J € RV*V be a symmetric interaction
matriz such that J,, # 0 only if {u,v} € E. Let h € (RU {400})V be the external field.
Define Hamiltonian function

Vo€ {£}, H(o)= {U;EE JunOuoy + vze‘:/avhv = %(0, Jo)y + (o, h).
The weight of a configuration ¢ in Ising model is defined by w(o) £ exp(H(0)).
The problem of approximating the TV-distance can be formalized as follows.
Problem 2 (Hardcore TV-distance approximation). The problem is defined as follows.

e Input: two hardcore models (G, \*) and (G, \”) defined on the same graph G = (V, E),
which specifies two Gibbs distributions p and v respectively, and an error bound 0 < & < 1.

e Output: a number d such that (1 —&)dpy (u,v) < d < (1+¢&)dry (1, v).
Problem 3 (Ising TV-distance approximation). The problem is defined as follows.

e Input: two Ising models (G, J¥, h*) and (G, J”, h”) defined on the same graph G = (V, E),
which specifies two Gibbs distributions p and v respectively, and an error bound 0 < & < 1.

e Output: a number d such that (1 —&)dpy (u,v) < d < (1+¢&)dry (1, v).

We are interested in the FPRAS (fully polynomial randomized approximation scheme), which
solves the above problems with probability at least 2/3' in time poly(n/e).
1.1.1 General results for hardcore and Ising models

We need a marginal lower bound condition for general results. For any subset A C V, any
feasible partial configuration o € {434, let u” denote the distribution x conditional on o. For
any v € V, let uJ denote the marginal distribution on v projected from 1.

Condition 4 (marginal lower bound). Let 0 < b < 1 be a parameter. We say a distribution
over {£}V is b-marginally bounded if for any feasible partial configuration o € {£}* on a subset
ACV,anyv eV, any c € {£}, it holds that pJ(c) > b if u5(c) > 0.

!The success probability can be boosted to 1 — § by independently running the algorithm for O(log %) times
and taking the median of the output.



The marginal lower bound condition is a natural condition for spin systems. Hardcore and
Ising models with constant marginal lower bound were extensively studied in sampling and
approximate counting [Jer03, Wei06, Sly10, CLV21].

Theorem 5 (general result). Let 0 < b < 1 be a constant. There exists a randomized algorithm
that solves Problem 2 and Problem & with probability at least % in time

N? o g2 ot €
Oy <52TG (poly(b) : Ng> + 15 (poly(b) : N))

if two input spin systems are both b-marginally bounded and both admit sampling and approzimate
counting oracles with cost functions T (+), TE(-), where Oy(-) hides a factor depending only on
b, N =n = |V| for hardcore model, and N =n+m = |V|+ |E| for Ising model.

For the hardcore and Ising models with a constant marginal lower bound, the theorem
provides the first polynomial-time reduction from approximating the TV-distance to sampling
and approximate counting. Moreover, the above theorem is a simplified version, and our
technique yields a stronger result that also applies to some hardcore and Ising models with a
smaller marginal lower bound b = o(1). See Remark 38 or a more detailed discussion.

Consider a hardcore model (G,\). Let A > 3 denote the maximum degree of G. The
hardcore model is said to satisfy the uniqueness condition with a constant gap 0 < n < 1 if

A—1

VeV, A< (1—nA(A), where \(A) 2 ((AA_UQ)A ~ %. (1)
Previous works [CFYZ22, CE22, SVV09] proved that for hardcore model satisfying the uniqueness
condition in (1), it admits poly(%) time sampling and approximate counting oracles. To obtain
a poly(2) time algorithm for TV-distance estimation, one way is to consider hardcore models
in the uniqueness regime with constant marginal lower bound b = Q(1), which requires that
A = O(1) and for all v € V, either Q(1) < A, < (1 —n)A:(A) or A, = 0%

For Ising models S = (G, J, h), the following conditions are well-known.

Condition 6. S satisfies one of the following conditions:

e Spectral condition: Amax(J) — Amin(J) < 1 —n for some constant n > 0, where Apax(J)
and Amin(J) denote the mazx and min eigenvalues of J respectively.

e Ferromagnetic interaction with consistent field condition: Jy, > 0 for all edge {u,v} € E
and hy, >0 for allv e V.

o Anti-ferromagnetic interaction at or within the uniqueness threshold: Jy, = 8 <0 for all
{u,v} € E and exp(23) > %, where A is the mazimum degree of G.

Previous works [AJKT22, FGW23, JS93, CCYZ24, JVV86, SVV09] gave poly(Z) time sam-
pling and approximate counting oracles for Ising models satisfying Condition 6.
We have the following corollary for hardcore and Ising models from Theorem 5.

Corollary 7. Let 0 < n <1 and A > 3 be two constants. There exists an FPRAS for Problem 2
if two input hardcore models are defined on graph G with mazimum degree A and all external
fields satisfy that Q(1) < AT < (1 =n)A(A) or AT =0 for allv eV and © € {u,v}.

There exists an FPRAS for Problem 3 if two input Ising models both satisfy Condition 6 and
the marginal lower bound in Condition 4 with b = Q(1).

*We allow A, = 0 because Condition 4 only considers the lower bound for spins ¢ € {£} with ug(c) > 0.



The condition required by Corollary 7 is arguably significant conditions for TV-distance
estimation. Let A > 3 be a constant. For the hardcore model beyond the uniqueness regime
such that A\, > A.(A) for all v € V, polynomial-time sampling and approximate counting oracles
do not exist unless NP = RP [Sly10]. Moreover, the technique in [BGM™25] can show that
unless NP = RP, there is no FPRAS for Problem 2 if input hardcore models are beyond the
uniqueness condition. For the completeness, we give a simplified proof in Appendix A. We can
show that this hardness result holds even for additive-error approximation.

To see the significance of Condition 6, consider the following family of Ising models. Let
S* = (G, J,h*) and S¥ = (G, J, h”) be two Ising models defined on the same graph G and have
the same interaction matrix J. Assume that G has constant maximum degree A; for all edges
{u,v} in G, Jyu, = B < 0 is a unified negative constant; and for all vertices v € V, hyy and h%
can take values from set {400,0}. This family of Ising models has a constant marginal lower
bound. We have the following two results:

o if exp(283) > %, then FPRAS for TV-distance exists by Corollary 7;

o if exp(2f) < %, there is no FPRAS for TV-distance unless NP = RP, the hardness
result holds even for approximating the TV-distance with additive error.

Again, the hardness result can be proved by the technique in [BGM™'25]. We give a simple proof
in Appendix A for the completeness.

1.1.2 Improved results for hardcore models in the uniqueness regime

Corollary 7 works for hardcore model in the uniqueness regime. However, it additionally requires
a marginal lower bound b = (1). We give the following improved algorithm that removes the
marginal lower bound requirement, thus it works for the whole uniqueness regime.

Theorem 8 (improved algorithm for the whole uniqueness regime). There exists a randomized
algorithm that solves Problem 2 with probability at least 2/3 in time On(?T’/‘;) if two input hardcore
models both satisfy the uniqueness condition with a constant gap n > 0, where n is the number
of vertices and On() hides a constant factor depending on n and a polylog(%) factor.

Next, let us further assume that the hardcore model has a constant marginal lower bound
b=(1). Theorem 5 and Corollary 7 give an FPRAS in time

N2 sp 52 ot € _ 7‘[,4
Op (EQTG <P01Y(b) - NQ> +1g (poly(b) : N)) =0 (52> : (2)
The equation holds because Tép(é) = O(Anlog %) [CFYZ22, CE22], TEE(S) = O(A(;QQ) [SVV09),

and A = O(1) due to the constant marginal lower bound assumption. For these hardcore models,
we can also give a faster algorithm than the general results in Theorem 5. Compared to the
running time in (2), the following improved algorithm reduces a factor of n in the running time.

Theorem 9 (faster algorithm further assuming constant marginal lower bound). Let 0 < n < 1
and A > 3 be two constants. There exists an FPRAS in time O(Z—;) for Problem 2 if two input
hardcore models are defined on graph G with mazimum degree A and all external fields satisfy

that Q(1) < AT < (1 =n)A(A) or AT =0 for allv eV and w € {u,v}.

1.2 Approximating the TV-distance between two marginal distributions

One natural extension is to approximate the TV-distance between two marginal distributions
on a subset of vertices. We use the hardcore model as an example to state our results on this
problem. The same results can be extended to Ising model using a similar reduction.



Problem 10 (k-marginal TV-distance approximation). Let k : N — N be a function.

e Input: two hardcore models (G, \*) and (G, \”) defined on the same graph G = (V, E),
which specifies two Gibbs distributions u and v respectively, a subset S C V' such that
|S| = k(n), where n = |V, and an error bound & > 0.

e Output: a number d such that % <d < (14 ¢&)dyy (ps, vs), where pg and vg are
marginal distributions on S projected from p and v respectively.

In particular, if the function k(n) = n, then Problem 10 is the same as Problem 2.

We show that the problem is hard when k(n) = 1. In this case, the problem is to approximate
the TV-distance between two marginal distributions at a single vertex. The hardness result
holds even if two input hardcore models are in the uniqueness regime, where both sampling and
approximate counting are intractable in polynomial time.

Theorem 11. Let k(n) =1 for alln € N be a constant function. The k-marginal TV-distance
approximation is #P-Hard when two input hardcore models both satisfy the uniqueness condition,
the hardness result holds even if € = poly(n), where n is number of vertices in G.

The above theorem is for marginal distributions at one vertex. One can simply lift the result
to the marginal distributions on a set of vertices. In particular, we have the following corollary.

Corollary 12. Let 0 < a < 1 be a constant and k(n) =n — [n®]. The k-marginal TV-distance
approximation is #P-Hard when two input hardcore models both satisfy the uniqueness condition,
the hardness result holds even if € = poly(n), where n is number of vertices in G.

The proofs of the hardness results are given in Section 7. The proof constructs a Turing
reduction that exactly counts the number Z of independent sets in graphs with a maximum
degree of 3, a problem known to be #P-complete [DGO00]. Specifically, we show that if one can
efficiently solve the problem stated in Theorem 11, then it is possible to efficiently estimate
the probability that a vertex v is included in a uniformly random independent set, with an
exponentially small relative error of 4. This, in turn, solves the exact counting problem by
using the self-reducibility [JVV86] property of the hardcore model and the fact that Z < 2.

Now, let us compare our hardness results with that in [BGM*25]. The hardness results in
[BGM™25] are for approximating the TV-distance between two entire Gibbs distributions. In
contrast, our hardness results are for approximating the TV-distance between two marginal
distributions. The hardness results in [BGMT25] are NP-hard results. It considered the Gibbs
distributions in a parameter regime where sampling and approximate counting are intractable. In
contrast, our hardness results are #P-hard results. Our hardness results holds even if sampling
and approximate counting can both be solved in polynomial time.

Finally, consider approximating the TV-distance between two marginal distributions with
additive error €. We show that this relaxed problem admits FPRAS if two input hardcore models
both satisfy the uniqueness condition.

Theorem 13. There exists a randomized algorithm such that given two hardcore distributions p

and v on the same graph G = (V, E) with n = |V|, any subset S CV, and any 0 < e <1, if p

and v both satisfy (1), it returns a random number d in time Ag’f - polylog(%) such that

N 2
Pr Ud— drv (s, vs)| < 6} 23

Theorem 13 together with two hardness results give a clear separation between the computa-
tional complexity for approximating the TV-distance with relative and additive error.



1.3 Related work

There are a series of works on checking whether two given distributions are identical (e.g. [CMRO7,
DHRO08, KMO*11, BGM™25]), which can be viewed as the decision version of computing the
TV-distance, i.e., checking whether it is zero.

There are also a long line of works (e.g., see a survey in [Canl5]) studying the identical
testing problem in access model, where the algorithm can only access the set of random samples
from the distributions. This setting is different from our setting, where we assume that all the
parameters of the spin systems are given as the input to the algorithm.

A series of works [BGMV20, CK14, Kiel8, CR14] studied the algorithm and the hardness
of approximating the TV-distance with additive error, which is an easier problem than the
relative-error approximation.

[DMR18, AAL23, Kon24, AK24] found closed-form formulas, which approximates the TV-
distance between two high-dimensional distributions with a fized relative error. We study
algorithms achieving an arbitrary e-relative error approximation for spin systems.

2 Algorithm overview

In this section, we give an overview of our algorithm. Let G = (V| F) be a graph. Let S# and
S” be two spin systems (either two hardcore models or two Ising models) defined on the same
graph G. Let p and v denote Gibbs distributions of S# and S¥ respectively.

We first introduce the distance between parameters of two spin systems. For a vector a € RV,
denote ||aljoo = max,cy |ay|. For a matrix A € RV*V denote || A||max = maxy pev |Aus|.

Definition 14 (parameter distance). The parameter distance dpar(SH,S”) between S#* and SH,
which is denote by dpar(p, ) for simplicity, is defined by

e Hardcore model: for two hardcore models S# = (G, M) and S¥ = (G, \¥),

par (1, V) = [N = N[ oo
e Soft-Ising model: for two soft-Ising models S = (G, J*, h*) and S¥ = (G, J", h"),

R TR (0) ~ (@)
) 2 {79 = 7 g PG = O

where deg, is the degree of v in graph G.

The above parameter distance can be computed easily. The following lemma gives the
relation between parameter distance dpar(pt, ) and the total variation distance drv (p, 7). An
Ising model (G = (V, E), J, h) is said to be soft if h € RV (instead of h € (RU {#+o00})"). We
now focus on soft-Ising model in this overview. We will show how to reduce general Ising models
to soft models in Section 6.

Lemma 15 (TV-distance lower bound). It holds that drv (p,v) > C’pTa‘r/' dpar (1, V) such that

e Hardcore model: if both p and v satisfy the uniqueness condition in (1), C’};‘g‘; = ﬁ.

e Hardcore model: if both u and v are b-marginally bounded, Cg;‘r/ = b3,

o Soft-Ising model: if both u and v are b-marginally bounded, = 5.
Soft-Tsi del: if both d b inally bounded, CLY = ¥



By Lemma 15, if dpar(pt, ) is large, the TV-distance dry (i, v) is also large. Let n = |V|
and m = |F| denote the numbers of vertices and edges in G. Define the a threshold 6§ = W()
for the parameter distance for soft-Ising and hardcore models, where ¢, is some parameter
depending only on the marginal lower bound 3. The specific value of § can be found in Section 6.
Our algorithm first compute dpar(it, ) in time O(m + n), and then compares dpar (i, ) to the
threshold 6. The algorithm considers the following two cases.

e Case dpar(pt,v) > 0: By Lemma 15, the TV-distance drv (pu,v) = Cpar dpar(pt, V) >
Qb(poly( )) is large. In this case, the task of approximating drv (u, ) with relative error is
the same (up to Op(poly(n)) running time) as the task of approximating drv (p, v) with
additive error. We give a general FPRAS that achieves the additive-error approximation

assuming polynomial-time sampling and approximate counting oracles for both p and v.

e Case dpar(pt, V) < 6: The algorithm for this case is our main technical contribution. Let
wy(-) and w,(-) denote the weight functions for spin systems S# and S” respectively. By
the definition of parameter distance, we know that for any o € {£}V, w,(0) ~ w,(0). We
will utilize this property to design efficient approximation algorithm for TV-distance.

In Section 2.1 and Section 2.2, we will explain the main ideas of our algorithms for the above
two cases. The formal description of the algorithms are given in Sections 4 and 5.
2.1 Warm-up: additive-error approximation algorithm

Let us first consider the easy case. This case is solved by improving the algorithm in [BGMV20].
By the definition of total variation distance, we can write

v = Y o) -vel= X weymax(01-20). @

oe{x}V:u(o)>v(o) oce{£}V 'LL(O-)

Define the random variable X £ max (0, :Eg;), where 0 ~ p. Note that 0 < X < 1. We
have E [X] = dry (i, v) and Var [X] < 1. Additive-error approximation can be achieved if
random samples of the variable X can be efficiently generated.

However, since we can only access sampling and approximate counting oracles, we cannot
compute (o) and v(o) exactly. Instead, our algorithm uses an alternative estimator X to
approximate the random variable X. Let Z,,,w,(-) and Z,,w,(-) denote the partition functions
and weight functions of S# and S”, respectively. We first call the approximate counting oracle to
obtain Zu and ZV, which approximate Z,, and Z, with a relative error of O(e). The estimator
X is then defined by the following process:

e (Call sampling oracle to generate approximate sample o from u;

o X = max (o 1 %) where i(0) = w, () Z, and ji(o) = w,(0)/Z,.

The error of X arises from the errors in the approximate sample o and the probabilities 7(-) and
i(+). To illustrate the main idea of the algorithm, let us ignore the sampling error and assume

o ~ . Note that the true value ZE”% = ;LZ:EZ; . % By the assumption of approximate counting

oracle, % > (1-0(¢)) E 3, which implies E[X] < E,.,[max(0,1 — (1 — O(e)):gg)], which is
at most Eq,[max(0,1 — :EZ’% )]+ O(e)Egnp = E[X]+ O(e). A similar analysis gives the

3The value of b is not given in the input, but we can compute b efficiently (see Lemma 35).

v(o)
w(o)




lower bound E[X] > E[X] — O(¢). Since 0 < X < 1 so the variance is at most 1, this achieves
the additive error approximation of the TV-distance.

The algorithm in Theorem 13 estimates the TV-distance between two marginal distributions
with additive error, which follows a similar approach. The key difference is that it requires
approximating the marginal probabilities vg(c) and pg(o) for o € {£}°, where S C V. For
the hardcore model within the uniqueness regime, we have not only an efficient approximate
counting oracle but also efficient oracles for approximating the conditional partition function
2% =3 re{4}Virg=o W(T), which give the efficient approximation of ug(c) and vg(o).

Additive-error approximation algorithms were also studied in [BGMV20], where a similar
algorithm was proposed. Their approach assumes that the values of (o) and v(o) can be
computed exactly, allowing the use of the estimator X. In contrast, our algorithm demonstrates
that approximated values of p(o) and v(o) suffice. Consequently, our additive-error algorithm (see
Theorem 17 for a formal statement) improves upon some results in [BGMV20]. For instance,
while [BGMV20] applies to ferromagnetic Ising models on bounded tree-width graphs with
consistent external fields, our result removes the bounded tree-width restriction and applies to
general graphs (see Corollary 18).

2.2 Approximation algorithm for instances with small parameter distance

Consider the case where dpa (i, v) < 6. The total variation distance drv (i, v) can be very
small (e.g., exp(—Q(n))). We cannot use additive-error approximation algorithm to efficiently
achieve a relative-error approximation. The main challenge lies in the term 1 — v(o)/u(o) in (3).
With approximate counting oracles, we can approximate v(o)/u(o) with relative error, but
there is no guarantee of relative accuracy for 1 — v(o)/u(o). Due to this difficulty, previous
works mainly studied graphical models on bounded treewidth graphs [BGM™24] and product
distributions [FGJW23], where v(o) and p(o) can be computed ezactly.

We overcome this challenge by designing an alternative estimator with good concentration
property. We use the hardcore model as an example to illustrate the main idea. Assume both g
and v are hardcore models (G, \*) and (G, \”) satisfying uniqueness condition in (1). For the
simplicity of the overview, let us further assume that for any for v € V, 0 < Ay < AY. In words,
v is obtained by increasing some external fields of p by a small amount. We will deal with the
general case in later technical sections.

Basic case without small external fields Let us start with a simple case where M\ = @(%)

for all v € V. The uniqueness condition guarantees that \j = O(%) The assumption additionally
requires that every M, cannot be too small. By the definitions of total variation distance and
Gibbs distributions, we can compute

drv (H,V)Z% > ulo)

oe{+}V

v oce{+}V

The first term 227“,/ can be approximated with relative error by approximate counting oracle. For
the second term, we consider the following random variable, which also appears in the previous
work of approximate counting [SVV09],

= wy(a)’ where o ~ p.

wy(o)
Note that E [W] = g—: By (4), our task is reduced to estimate the value of E [|E [W] — W|]. We
are in the case that 0 < X — N < dpar(p,v) <0 = so that for any o € {£+}", % ~ 1.

1
poly(n)’



We will utilize this property to show that W has a good concentration property. Formally,

Wyl o A dar v
1§w(;§ II =< 1I <1+"A(g)>

(o i .
vEV:oy=+1 veViop,=+1

@t‘@t

) §1+0( 3 W)Sl—&—O(nA)-dpar(u,v). 5)

VEV :0y=+1

In inequality (x), we use the fact that A} = Q(%) so that W = O(A#), since we choose

0= m small enough, then M < = L and the inequality can be verified as follows
dpar(:ua v) dpar(:ua v) dpar (p,v)
H <1 + T < exp Z o =140 Z |
veEV:ioy=+1 veEVio,=+1 veVioy,=+1

<n-(1/n)=o0(1)

By Lemma 15, drv (i, v) = Q(dpar(pt,v)). This implies W enjoys a very good concentration
property such that

1<W <14+0(®A)-dry (n,v) = Var[W] < On?*A?) - (drv (u,v))% (6)

Now, our algorithm can be outline as follows.

Call approximate counting oracles to obtain Zﬂ and Z, with relative error O(e).

e Draw T = poly(n/e) samples Wy,..., Wy from W independently.

Compute W = % Zz‘T:1 Wi;. (approximate E[W])

Compute £ = %Z?zl |W; — W|. (approximate E[|[W — E[W]|])

Return d = “ E

Using the variance bound in (6), we can prove that with high probability, £ approximates
E[|[W — E[W]|] with an additive error of O(¢) - dpy (u,v). By (5), we can also verify that
% = O(1). Hence, we can bound the error as follows

i< (1+0( ))QZZ

(E[W -EW][[+0(e) - drv (1, v)) < (14 O(€))drv (1, v) -

A similar analysis gives the lower bound d > (1—O(e))drv (i, v). This achieves the relative-error
approximation of the TV-distance. The above technique can be generalized to Ising models and
hardcore models with a marginal lower bound.

General case containing small external fields For the general case, there may exist vertex
v € V such that the external field M < dpar(, 7). In this case, the inequality () in (5) may
not hold. In fact, it will cause a fundamental problem to the above algorithm. Consider the
case that Ny = exp(—n) and XY = A\ + D for all v € V, where D > 0. If we draw polynomial
number of samples o ~ u, typically, every sample o corresponds to the empty set, i.e., o, = —1
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for all u € V. Hence, with high probability, all W; in the above algorithm are Zﬁ:gg; =1 and the

algorithm will return d = 0. However, the true TV-distance dy (1, v) > 0 is positive.

Let us first consider a special case such that for all v € V, My < k and N/ < k, where
K = poly(£) < L is very small. The total variation distance is the sum of 1|u(c) — v(o)] for
all independent sets o € {£}". In this special case, all external fields are tiny, so that large
independent sets appear with very low probability. Let ||o||+ be the number of +1 in 0. We can
show that there is a constant ¢ = O(1) depending on & such that

Y ko)~ o) < OE) - dry ().

oef£}V o]+ 2t4+1

In words, to approximate the total variation distance, we only need to consider the independent
sets with size at most ¢. Now, we define a distribution y’ as the distribution u restricted on the
independent sets with size at most ¢. Similarly, we can define v/ from v. Since t is a constant, we
can enumerate all independent sets with size at most ¢ and compute the total variation distance
between p/ and /. We can show that dpy (¢, v') approximate dpy (u, v) with e relative error.

For the most general case, we divide the vertices into two groups. The big group B contains
all vertices v € V such that min{\}, \Y} > k. The small group S contains all vertices v € V

such that min{\y, A\;} < & for a small k = poly(£). The total variation distance is
1 1 . -
drv (u,v) = B Z (o) —v(o)| = B Z Z \up(2) s (y) — ve(x)vs(y)l
oce{£}V ze{t}B ye{£}®
1 VB(:I" x T
= 5 w0y |2 - ).
re(£)? ye(zys 1P

f(=z)

In a high level, our algorithm will draw independent samples z ~ pup from the marginal
distribution and approximately compute the value of f(z). The algorithm finally outputs the
average value of f(x) over all samples. To make the idea work, we need to deal with the following
two main technical challenging.

e We need to bound the variance of f(z) where  ~ up to show that polynomial number of
samples are sufficient for approximation. To achieve a good bound, we use the Poincaré
inequality for hardcore model in uniqueness regime [CFYZ21] to control the variance.

e Given a sample = ~ pp, we also need to approximately compute the value of f(z). We

need to (1) approximate two distributions u% and v& over {£}°; and (2) approximate the
vp (J,’)

pp(x)”
induced subgraph G[S] such that for all v € S, the external fields are small. Hence, we can

approximate them using distributions over independent sets of size at most ¢t = O(1). A
similar idea will also be use for the second task: to estimate marginal probabilities pp(x)
and vp(x), we also need to consider the total weight of all independent sets [ in G[S]
such that U {v € B | z, = +1} forms a independent set in G. Again, we show that the
approximation algorithm only needs to consider all such I with |I| <t = O(1).

ratio

For the first task, note that both ug and v¢ are hardcore distributions on the

All the technical details for general case are given in Section 5.2.

Organization of the paper Lemma 15 is proved in Section 3. The additive error approxima-
tion algorithm is given in Section 4. The algorithm for instances with small parameter distance
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in given in Section 5. In Section 6, we put all the pieces together to prove all algorithmic results.
Our hardness results on approximating TV-distance for marginal distributions is proved in
Section 7.

3 Parameter distance v.s. total variation distance

In this section, we prove Lemma 15. We first prove the result for the hardcore model in
Section 3.1, and then prove the result for the soft-Ising model in Section 3.2.

3.1 Analysis for the hardcore model

Recall that our problem setting is: Let G = (V, E') be a graph, and (G, \*) and (G, \”) are two
hardcore models on the same graph, satisfying the uniqueness condition in (1). Let p and v
denote distributions of (G, M) and (G, \”) respectively. The parameter distance dpar(p, ) for
hardcore model is defined by dpar(pt, ) £ |\ — A||oo. Now we prove the first hardcore model
part of Lemma, 15:

1
TV TV
dyrv (p,v) > Crar “dpar(pt,v), where Cpar = £000°
Let i € V be one vertex such that |\ — \| = dpar (11, v). Without loss of generality, we can
assume that A — XV = dpar (11, v). Otherwise, we can flip the roles of 4 and v in the following
proof. Define two collections of independent sets of V:

H, : = {S is an independent set of G | i € S},
HQZ{S\{Z}|SEH1}

In this proof, we use 1(S) to denote the probability of ¢ € {£}" in y such that o; = +1 if and
only if i € S. Define u(H1) = ) gy, #(S) and u(Hsz),v(Hy), v(Hz) in a similar way. It is easy
to verify that

plHy) e vHD)

p(Ha)  °7 w(Ha) "

Then, we consider two cases depending on the value of |u(H2) — v(Hs)|. The simple case is
|u(Hz) — v(Ha)| = CpyY - dpar(p,v), then drv (u,v) 2 |u(Ha) — v(Hz)| = Cp - dpar (1, v).
The main case is |u(Ha) — v(H2)| < CgaY - dpar(pt, V). In this case we show that |u(Hp) —

v(Hy)| > CLY - dpar (11, v), which also implies dry (u,v) > |u(Hy) — v(Hy)| > Cga\f - dpar (11, V).

par

We can lower bound the value of |pu(H1) — v(Hyp)| as follows:

p(Hy) —v(H) = N - p(Ha) — N - v(H>)
= (N + dpar(pt, V) u(Hz) — A, - v(Ha)
= N (u(Hz) — v(Hz)) + dpar (1, v) - 1(Ha)
> dpar(p, V) - po(Hz) = N - Cp - dpar (1, ). (7)

Because (G, M) and (G, \V) satisfy the uniqueness condition, we have for all vertex i € V', all

x e {p,vh X <A (A) = % < 4 because A > 3. Let N (i) denotes the set of neighbors of

i in graph G = (V, E). By definition of Ha, 1(Hz2) is the probability of j ¢ S for all j € N(:)U{i}
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and S ~ p is a random independent set from the hardcore model (G, \*). Suppose there is a
total ordering < among all vertices in V. We have

w(Hy) =Prs,[i ¢S] [ Prowuli ¢ S| (i ¢8)A(vheN(G) with k < j,k ¢ )]

JEN()
A+1
1 1 1
= I E| = —
D SRR 114/(A-2)
(-2 . 8
( A+2) ~ 1000 ®

Also note that A\Y < 4 by the uniqueness condition. Recall Cga\lf =555- By (7) and (8), we have

p(HL) = v(H1) > dpar (1) - p(Ha) = A - Copl - dpar (2, v)

1 4
> dpar (1, v) <1000 - 5000> CEaY dpar (1, V).

Next, we prove the second part of the hardcore model with C’g;lf = b3. Now, we do not have
the uniqueness condition but we have a marginal lower bound b and the the hardcore model
is soft. The proof is similar. We only need to show how to lower bound the value in (7). We
first upper bound A/ in (7). Consider the pinning that all neighbors of ¢ are fixed as —1, then
the probability of ¢ taking —1 is 1 )\,, > b. Thus, A} < 1=b b . Next, we lower bound the value of

w(Hz). Let N(i) denote all nelghbors of i. Note that 4 takes value + only if all neighbors of i
take the value —. Recall that we assume that A" — AY = dpar(, ) in the beginning of the proof.
We can assume that dpar(p, v) > 0, otherwise dry (i, 7) = 0 and the lemma is trivial. We have
A > 0 so that p;(+) > 0. By the marginal lower bound, p;(+) > b. The vertex i takes value +
only if all neighbors take the value —. We have

b < pi(+) < Pro~, [Vj € N(i),j ¢ 5].
On the other hand, the value of (H2) can be lower bound by

p(Hz) = Prg., [Vj € N(i) U {i},j ¢ S]
=Prs.,[Vj€ N(i),j ¢ S|Prs.[i ¢ S|Vje N(i),j¢S]
> b2,

We can set OLY = b3 5o that

par
u(Hy) = v(Hy) > dpar(pt,v) - o(Hz) = N - Coat + dpar (1, 1)

1-b
> ) (17 = 257 8) = O - o).

3.2 Analysis for the soft-Ising model

Recall that our problem setting is: Let G = (V, E) be a graph, and (G, J*, h*) and (G, J¥,h")
are two soft-Ising models on the same graph. Let u and v denote distributions of (G, J*, h*)
and (G, JV, h”) respectively. The parameter distance dpar (i1, V) for soft-Ising model is defined by

h# hY
dpar (11, V) £ max{HJ“ J”Hmax,max |degv—|—1‘}
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Now we prove the soft-Ising model part of Lemma 15: if both p and v are b-marginally
bounded for 0 < b < 1, then

1
dTV (M7 V) Z f(b) : dpar(:u'a V)? where f(b) = 5()2
Before proving the above, we first present the following lemma.

Lemma 16. Let 1 and v be any two distributions on {+}V, and S CV be a subset of vertices.
Let 0 < 6 < 1. If for any o € {£}°, dpy (u7,v°) > 6, then drv (u,v) > 5/2.

Proof. For any two distributions p, ¢ on space §2, by the definition of total variation distance,

> min(p(z), ¢(z)) = 1 — drv (p, ) ,

€S
Z max(p(z),q(z)) =1+ drv (p,q) .

Under the assumption of the lemma, we have

L—dry (nv)= Y min(u(o),v(a))

ce{x}V

= Z Z min(u(o)u(r | o), v(o)v(r | o))

ce{£} re{£}V\s

< Y max(u(o),v(e)) > min(u(r |o),v(r| o))

oe{+}s Te{£}V\S
(since dpy (u7,0°) > 6) < Y max(u(o),v(0))(1 - 9)
oe{%}S

= (1 +drv (ps,vs))(1 = 9),
<1-0+dyv (us,vs)

which implies

drv (p,v) 2 6 —drv (us, vs) - (9)

On the other hand, we have
drv (u,v) > drv (ps,vs) - (10)
Then Lemma 16 follows by combining (9) and (10). O

According to the definition of the parameter distance, there are 2 cases:
o It exists {u,v} € E such that |Jiy — J,| = dpar(p, v).
e It exists v € V such that |hy — hY| = dpar(p, v) - (deg, +1).
For the first case, we will show that
Vo € {2} dry (47, 07) > 26 (8)dpar (11, ), (1)
and for the second case, we will show that
Vo € (PN dpy (17, 07) = 24 (b)dpar (1, ). (12)

Assuming (11) and (12) hold, using Lemma 16, we can directly derive the result of the total
variation distance lower bound for soft-Ising model claimed in Lemma 15.
Next, we will prove (11) and (12), respectively to complete the entire proof.
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Proof. [Proof of eq.(11)] Recall that u,v are both b-marginal bounded which is defined in
Condition 4. Thus for any o € {£}V\M»¥} for any 7 € {£}{*¥} we have p(u = 7,0 = 7,) =
w (1) - puS =T (1,) > b2, The same local lower bound also holds for the distribution v.

Define ¢k = bt + Z{uvw}eﬂw#v Jﬁ,waw and ¢ = bl + E{vvw}eva;éu J{f,waw be the influence
coefficient of the external field o on u,v in the distribution . Similarly, let ¢}, and ¢}, denote
the corresponding influence coefficients in the distribution v.

According to the definition of the Ising model, when the external field o is fixed, the local
distribution of w,v in the distribution p is follows:

H M B ol
Ju,v+cu+cv § )7

_JhK B ol Gl
Ju,v+cu Cy S)v

I
@
]
=)
~—~ —~ —~

o U=—,0=-+ _Jiv_cﬁ_i_cﬁ_sﬂ)?
g
p(u=—v=—)=exp(J, —cy —cy —s"),

where s# = log(exp(Ji v +ch+ch ) +exp(—Jhv+ch—c))+exp(—Jh y—ch+ch ) +exp(Ji o —ch—ch)).
Using the same method, we define s”, and the local distribution of u, v in the distribution v
can be expressed in terms of ¢/, cl and s¥, as in the above equation.

Let, p= Jiv+ci + ¢ — s and ¢ = J , + ¢4, + ¢ — s”, then

2

drv (1%,07) 2 |1 (= +,0 = +) — 17 (u = +,0 = +)|

max{p,q}
= |exp(p) — exp(q)| = / exp(z)dx
r=min{p,q}
max{p,q}
> / exp(p)dz = exp(p) - [p — q|
z=min{p,q}
(by marginal lower bound) > b% - |p — ¢|. (13)

Based on this, we can derive the following lower bound on the total variation distance
between p? and v7:

drv (u7,v7) 2 0 |(Jhy + e+ el = ) = (T, + e+ e = s¥). (14)

Using the same method, consider the distribution differences in ;1 and v“ for the remaining
three cases (u=+,v=—),(u=—,v=+4) and (u = —,v = —), we can also obtain the following
lower bounds:

dry (07, v7) 2 0% - | = (=i, + el — ey =) + (=, el — ey = s"), (15)
dry (u7,07) 2 0% | = (=i, — e+ e = ')+ (=T, — e+ = s"), (16)
drv (07, v7) 2 0% - |(Jhy — el — ey = ) = (I, — ey — & = ") (17)

Note that the absolute value operation satisfies the triangle inequality, by combining inequal-
ities (14), (15), (16) and (17), we have

4dTV (ua, VU) > b2 : 4“]5,1; - JJ;

ol

Then for the case that [Ji, — J) | = dpar(p, v), the lower bound of local total variation
distance in (11) is proven. O

Proof. [Proof of eq.(12)] For the case that |hiy — kY| = dpar(p,v) - (deg, +1). Define ¢ =
hly + Z{u’v}eE Jl oy and ¢ = hY + Z{uﬂ)}eE Ji, »ov be the influence coefficient of the external
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field o on v in the distribution 4 and v respectively, note that for each {u,v} € E, |Jiy — J}, |
is bounded by dpar(pt, v), then

e = 2 Rl =R = Y, = T,
{uv}eFr

> (deg, +1)dpar(u,v) = Y dpar(tt, ) = dpar (11, v).
{uv}€eFE

According to the definition of the Ising model, when the external field o is fixed, the local
distribution on v in the distribution p is follows:

1w =+) = exp(e — ), p7(v = —) = exp(—c — ),

where s# = log(exp(c*) + exp(—c*)).

Using the same method, we define s, and the local distribution of u, v in the distribution v
can be expressed in terms of ¢” and s”, as in the above equation.

Recall that p, v are both b-marginal bounded, applying the same method in (13), we can
derive the following lowerbound on the total variation distance between u° and v?:

dry (u7,v7) 2 b- (! = ") = (" = 5")], (18)
dry (u7,07) 2 b- | = (= = s") + (=" = s")|. (19)

By combining the above inequalities, we have
2dry (u7,v7) > b- 2| — | > 2b - dpar (1°, V7).

Note 0 < b < 1, then the lower bound of local total variation distance in (12) is proven. O

4 Additive-error approximation algorithm

4.1 TV-distance between two Gibbs distributions

We first present an algorithm can achieves the additive-error approximation to the total variation
distance between two general Gibbs distributions, which covers Ising and hardcore models
as special cases. Let p over {0,1}V be a Gibbs distribution over graph G = (V, E). For
any configuration o € {0,1}V, u(o) = w,(0)/Z,, where wy(-) is the weight function and
Zy =2 reqo1v wu(o). Let T € N. We say the Gibbs distribution p admits a weight oracle
with cost TRt is given any o € [g]V, it returns the exact weight w, (o) in time T, Note that
both Ising and hardcore models, as well as most Gibbs distributions, admit weight oracle with
cost TH = O(|V| 4 |E|). Recall the sampling and approximate counting oracles are defined
in Definition 1.

Theorem 17. There exists an algorithm such that given two general Gibbs distributions yu and v
on the same graph G = (V, E) and an error bound € > 0, if p and v both admit weight, sampling,
and approzimate counting oracles with cost T%" and cost functions Tgr (-) and TEH(-) respectively,
then it returns a random d in time O(TS(Z) + (T +T5P(5))) such that

R 2
Pr [dTv(u,y)—sgdngv(p,u)—l—s Zg.
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v(9)

Proof. Define a random variable X € [0, 1] such that X = max (0, - w), where o ~ .

dry (mv)= Y lule)—vie)= Y pulo)

o:u(o)>v(o) o:u(o)>v(o)
V(a))
:g o)max | 0,1 — =E|X].

By the definition of X, we have 0 < X < 1, so Var [X] < 1. Ideally, we want to draw independent
samples of X and take average to approximate dry (i, ). However, the main issue is that given
a o ~ [, we cannot compute neither (o) nor v(o) exactly. Alternatively, we will define another
random variable X € [0, 1] that approximate the random variable X.

Call the approximate counting oracles of u and v to obtain 2# and Z, that approximate
partition functions Z,, and Z, with relative error bound §. We may assume both counting oracles
succeed, which happens with probability at least 0.98. Define the random variable X e [0, 1] by
the following process.

FST)

1. Call sampling oracle of y to obtain one sample o € {£}" such that drv (o, 1) <

2. Call weight oracles of both p and v to obtain exact weights w, (o), w, (o). Compute
() = w,(0)/Z, and (o) = w,(0)/Z,.

3. Define X = max(0,1 — #(c)/fi(c)), in particular, X = 0 if /i(c) = 0.
Let T = S—;l. Our algorithm is the following simple process:

e Draw T independent samples X 1 Xs, ..., Xp of random variable X.

e Output the average d = % ZiT:1 X;.

It is easy to see the running time of our algorithm is 2T (5) + T - (T (5) + 274 + O(1)).
To prove the correctness of our algorithm, we only need to show that

’E [X} - E[X]‘ - ’E [X} —dyy ()] < % (20)

Note that 0 < X < 1 so that Var [X} < 1. By Hoeffding’s inequality, it is easy to show that

with probability at least 0.9, |d — E[X]| < ¢/8. Combining with (20) proves the theorem.

Now, we only need to verify (20). We introduce a new random variable X* in analysis. In
the definition of X , assume we replace the sample ¢ in Item 1 with a perfect sampler of the
distribution p. Let X* denote the resulting random variable. We first compare E [X*] with

E [X]. The difference between X* and X comes from the error of computing the ratio of p(o)
and v (o). Note that % = zzggg . % and ZEZ% = fﬁ:ﬁig : % By the definition of approximate
counting oracle, for o with u(o) > 0,
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We can compute the expectation as

E(X]= Y u(0)max <0,1 - ﬁ(a)> <

o:u(o)>0 M(U) o:u(o)>0
5 5
< 3 ulo) (max (01- 20) - AT cary o)+ S o
, (o) 8 u(o) 8
o:u(o)>0 o:u(o)>0
5e
< dTV (.U»V) + g
Using the same way, we could verify the other direction. We have
. " 5e
[E[X"] - E[X]| = [EX] —drv (1) | < o (21)

Next, we compare X* to X. The only difference is that they sample o from different
distributions. Let ' be the distribution defined by the approximate sampling oracle. Define a
function f such that for any o € {£}VY, f(0) = max(0,1 — (o) /ji(0)), where we set f(o) =0
if fi(0) = 0. We have |[E(X) — E(X*)| = |[Eowu[f(0)] — Eow[f(0)]]. Define A = {o | u(o) >
(o)} and B ={o | pu(o) < p/(o)}. We can write

IBE(X) —E(X*)| =) _(/(0) — p0)fo) + > (1 (0) = u(o)) f (o)
oc€A cEB
(x) < max <Z(u(0) — (@) f(0), > (1(o) - M(U))f(0)>
oc€A oceB

(by f(o) €[0,1]) < drv () < (22)

=1 ™

where in inequality (x), we use > 4 (t/(0) — p(0))f(o) <0 and Y- (1 (o) — p(0)) f(o) > 0.
Finally, (20) holds due to (21) and (22). O

Theorem 17 implies the following corollary for concrete models.

Corollary 18. There exist an FPRAS for approximating TV-distances with additive error
for following models: (1) Hardcore model satisfying uniqueness condition; (2) Ising model
with spectral condition; (3) Ferromagnetic interaction with consistent field condition; and (4)
Anti-ferromagnetic interaction at or within the uniqueness threshold.

The definitions of the conditions can be found in (1) and Condition 6. In contrast to the
relative-error approximation, the above corollary does not require a marginal lower bound for the
Ising model. Furthermore, since the proof of Theorem 17 does not use Lemma 15, Corollary 18
holds for general (not necessarily soft) Ising models.

4.2 TV-distance between two marginal distributions

In this subsection, we present an algorithm can achieves the additive-error approximation to
the total variance distance between two marginal distributions. Let p over {£}" be a Gibbs
distribution over graph G = (V, E), and S is a subset of V. For any configuration o, let o be a
partial configuration over {£}°. Recall that us(c) oc Z7, where Z¢ is the conditional partition
function of o defined as

AR Z wy, (7).

Te{£}Virs=c
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Definition 19 (approximate conditional counting oracle). Let S be a spin system on graph G
with Gibbs distribution p. Let T& @ (0,1) — N be a function. We say S admits a conditional
counting oracle with cost function T& (-) if given any 0 < e < 1, and any partial configuration
o € {£}° on a subset S C V, it returns a random number ZZ in time 7§ (e) such that

Z7(1—¢) < Z;(0) < Zj(1 + ¢) with probability at least 0.99.

The oracle above is stronger than the approximate counting oracle in Definition 1. The
approximate counting oracle only answers the query for S = &, while the conditional counting
oracle can answer the query for any subset S C V.

Theorem 20. There exists an algorithm such that given two general Gibbs distributions p and
v on the same graph G = (V, E) with n = |V|, any subset S C V, and any € > 0, if p and
v both admit sampling and conditional counting oracles with cost functions Tgr(-) and TEH(+)
respectively, then it returns a random number d in time O(Llog 1) - (TENE) + TP (5)) such that

Pr[

[SVRI

d — drv (ps,vs) | < 6} >

Proof. Define a random variable Y € [0, 1] such that Y = max (0, 1-— :i ((Z))), where o ~ pug.

drv (ps,ps) = Y, max (0, us(0) — vs(0))

oe{x}s
= 0 ) max — VS(U) =
- ae%:}s s (@) <O7 ! MS(U)> Bl

The random variable Y satisfies that 0 < 1 < Y so Var[Y] < 1. Similar to the proof
of Theorem 17, we want to draw independent sample of Y and take average to approximate
drv (ps,vs). However, here us(o) = 27 /Z,, and vs(o) = Z7 /Z,. An additional problem is that
we cannot exactly compute the weight Z7 and Z7 for each partial configuration o ~ pg.

First note that we can boost the success probability of conditional counting oracle from
0.99 to 1 — ¢ by calling it independently for O(log %) times and take the median. Let § = %.

Call conditional counting oracles with S =V to obtain Zu and Z, that approximate partition
functions Z,, and Z, with relative error bound §. We may assume both counting oracles succeed,

which happens with probability at least 1 — §. Similarly, we first define the random variable Y
by the following process:

1. Call sampling oracle of x to obtain one sample o € {£}" such that drvy (o, u) < s, and
we use o5 € {£}° as our sample.

2. Call conditional counting oracles to obtain ZZS and Z{,’S with an error bound ¢/8 and
success probability 1 — §. Compute fis(og) = ZZS/ZN and Ds(os) = 295/ 2,,.

3. Define Y = max (0,1 — 05(0s)/fis(0s)), and in particular, Y = 0 if fig(c) = 0.
Let T = S—;l, we present our algorithm by following process:

e Draw T samples }71, 172, .. of random variable Y.

LY
e Output the average d = % Doict Y;.

19



The running time of our algorithm is (T&F(5) + Tgr(5)) - T - O(log 1 ).

We now analyze the approximation error. First note that the probability that all conditional

counting oracles success is (1 — %)H“ > 0.98 and drv (o, p) < § implies dry (o5, ps) < §-

Compared to the proof of Theorem 17, the difference is that we can only compute ZZS and 235
approximately. However, the error can still be bounded. We prove that: for og with ug(og) > 0,

_ 5e\ vs(os) vs(os) 5e\ vs(os) q; vs(os) _ 208 Zu vs(os) _ 2,5 Zu
( 8 ) ns(os) < ns(os) < (1 + 8) us(os)” Since - ZES ZA:L d ps(os) — Zzs ZZ’

as(os)

vs(os) _ 235 2, _ Z55(14+5) Z,(1+ %) <1 55> vs(og)

fis(os)  Z55 Z, ~ Zp*(1—=§) Z,(1 - §) 8 ) ns(os)
The other side of the inequality can be proved similarly. The rest of the proof follows from the
proof of Theorem 17. O

Theorem 13 is a simple corollary of Theorem 20, which is proved in section 6.3.

5 The algorithm for instances with small parameter distance

Let p and v be two general Gibbs distributions (including hardcore and Ising models) on the
same graph G = (V, E) with n = |V|. Let w,(c) and w, (o) be the weights of ¢ and v on
configuration o € {+}V. In this section, we focus on the case where the parameter distance
dpar (11, V) is small. We will first give a basic algorithm for instances satisfying Condition 21, and
then verify the Condition 21 for Ising models with small parameter distance. We next give a
more advanced algorithm for hardcore models with small parameter distance.

5.1 Basic algorithm

Define random variable

N wy (o)
a wy(o)
Condition 21. Let K, L > 1 be two parameters. Two Gibbs distributions p and v satisfy that

w

,  where o ~ p. (23)

e v is absolutely continuous with respect to u: for all o € {£}V, if u(c) = 0, then v(o) = 0;

e /Var [W] < KdTV (;L, l/),’

e E(W]> 1.
Theorem 22. There exists an algorithm such that given two Gibbs distributions p and v on the
same graph G = (V, E), and any 0 < e < 1, if p and v satisfy Condition 21 with K and L, and
both admit sampling and approzimate counting oracles with cost functions Tyt (-) and TEH(-), then

it returns a random number d in time OTE(E)+ T -TF (1557)), where T = O(L28§2), such that

Pr[(1 - &)dry (1) <d < (1+ )dry ()] > ©.

3
Proof. Since v is absolutely continuous with respect to p (v < p), we can compute that:
1 1 v(o
v =3 ¥ o) vy X o)1= 40
oce{£}V oe{x}V:u(c)>0

1 wy (o) Zy
2 oe{£}V :u(0)>0 wu(a) 2
— Z.u
27,

Z
=0y 2. uo)

E[E[W] - W[, (24)
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wu (o) wy(o)
Zy wu(o)

%' We next use sampling oracles to define a random variable W e [0, 4+00), which serves as an

where in the last step we use the fact that if v < p, then E[W] = ZJE{:I:}V:M(U)>O

approximation of the random variable W in (23). Define
Ta [104L2K2"
Sl |

1. Call the sampling oracle of y to obtain a random o € {£}" such that drv (0, ) < 157

2. Compute W = z}’;g‘;g In particular, if w, (o) = 0%, then we set W =0.

Given the random variable W, our algorithm is given by the following processes:

Basic algorithm for instances satisfying Condition 21

e Call approximate counting oracles to obtain Zy and Z, with error e

e Draw T samples Wl, e Wy from W independently.

Compute W = £ S Wi

Compute E = %ZiTzl |W; — W|.

Z, E
27z, "

Return d =

The total running time of the above algorithm is

1
Tt (5) o(r-t¥(——)).
a\z) ™" ¢\ 100T
We remark that if both sampling and approximate counting can be solved in polynomial time,
Le., for any ¢ € (0,1), T&(8), Ter (6) = poly(%), where n is the number of vertices in G, then
the above running time is poly(2£E).

We now prove the correctness of the algorithm. First, due to the definition of approximate
counting oracle, with probability at least 0.98, we can bound the error from Z,Z, as follows:

N

L3\ G (=2 Ly (42 (), 3\ 2 o5)
1)7,~ 0 +e/0Z, ~ 2, 1-e/4)Z, 1)z,
Suppose we can access a perfect sampler of i and we draw perfect samples Wy, ..., Wy of W.

For each pair of W, and I/Vi, there exists a coupling of W, WZ such that Pr [WZ =+ Wz} < ﬁ.

Then with probability at least 0.99, W; = W; for all 1 < i < T. Consider an ideal algorithm that
can use the perfect samples W1y, ..., Wp. Our real algorithm can be coupled successfully with
the ideal algorithm with probability at least 0.99. If we can show the ideal algorithm outputs
correct result with probability at least 0.96, then our real algorithm outputs correct result with
probability at least 0.95 > 2/3.

Now we assume all W; are perfect samples of W. We compute W = % Z;TFZI W; and similarly
E and d. We only need to prove that (1 —¢)d < d < (1+¢)d with probability at least 0.9, where
d = drv (u,v). For every random variable W;, by triangle inequality, we have

B W] - Wi - [W - E[W]| < |W-W,]| < [E[W]-W;|+ W -E[W]|.

4 . . . .
This case can happen because our sampling oracle is approximate.
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Note that E = %Zszl |W — W;|. We have

( Z]E ) W -E[W]|<E< ( Z\E )+\W—E[W]]. (26)
By definition of W, we have E [W] = E [W] and Var [W] = Var[ } . By Chebyshev’s inequality,

<0.01, (27)

d 100L2Var [W 100L2V. 100L2 K2 d2
Pr [\W B> S ] ar (W] 00L?Var [W] _ 100

10L 242 ST TaE - Tad

where the second inequality follows from Condition 21. Next, consider the random variable
R= |E[W]-W]|.

By the definition of R and the variance bound in Condition 21, we know that

Var [R] < E[R?] =E [(E[W] - W)?] = Var [W] < K*d*.

Note that * Zz L/ E[W] — W;| is the average of T ii.d. random samples of R. Denote
R2 % i:l |E [W] — W;|. Note that Var [R] = Va%[R]. By Chebyshev’s inequality, we have
2 272 72
Pr [|R E[R]| > ﬁ)ﬁ 100[%;272; L 100;;;6[ < 0.01. (28)
Combining (26), (27), (28), and a union bound, we have
Pr [\E _EB[R]| < ;‘,f] > 0.98. (29)

Assume two good events in (29) and (25) both hold, which happens with probability at least
0.96. The final output d= “ E satisfies

CZZZZAA S(1+§Z4) (E[RH;?)
() e o 1)

By (24), we have QZT*LE [R] = d. By Condition 21, we have % < 1. Therefore,

LE[W]

- 3e 3e
< — 1. .
d_< 4>d—|—10 <1—|—4> d<(1+e¢e)d

A similar argument gives a lower bound d > (1 — ¢)d. O

5.2 Advanced algorithm for hardcore model

We give the following algorithm for hardcore models with small parameter distance.

Theorem 23. Let § = 10710 f;.)//z There exists an algorithm such that given two hardcore models

w and v on the same graph G = (V, E), and any 0 < e < 1, if p and v both satisfy uniqueness

condition in (1) and dpar(p1,v) < 6, then it returns a random number d in time O (Z—; + E;—/i)

such that (1 — &)dry (u,v) < d < (14 ¢€)dry (1, v) with probability at least 2/3.
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Let A* and A" be external fields of two hardcore models 1 and v, respectively. For simplicity
of the notation, we denote

1/4

y _10€&
D = dpa(pv) = [V = Voo <6 = 10705,

d=drv (p,v).

As discussed in the algorithm overview, we divide the vertices of G into two parts: the ”big”
vertices and the ”small” vertices. Define the threshold parameter

1/4 1/4
A 10-9¢ _ €
k=10 n3/2_®<n3/2>'

Define two sets of vertices B and S in graph G:

B={veV |min{\, \} >k},

v v
S=V\B={veV |mn{\ N} <k}.
Recall up and vp are the marginal distributions of ;4 and v on B, respectively. Let Qg C {:t}B
be the support of both up and vp. By the definition of B, for any « € g, all vertices v € B
with z, = +1 forms an independent set in G. For any = € €1p, let x4 and v§ be the marginal
distributions of p and v on S conditioned on z. The TV-distance between p and v can be
represented by

d :% Y lulo) —v(o)] % S Y lusl@)ub(y) - vsl@)vEy)
ce{£}V z€Qp ye{+}S
1 VB(.%')
=3 () vi(y) — ns(y)|. (30)
29662&2:3 ne ye%;}s 15 () o Hsty ’

Define the function f: Qp — R as

PR ufé(y)‘ . (31)
ye{£}s

The calculation shows that drv (i, v) = Eg~pup [f(2)]. In a high-level view, our algorithm wants
to draw i.i.d. samples  ~ up and compute values f(z) and then output the average value.
Formally, we have the following lemmas. Let n denote the number of vertices in G.

Lemma 24. The variance Vary.,, [f(x)] = O,(d?) - (n® 4+ n/k), where O, holds a constant
depending only on the gap n in the uniqueness condition in (1).

Lemma 25. There exists a randomized data structure satisfies that

o the data structure can be constructed in time ON(Z—; + 7;;57/:) and the construction succeeds
with probability at least 0.99;

o if the data structure is constructed successfully, then given any x € Qp, it deterministically
answers an f(z) > 0 in time O(n*) such that

9
f@) = f@) < 55 - d.
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Lemma 24 can be used to control the variance of f(z). Lemma 25 is the main technical part
of our algorithm. We first assume both Lemma 24 and Lemma 25 hold and prove Theorem 23.
The proofs of Lemma 24 and Lemma 25 are given in Section 5.2.1 and 5.2.2, respectively.

Proof of Theorem 23. Let T = O(n +"/'i) = O(Z—s + Z:%) be large enough.

The algorithm for hardcore model

e Construct the data structure in Lemma 25;

e Draw T independent approximate samples 1, o, ...,z from the marginal distri-
bution pp with dry (up,z;) < ﬁ.

~

e Use the data structure to compute f(z1), f(z2), ..., f(z7).

e Return d = % ZiTzl f(%)

Consider an ideal algorithm A* that draw perfect samples x1, ...,z and exactly compute
the values of f(z1),..., f(z7). Let d* denote the output 7 ZiT:1 f(zi). We have E [d*] = d and

the variance of d* is %M. By our choice of T and the variance bound in Lemma 24, using

Chebyshev’s inequality, we have
€
Pr [|d" — d > —d| < 0.01.
r|| | > 104 = 0.0

Consider our real algorithm A. All the approximate samples x1, ...,z in A can be coupled
successfully with perfect samples with probability at least 1 — T - ﬁ = 0.99. Also that the
data structure in A is constructed successfully, which happen with probability at least 0.99.
By Lemma 25, there exists a coupling of A and A* such that with probability at least 0.98,
|d — d*| < £5d. Hence, using a union bound, we have

) 2
Pr [(1—5)d5 d < (1+g)d} > 0.97 > .

The total running time is bounded by

~ n7 n65 n? n6.5

5.2.1 Analyze the variance of the estimator (Proof of Lemma 24)

Before we prove the lemma we first remark that one can show for any z € Qp, [f(z)—1| < O(%d),
which implies the O(7 d2) variance bound. This bound gives a polynomial-time algorithm but
the degree of polynomlal is higher. If we use this bound, then in the proof of Theorem 23, it
requires O(5—) samples x ~ up and Lemma 25 computes each value of f(x) in a super-linear
time. Alternatwely, we give a more technical analysis to achieve a better dependency on x,
which gives a better running time of our algorithm.

We bound the variance of f(x) by bounding the second moment of E,, [fz} =E;up [fQ(x)] .
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We first need the following upper bound on the value of f(x):

1 vp(z)
flz) =3 vs(y) — us(y)
ye{zi:}s pis() ’ ‘
(oy trangle inoquality) < 3 |20 1 ST 50045 3 150) - 30
ye{x}s ye{x}s

;l(()) - 1‘ + drv (V§, pu3) -

We have the following upper bound on the drv (v§, ©%).
Lemma 26. for any x € Qp, it holds that drv (v§, %) < 4nD.

The proof of Lemma 26 will be given later. Assume Lemma 26 holds. Since f(z) > 0, we
can upper bound

I/B(.%')
ps ()

.
1) +4nDE,.,, [

- 1H + 16n2D?

2
1) +8nD -dry (v, uB) + 16n°D?

3

1 vp
< ZECL”N#B <

2
-1 +4-10%n2d?, 32
(@) ) (32)

where the last inequality follows from the fact d = dypv (u,v) > dry (up,vp) and d > 5000D

Define a function h(z) = Ez)) We have E,,; [h] = 1. Our task is reduced to bound the
variance Var,,, [h] = VarxNuB [h(z)]. We will use the following Poincaré inequality (i.e. the
spectral gap of the Glauber dynamics) for the marginal distribution pp. For any subset A C V,

recall that Q denotes the support of uy.

Lemma 27 (CFYZ21). Since the hardcore model (G, ) is in the uniqueness regime in (1)
with constant gap n > 0. For any function g : Qp — R, it holds that

Var,, [¢g] < C) Z Z pe—v(o)Var,e [g],

vEBoENQB_,y
where B — v denote the set B\ {v} and C,, is a constant depending on 1.

The Poincaré inequality in [CFYZ21] is stated from the entire Gibbs distribution p. One
can lift it to marginal distribution pup. For the completeness, we give a proof in Appendix B.

Fix a vertex v € B and a 0 € Qp_,. Let 0%+ denote a configuration in {+}? obtained by
extending o further by setting v to +1. Define ¢¥~ similarly. By the definition of variance and
the definition of the function h = Z—g, we can write

Var,g [h] = g (+1)ug (=1)(h(o"*) = h(0"7))?

- () g (0 DY

Note that Var,e [h] = 0 if either uf(+1) = 0. We assume that ug(+1) > 0, then for every
neighbor u of vertex v, it must hold that if u € B, then o, = —1. We claim the following bounds.
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Claim 28. The following bounds hold
o Ny/10 < pg(+1) < Ny

o |ug(+1) —vJ(+1)] < 80nDpug(+1) +4D;

vB_y(0)
° ;U'va(o') S 2

Assume the above claim holds, which will be proved later. Let p = uJ(+1). By our choices
of parameters, since D < 0 is sufficient small, ug (+1) > {5 > 100nDpg (+1) + 4D. We have

(e - ) = (i)

Using Claim 28, the variance can be bounded by

(80nDp + 4D)?
p*(1 - p)?

<O0O(D?) - <n2 + i) .

(20np + 1)?

=00 i)

<O(D?*) - (n*p+n+1/p)

Varye [h] < 4p(1 —p)

Using Lemma 27 and the above upper bound, we have

Vary,, [h] < Cn Z Z MB—U(U)Varu‘,’S, [h]
VEBoENB_,

(by Lemma 15 ) = O,(d*) - <n3 + ﬁ) . (33)
Hence, using (32), the variance of f(x) is at most

Var, [f] < Epyp [fz] < Vary,, [1] + Oy (n*d*) = Oy(d?) - (n3 + %) )

Proofs of technical lemmas and claims We first give two general lemmas (Lemma 29 and
Lemma 30) that will be used in later proofs. We then prove all technical lemmas and claims
appeared in the proof of Lemma 24.

Define the conditional partition function. Fix a configuration 2 € {£}”. Define Zg , as the
conditional partition function defined by

zZg, = > T

ye{£}5:pu(z+y)>0 vESiyy=-=+1

Intuitively, Zg , is the total weights of y € {£}® such that = + y is a valid configuration (forms

an independent set in G), where z +y € {&}" is the concatenation of x and y. Alternatively,
Zg , can be interpreted as follows. Let Ng(v) denote the set of neighbors of v in G. Given ,
one can remove all vertices v € S from S such that there exists u € Ng(v) N B with z,, = +1.
Let S* C S denote the set of remaining vertices:

S*=8\{veS|Jue Ng(v)NBst. x,=+1}. (34)

Then Zg , is the partition function for the hardcore model in induced subgraph G [S*]. The
following property of the conditional partition function will be used in our proofs.
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Lemma 29. Suppose k + 60 < 1/(10n). For any = € {+}B, it holds that

o 1< 7%

S Z5,<2;

o |25, Z%,| < 2nD.

Proof. Since the empty set contributes the weight 1 to both Zg so Zg = 1. For the upper
bound, Let Amax = maxveg max{\, \/}. By the definition of S we have Apax < K+ D <
K+ 6 < 3. Hence Zg, < (1+1/(10n))" < 2. The same bound holds for Zg ,

For any mdependent set I in graph G[S*], the difference of the weights is ’Hue 1A= Tloer A ‘

We first show the difference of the weights of I is at most ()\maX+D)|I (- )\|mlax. Assume NV = Ny +6,,
where |§,| < D. Then

1 - I1x

vel vel

> e 1T %

ACL: A£G veEA  wel\A

H()‘g +6y) — H/\g =

vel vel

< 20 1P 1] dowe

ACLA#ZvEA  ucl\A
— (s + DY AL 35
max

The number of independent sets of size k in G[S¥] is at most (Z), where n is the number of
vertices in G. We have

n

x z - n
|ZS,1/ - ZS,,u’ < Z (k) (Amax + D)k - Z (k‘) )\Ililax
k=0

k=0
- (1 + )\max + D>n - (1 + )\max)n

D n
— maxn 1 -1
(1 + M) <( +1+Amax> )

by (Amax, D < 1/(10n)) < 2nD. (36)
This proves the lemma. O
The second general lemma we will use is the following bound on the marginal ratio.
Lemma 30. Suppose k +60 < 1/(10n) and 0/k < 1/(10n). For any x € Qp, it holds that

vp(z) 1‘ < 10nD.
i () K

Proof. Define g(z) = MBE )) For 2 € Qp C {+}P and y € {£}°, we use = + y to denote a full

configuration in {£}" obtained by concatenating = and y. We have

o M ZE
pp(@) = 3 et y) = et

ye{£}° i
N T
@)= Y vl ty) = et 2 T
ye{£}S v

Then we have

VB(I) )\Z Zgl, A
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Denote a =[], ¢p. R f\‘:, 8= gz and v = Z£. We analyze each term one by one.
We have D/k < 0/k < 1/(10n) *and

M 1D D\ Zl D\" onD
a< ]I s §(1+> §<1+> <1477
Ao K K K

vEB:xy=1

A similar argument gives a lower bound o > 1 — %.

For the second term g, using Lemma 29, we have

zZg, 128, — Z§ | .
B8—1| = Z“"? - -1 T < |25, — Z5,| <2nD.
Finally, for v = 2%, we have the following equivalent form

y= é _ ZxGQB (HveB:xv:—l-l )‘5 ) Zg’“u)
Z’/ ZmGQB (HveB:zv:+1 )‘Z ' Zg',u)

Using the bound for o and 3, since /x < 1/(10n) and 0 + k < 1/(10n), we have

AnD 20D AnD
1—”<~yg<1+”>(1+2nD)<1+”. (37)
KR KR K

Combining the bounds for a, 8 and 7, since D/x < §/k < 1/(10n), we have

10nD
K

L 4nD> <1_~_10nD.

2nD
<g(x) < (1+n) (14 2nD) <1+
K K
Proof of Lemma 26. For any y € {£}* such that y + = forms an independent set, we can bound

v Ju
HveS Yo=+1 )‘ _ HvGS Wo==+1 Ay
z x
ZS,V ZS,,u

ws(y) — ns(y)l <

(by Z§,, 28, 21) <|z§, I »-2zs 11 N
vESyy=-=+1 vESYyy=-=+1

(triangle ineq.) < Z3, H Ay — H el + |28, — Z&,| H A (38)
vESYy=+1 VESyy=+1 vESYy=+1

We bound each term separately. Recall that Apax = max,es max{\, \/} < k+6. By Lemma 29,
we have Z§ < 2. Using (35), we have

zs, 0 II »- I M <2 ((Amax + D)lvll+ — AMQ) : (39)
vES:yy=-=+1 vES yy=-=+1

where ||y||+ is the number of +1s in y. For the second term, using Lemma 29, we have

I M 125, - 28, <2nDAl:. (40)
VES: yy,=+1
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The number of independent sets of size k is at most (Z) We have

1
dry (v§,u§) =5 Y V&) — 1§ ()|
ye{£}s

S kZ:O <Z> <()\max + D)k - )‘fnax) + TLD kZ:O <Z> A’rcnax

(by the same calculation as (36)) < 2nD + nD(1 + Amax)"
(by Amax < 1/(10n)) < 4nD.

This proves the upper bound on TV distance. O

Proof of Claim 28. Recall that o is a configuration in Qp_,, and ¢+, 0"~ are configurations
in {#}5. For simplicity of the notation, we use Z:[ to denote quij and Z, to denote Zg::.
Similarly, we define Z,/, Z,7. We have

NoZy N ZF
Zy +MZE Zy + )\ Z)
<|\Mztz;, -Xzfz,|
S ZSZ0N = N+ M\ 252, — Z) Z ).

NZEZy — N ZfZ;

o (1) — v (+1)] =
g (+1) = v (+1)] (Zi + XN ZD) (20 + NZ))

Using Lemma 29, we have Z,5 Z, |\ — Aj| < 4D. We also know that [Z} — Z}| < 2nD and
|Z, — Z,| <2nD. Therefore, by using the triangle inequality, we have

22, — 2] 2| < Z}1Z, — Z, |+ 2, |Z} — Z]| < 8nD.
Therefore, we have
|1 (+1) — vg (+1)] < 4D 4 8nD.

Next, we bound the value of uJ(+1). To sample from the distribution ug, one can first
sample all the neighbors u € Ng(v) \ B of v, then sample the value of v further conditional on
the configuration of N¢(v). Suppose with probability g, all vertices u € Ng(v) \ B are sampled

to be —1. Note that ¢ > (m)” > (ﬁ)” Since kK + 60 < 1/(4n) and D < 6, we have

q> % Conditional on this event, v takes value +1 with probability ; J’YJ;\M
the fact that Ay < A.(A) < 4. We have the lower bound 1 (+1) > {4 On the other hand, we

have the upper bound ug(+1) < 1i§¢j

"
> %“, where we use

< ). Combining together, we have

AM
< pg (1) < A
10 S He(+1) < Xy
The above bound implies
|ty (+1) — vy (+1)| £ 4D + 80nDpug (+1).

For the last bound, using Lemma 30, we have

vp—y(0) _ vp(c’) +vp(c?) <14 10nD <9,
pp—v(0)  pp(0¥*) + pp(o?-) K
where the last inequality follows from the fact that D/k < 1/(10n). O
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5.2.2 Approximate the value of the estimator (Proof of Lemma 25)

Define ||ly||+ be the number of +1s in y. Let t > 0 be an integer. The specific choice of ¢ will be
fixed later. Define the truncated function f; of f defined by

OET DY

ye{£}%:llyll+ <t

Compared to f in (31), f; only includes the size at most ¢ independent sets of the induced
subgraph G[S?], where S* is defined in (34). We have the following relation between f; and f.

Lemma 31. Suppose k +6 < 1/(10n) and 0/k < 1/(10n). For any integer t > 0, any = € Qp,

t+1
2) kIt . d £ n(k,t) - d. (41)

0< flz) — filz) < 108 (1+ -

Proof. First, by definition, f(x) — fi(z) > 0. Recall that g(z) = :’;((Z)) Let Q% C {£}® be the
set over all y such that x + y forms an independent set in G. We have

f@ - f@ =5 Y o) - )

yeQE:|lyll+>t+1

> e e+ Y )

yeQG:|lyll4>t+1 yeQG:|lyll+>t+1

(by Lemma 30) <

| =

Recall that Apax = max,es max{\y, \)}. Using the result in (38), (39) and (40), we have

RNE UEVEHIED ol ( [ CESUIEPTRERT S (4 U

yeQT:|yll+ >t+1 k=t+1 k=t+1

Let ¢ = + D. Then Apax < ¢ and (Amax + D)¥ — N8 < (¢ + D)k — ¢F = ¢ ((1+ D/gp)F —1).
Note that D/¢ < 0/r < 1/(4n). The last term is at most ¢* - (2kD)/¢ < ¢*~1 . (2nD). Then

n n

nD <~ (n\ , nD n\ ,, 5D <~ [n\ . _ 8nD ny\
o)A 22 3 (M) D 3% (Mgp D S (0o WD )
k=t+1 k=t+1 k=t+1 k=t+1
<P 3 (o)t
k>t+1

Note that ¢ < K+ 60 < 1/(4n) and ¢n < 1/10. Also note that ¢ < (1 + 1/n)k. The last term is
at most 122 (1 + 1/(10n)) " k1 1nt+L . The lemma holds by using D < 5000d. O

Next, we give our algorithm to approximate fi(x). We can expand f; as follows

1
o2y Y ) - )
vet}Siyle<e P
1 N\ Zi, 7, )
=2 X ( 11 v) e vsy) — s (y)) (42)
ye{£}5: |yl +<t | \veB:zy=1"" S,y 7V

We now introduce the approximation of Z§7y, Z§7 " 1, v§ in the above formula. Let Q% C
{£}° be the set of all y € {£}° such that = + y forms an independent set in graph G For
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any integer ¢ > 0, let Qf be all y € Q such that [y||+ < t. Define 4g, as the distribution u§
restricted on €2f. Formally,

T ~x Hv S:yy= 1)‘5
WENl ) =T 20= 3 T @)
S,u

TEQY vES I Ty="+1

Similarly, we can define vg, and Zgy(t) from v§. The following approximation lemmas hold.

Lemma 32. Suppose k +60 < 1/(10n) and 0/k < 1/(10n). For any integer t > 0 and any
x € Qp, it holds that

Z5,  Zsu(1)

Zsu 25,0

ng,’u _ Zg,#(t)
ngy ng’y(t)

<n(k,t)-d and

< 77(’%7 t) ’ da

where 1n(k,t) is defined in (41).

Proof. Due to the symmetry, we only consider the first term in our proof. Define O, = 2* \ QF.
Because Zg ,, ngu(t) > 1, similar to the proof of Lemma 31, we have

z%,  Z5,1)

)

Zsu 25,

< |28,0)75, - 78,28,(0)|

_ v v

= > I x> II - II »> II ~
TEQY veES I Ty="+1 PEQT UES: Py =+1 TEQY vES:Ty=+1 PEQT UES:py=+1

_ v v

=12 > (I ~» II ~- II » II ™
TGQ;" peQL, \veSimy=+1 UES: 1 py=+1 veES:ITy=+1 UES:py=+1

< 3 ()(]) @t 2 -2,
1=0 j=t+1

In the proof of Lemma 31, we already show that (Amax + D)¥ — \E_ < ¢*~1. (2kD), where
¢ = Kk + 6. Note that ( ) <n/(t+ 1)! and for any k, there are at most (t + 1) pairs (4, ) s.t.

i+ j = k. We have

n+t

o D SRR SRR
Sip S,u(t) ) k=t+1 k>t+1
The last term is at most n(k,t) - d. O

Lemma 33. Suppose k + 60 < 1/(10n) and 0/k < 1/(10n). For any integer t > 0, it holds that

o 1y) — uEW) < nlkit)-d and Y |7,y )| < n(x,1) - d.

yeQy yeQy

Proof. Due to the symmetry of u and v, we only prove the first term here. We know that
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Z5,(t) < 7§,

A TLeqo —1 Mo 7% — 7%
€Syu=1 €Siyy=1 "\ S, S
E \MSt — ps(y \_E | U . - UZ% | = = “ §: ” Ao
s

yey yeQy »H( ) ng( ) Sip yeQF veSiy,=1
_ BB,

25, - 25,1

= = S, ( = S Zg, - Zg‘, (t)
Zg',u(t)zg,u ! Z:aﬂ ! !
n
=X I s X ks X ([t sy X o
yeQL, veSy,=1 yeQl, k=t+1 - k>t+1
The last term is at most n(k,t) - d. O

Now, we are ready to give our algorithm. First consider the ratio R = g—: in (42). We have
the following algorithm to approximate R.

Lemma 34. If n(x,t) < 555, 0/k < 1/(10n), and 6 + k < 1/(10n), where n(k,t) is defined
n (41), then there exists a randomized algorithm that computes a random number R in time

T’ LT (T'/10%) + 17 - O(nt), where T' = O(%) and TZP(+) is the cost of sample oracle for

W, such that with probability at least 0.99,

- 7, €

R — < —d. 44

’ Z,| ~ 100 (44)

We first prove Lemma 25 assuming Lemma 34. Lemma 34 will be proved later.

Proof of Lemma 25. We fix the parameter ¢t = 4. Recall that x = 107° e/ and 0 = 10-102

3/2 n5/2"
We can verify that n(x,t) = 10° (1 + E)Hl KIntT2 < 55 0+ k < 1/(10n), and 6/k < 1/(10n).
In the construction step, we use Lemma 34 to compute the random number R. We say the
construction step succeeds if (44) is satisfied, which happens with probability at least 0.99.
In the query step, given any z € Qp, our data structure answers the following f (x):

~ 1 AZ Zg’ y(t) = ~T ~T
=3I T 3¥) 0 e - | ()
yeQ? | \veBix,=1"" S,u(t)
We bound the approximation error of f Define A = (HveB:zvzl f\‘—fi) . ZE”EZ - R and
v S,

B = (HveBm:l i—ﬁ) . ;?’ . g—: By Lemma 29 and the analysis in the proof of Lemma 30, we
v N
have (HveBm”:l i—}’i) <(14+6/rk)" <2, ng <2, and ZV < 2. Also note that d < 1. Using
Lemma 32 and our assumption on R, it holds that
€
A—-B| < —d
4Bl <,

Using triangle inequality, we can bound

@) = f@)| < B Y |58,(y) —vEW) + 1A= Bl Y 75,(y) + D |G (y) — n&(y)l.

yeQy yeQy yeQy
Using the fact B < 8 and Lemma 33, we have |f(z) — f(x)| < 1pd- By Lemma 31,

|f(@) = f(z)] < Zd.

OO\(‘f)

32



The construction step takes time 1" - Tgr (T7/10%) + T’ - O(n?), where T" = o(% + Z://j)

£2
Since the hardcore model satisfies the uniqueness condition in (1), we have Tgr (T7/10%) =

O,(Anlog %) [CFYZ22, CE22]. The total construction time is O( n 4+ 9/4) For each query, the
running time is dominated by computing distributions /ig, and g ;, which is O(n H=0mY. O

Finally, we prove Lemma 34.

Proof of Lemma 3. Recall our definition of up and vp is that for any = € Qp,

122744 V7T
H’UGB:IUZI )‘U ZS,;; HvEB:xv:I )\’UZS,V

() = SHEBEALTI () = Soeehie
We can compute that
é . Z MB(HT) HvGB:xvzl )‘Zzg’,u . H’UGB:(L‘UZI )‘Zzg',y]
= =E,.
ZN z€Qp HvEB:acv:l )‘ﬁzgu He H’UGB:J}UZI Aﬁzfsc*,#
£Q(z)

We estimate Z,/Z,, by sampling x from pp, approximating Q(x) and taking the average. We

3
propose the algorithm as follow. Let 7" = O(%{TL/H) be a sufficiently large integer.
e Draw 7" independent approximate samples x1, - - -,z from pp with dry (up, ;) < ﬁ.

HUEB:I»UZI AZZE‘,V(t)
HvEB:zvzl )‘gzg,u(t)

e Compute Q(z) =
n (43).

e Compute R = & Zszll Q(x;).

First, for any z € Qp, by Lemma 32, since n(x,t) < 555 and D/k < 0/k < 1/(10n),

HUGBZCEU:l AZZE',V _ HUEB:xvzl )‘Zzg,u(t) o Zg,u _ Zg,u(t) H &
HvGB:xUZI Aéng,,u HvEB:xuzl szg,u(t) Z§7M Zg,u(t) VEB:xy=1 )\g

< S g(rtPy o
200 K 150°
Recall h(x) = vp(x)/pup(z), the variance of Q(z) is

V7T

H”L}GB =1 A ZSI/
T

HUEB:mU:I >‘U ZS,,u,

for x = xy,- - - xqv, where Zgﬂ(t), Zgyy(t) are defined

Q) - Q)| =

Zyvp(x)
Zups(T)

ZQ
} —5 Var,; [h].

Var,, [Q] = Var,,, [ = Var,.,, { 72

In (37), we showed that “ < 1+ 228 which implies 22 <(1+ %)2 < e*/5. In (33), we also
proved that Var,, [h] < On(dQ) (n +2). We can conclude that

Var,,, [Q] < O,(d*) - (n3 + 2) .

K
Assume that we have an ideal algorithm that draw perfect samples x1, ...,z and exactly

3
compute Q(z1),---,Q(zgv) and compute R* = & S ', Q(z;). Note T' = O("Jgif/“) By

Chebyshev’s inequality, if 7" is sufficiently large, we have

N ed
Pr||R*-2Z7,/Z,] > 300} < 0.005.
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Note that |Q(z) — Q(m)’ < % for all x € Qp. All the approximate samples x1, - - - x7 can be
coupled successfully with perfect samples with probability at least 1 —T" - m = 0.999. We
ed

can couple our algorithm with ideal algorithm such that |R* — ]:Z| < 155 With probability at least

0.99. By a union bound, with probability at least 0.99,

Zy
ZH

ed ed ed
— 150 300 100

-

The running time of our algorithm is 7" - TeP(T7/10%) + T" - O(n') because each Q(z) can be
computed in time O(n'). O

6 Proofs of algorithmic results

6.1 The general algorithm (Proof of Theorem 5)

Compute marginal lower bound In our main theorem, the input instance is promised to
be b-marginally bounded for some parameter b. However, the specific value of b is not given to
the algorithm. The following algorithm computes the tight value of marginal lower bound.

Lemma 35. There exists an algorithm such that given any hardcore or Ising model p in graph
G = (V,E), it returns a value b in time at most (1/b)°/%n for hardcore model and in time at
most O(n + m) for Ising model such that

b=min{ug(c) | v € V,o is a feasible partial pinning, and g (c) > 0}. (46)
The proof of Lemma 35 will be given later. With this lemma, we can assume that the value

of b is known to the algorithm.

Pre-processing step For Ising model, we need the following pre-processing step to reduce
the general Ising model to the soft-Ising model. Recall that an Ising model (G = (V, E), J, h) is
said to be soft if h € RV instead of h € (RU {#o0})V. There are three cases:

1. Case 1: If there exists v such that (hfy = +00, hY = —o0) or (hl = —00, hY = +00), we can
direct compute that drv (p,v) = 1.

2. Case 2: If there exists v such that (hl = do00, hY # F00) or (hl # Fo00, h¥ = +00), without
loss of generality, we consider the case (hl = +oo, h # +00). We have

drv (1, v) 2 |po(=) = vo (=) = |0 = v (=) = v(=) 2 b,

where the last inequality due to the marginal lower bound. We use additive-error algorithm
in Theorem 17 with additive error be in this case. The running time is

be 1 be be 1 be
t wt sp _ t sp
o5 (3) v (e (5))) =0 (5 (5) v (72(7))) o
where the equation holds because T = O(n + m) and we can assume Ty (-), TE(+) is at

least £2(n 4+ m) since the algorithm needs to read all vertices and all edges.

3. Case 3: For all v € V, if hY = +o0 or hi) = +o00, then hY = hly. These vertices are fixed to
some value with probability 1. By the standard self-reducibility, one can remove all these
vertices and change external fields of neighbors to obtain two soft-Ising models. Formally,
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one can go through all vertices v € V whose value is fixed as ¢ € {£}, for every free
neighbor u of v, update hly < hi; + Jiyc and hY < hY + J¥, c.

We remark that (1) the new soft-Ising models also have the same marginal lower bound
because we only remove vertices whose marginal lower bound is 1; (2) to sample from the
soft-Ising model, one can call sampling oracle on original model and do a projection; to
approximately count the partition function, one can use the approximating counting oracle
on the original model, because two partition functions differ only by an easy-to-compute
factor.

We also do the pre-processing step for hardcore model. A hardcore model (G, ) is said to
be soft if A € R‘;O instead of \ € R‘z/O' There two cases.

1. Case 1: There exists v such that (Ay = 0, > 0) or (\y > 0,\ = 0), then dpv (u,v) > b.
We use additive-error algorithm to solve the problem in time (47).

2. Case 2: For all v, \y = 0 if and only if AY = 0. We can simply remove all such vertices
and work on the soft-hardcore model on the remaining graph. Again, the marginal lower
bound and sampling/approximate counting oracles also work for new soft-hardcore model.

The main algorithm Since we work on soft models, b < % Define the parameters

par — Y 2

otV b> hardcore model, and 0 ﬁ hardcore model,
— and 0 =
% Ising model.

m Ising model.
The algorithm computes the parameter distance dpar(pt, v) in time O(n +m). If dpar(p, v) > 6,

then by Lemma 15, dpv (u,v) > 0CLY, we use additive-error algorithm in Theorem 17 with

par?’
CTV

additive error 6C,;

e. Similar to (47), the running time is

9CTVe 1 0CTVe
ct par sp par
O<T"< 1 )+<905a¥e>2 (T< s ))) e

Next, assume that dpar(p, ) < 6. We use the basic algorithm in Theorem 22. We have the
following two lemmas for the soft-hardcore and soft-Ising models.

Lemma 36. Let p and v be two soft-hardcore models satisfying b-marginal lower bound and
dpar (1, v) < 0. Then p and v satisfy Condition 21 with K = 4n/(bCLY) and L = 2.

par

Lemma 37. Let p and v be two soft-Ising models satisfying dpar(p,v) < 0 and drv (pu,v) >
CLVdpar(p,v). Then p and v satisfy Condition 21 with K = 4(n +m)/CLY and L = 2.

par par

Assuming the above two lemmas, we can use Theorem 22 to solve the problem in time

1 L2K?
o (@ +rm (or)). weer=o() W

The final running time of our algorithm is dominated by the maximum of (47), (48), (49), and
the running time in Lemma 35. Since both Tép, T¢' are non-increasing functions, the running
time of our algorithm is at most

N? sp e’ ct € /
Cb'gTTG <ObN2) +TG (CbN> +CbN,
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where Cy, Cy > 1 are parameters depending only on b and for hardcore model, N = n; for Ising
model, N = n + m. For hardcore model

1 1 Oo(3)
Cy = poly <b> , Cp= (b> ;

1
Cy = poly <b> , Cp=0(1).

and for Ising model,

The parameter C} comes from the running time in Lemma 35.

Remark 38. Theorem 5 presents a simplified version that assumes the marginal lower bound b
to be a constant. However, our algorithm applies to both the Ising and hardcore models with an
arbitrary marginal lower bound b, where b may depend on the size of the input. The running
time of our algorithm is given by

1\ N?_ . [poly(b)e? poly(b)e

e Ising model: The parameter C} = O(1), so a polynomial-time reduction from TV-distance
estimation to sampling and approximate counting exists for the Ising model with marginal
lower bound b > %

poly(n)

e Hardcore model: The parameter C; = (1/ b)o(l/ b which comes from the running time
in Lemma 35. One can improve the last term C;N to poly(n) - Tét(lio) by assuming a
slightly stronger approximate counting oracle. In Theorem 5, we only assume approximate
counting oracles for p and v. If we further assume that approximate counting oracles work
for all conditional distributions induced by g and v, then by going through the proof of
Lemma 35, we can obtain an algorithm that computes ¢ in time poly(n)- T ({5), such that
with high probability, the value ' satisfies & < b’ < b for b defined in (46). This ' is also
a marginal lower bound and provides a constant approximation to the true lower bound.
We can then use this &’ in the remainder of the algorithm. All the subsequent proofs follow
for this &’. Hence, given the stronger approximate counting oracle, the polynomial-time

reduction exists for the hardcore model with marginal lower bound b > ﬁ(n)'

Finally, we give the proofs of technical lemmas. We need the following property about the
soft hardcore model.

Lemma 39. Let 0 < b < 1. Suppose a soft-hardcore model (G, \) is b-marginally bounded. For
any vertex v € V, let deg/™® denote the number of free neighbors u of v such that A, > 0. For

v

any v € V, it holds that deg/™® < ln(hffb)-

Proof. Let N?(v) denote the set of vertices with distance 2 to vertex v € V in graph G. Let
o be a pinning that fixes all vertices in N2(v) to the value —1. Let N (v) = {v1,va,..., v/}
denote the set of free neighbors of v, where ¢ = deg™. Let y denote the Gibbs distribution.
Conditional on o, v takes value + only if all free neighbors of v take the value —. Since the
hardcore model is soft, v takes + with a positive probability so that the marginal lower bound

appiles. We have

J4
b < pg(+) < [ oy (= | o and (Vk < j,vp <= —)).
j=1
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For any free neighbor v;, conditional on o and vy, <— — for all k < j, v; takes + with a positive
probability so that v; takes + with probability at least b. Hence,

free

b < (1—b)desv™,

Note that 1 — b < 1. This proves the upper bound of the free degree. O
Proof of Lemma 35. For hardcore model, if A\, = 0 for some v € V', we fix u = — and consider
the remained subgraph. If the subgraph has no vertices, we just return b = 1.

When ¢ = —, for each any partial configuration 7 on A C V where v ¢ A, consider the

marginal probability u](—). Then u(—) is a convex combination of uJ(—)’s, where o is a partial
configuration on V' \ {v}. For any o, puJ(—) is positive. Due to the conditional independence, we
only need to consider the worst pinning of on N(v), where N(v) is the set of all neighbors of the
vertex v. It is easy to see uf(—) > and equality is achieved when o fixes the values of all
neighbors to be —.

Now we consider the case ¢ = + and fix a vertex v. Consider a partial configuration o € {£+}#
for subset A C V' \ {v}. If there exists a vertex u € N(v) such that u € A, to make ug(+)
nonzero, o(u) must be —. Assume u € N(v) and 0, = —. We consider another subset ¢’ on
A = A\ {u} such that o), = ops. Define the notation

wy(o,v=4) = Z wy (7).

Te{x£}V iTA=0ATy="—+

_1
1+25°

We have w,(o,v = +) = w,(0’,v = +), because 7, = + forces all vertices in N(v) to take the
value —. On the other hand, w,(o,v = —) < w,(0’,v = —), because u in oy is free and it can
either take — or 4. Our goal is to find a condition such that v takes 4+ with the minimum
positive probability. We can assume N(v) N A = &. Again, uf(+) is a convex combination over
all u7(+), where the feasible partial configuration 7 € {£}V\(N()U) that fixes the value of all
vertices except N(v) U {v}. We only need to consider the worst case of 7. Note that

wM(Ta V= +) _ )\5
wu(Ta v = _) Zpe{i}N(”>,wu(T,p,7)>O HuEN(v),pu:Jr )\'["t
It is easy to verify when 7 = 79 such that for all u € V' \ (N(v) Uv), 19(u) = —, the above

ratio obtains its minimum, because other 7 may forbid some possible p in the summation. Our
algorithm for computing the value of b is:

1

e Compute by = Trmaxecy OF)°

e For each v € V, compute m, = p]°(+) by enumerating all independent sets of N (v).

e Output b = min{bg, minyey {m,}}.

By lemma 39, because we already remove all vertices with zero \,, we have N(v) < %.

Let k = max,ey |[N(v)| = O(+ log 1). The running time of the algorithm is

O(3)
O(n2FE?) = <11)> ’ n.

The running time O(k2¥) is for the exact computation of the u/°(+). As stated in Remark 38,
given the approximate counting oracle for conditional distributions, we can compute an approxi-
mate value p, such that 1u7(+) < p, < pl0(+) with high probability.
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For Ising model, similar to the pre-processing step, we can first remove all v with |h,| = oo
and then change the external fields on all neighbors of v. After this step, we only need to
consider a soft-Ising model (G, J, h) in the remaining graph G.

We also analyze when ud(c) obtains the minimum. Since we deal with soft-Ising model, any
o € {£}V appears with positive probability. Since uJ(c) is a convex combination of 7, (c), where
7 is a pinning on V' \ {v}. Due to the conditional independence, if all N(v) is fixed, then other
vertices do not influence on the marginal distribution at v. Hence, to minimize ug(c), we only
need to consider o € {£}¥®). The marginal distribution can be written as

po(e) exp(X_uen(v) Joudut + hyc)
Mg(_c) eXp(_ ZuEN(v) JououC — th)

=exp | 2 Z JououC + 2hy,c
u€EN(v)

To find a ¢ that minimizes ) N(v) Jhuouc, we greedily assign o, € {£} according to the sign
of Jyy. The final result is for any ¢ € {£},

ae{nilg’(v uo(c) = e c)g—(;)’lc/)g(v,c)’ where g(v,c) = exp | hyc — ug\,%v) | Jou|
Our algorithm is:
e For each v € V, compute g(v) = min.c(4} %.
e Output b = min,ey{g(v)}.
The running time is O(n + m). O

Proof of Lemma 36. For all o € {£}V, if u(o) > 0, o corresponds to an independent set of G.
Because v is soft-hardcore, then v(o) > 0, so v is absolutely continuous with respect to p.

For each v € V, consider o = (—1)V\". Because y and v are both soft-hardcore models and
satisfy the b-marginal lower bound, u§(+), u3(—), v (+),v3(—) > b. We have 1+§z, )\IIH >b
for all v € V, x € {u, v}, which means

b 1-5
—— <A< .
1-b=""= b

The above inequality means that b < % We can compute the ratio of the weight

Xo
vio(v)=+ vio(v)=+

_ <Aﬁ+dpar(u,u>>" - <1+ (1—b)dpar(u,v)>”.

wlo) o Mo Mt ()

wy, (o) Ny

- o b
For hardcore model, dpar(p,v) < 0 = m, SO
wo) _ | 01— )darlps)
wy (o) b
Similarly, z:gg >1- w. By Lemma 15, drv (i, v) > Cpar dpar (1, V), then
An(1 — b)dpar (1, v) _ 4n(1 —b) 4n
Var [W] < b < bCpTa\{ dTV (,ua ) nga\I{ dTV (M) ) and
v 1 1
E[W]Zminw (o) >1— ===
o wy(o) 2 2
This verifies Condition 21. O
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Proof of Lemma 37. Since both p and v are soft-Ising models, the absolutely continuous condi-
tion v < w holds. Let J#, h* and J”, h” be the interaction matrices and external field vectors of
p and v, respectively. Denote D = dpay (i1, ). For any o € {£}", we have

AT o | Y~ o+ Y (Tt o

ucV {uv}eFE

By the definition of parameter distance in Definition 14, we have

S bk —bou+ > (Jh, = Thouo| < IR =R+ > T,

ueV {u,v}eFE ueV {uv}eFE
<D (deg,+1)+ Y 1| D
ueV {uv}elE
— (n+3m)D,
it implies

exp(—(n +3m)D) < —~

For soft-Ising model, 6 = 0 L and D < 0, so that

2(nt3m)

—(n+4+3m)D <

<1+3(n+3m)D.

S
<

u(U)

Hence, \/Var [W]| < 4(n+3m)D < (’ész’,m)d v (it,v), and E[W] > 1 — O

6.2 The improved algorithms for hardcore model in the uniqueness regime

Proof of Theorem 8. Consider a hardcore model (G,)\), where A € R>0, that satisfies the
uniqueness condition. Define threshold 8 for hardcore model as

1/4 1/4
we" €
0 =10" 5= ) <n5/2> .

If dpar(pt,v) > 6, then by Lemma 15, we knovv that drv (p,v) >
Theorem 17 to achieve the additive error 5000

we have T (6) = Oy(Anlog %) and TE(d) = ONn(J—Q). Note that T%" = O(n). The running
time for this case is at most

eD 1 eD ~ [ An? ~ (An7
TE TP = — | = — .
© ( (20000) T ape ( * (20000) )> O (5292) On (55/2 )

6.5

If dpar(p1,v) < 0, we use Theorem 23 with running time O, ( + 9/4> The over all running

> 50900 we use the algorithm

)

o : L.~ 7
time is the maximum of two cases, which is O, (?5’}2 ) O

The choice of 8 is closely related to the choices of ¢ and « in the proof of Lemma 25. We
choose the parameters to minimize the exponent on n in the running time of Theorem 8.
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Proof of Theorem 9. Now, we further assume that A = O(1) and \] =Q(1) or O forallv e V
and 7 € {u,v}. We do a similar pre-processing step as that in Section 6.1. Suppose there exists
v such that (M, = Q(1),\] = 0) or (A = Q(1),\} = 0). Say we are in the first case. Then

vy(+) =0 and p,(—) > %(m% = Q(1). The total variation dpy (i, v) = Q(1). We can

use Theorem 17 to solve the problem in time O(Z—;) For all v € V with Ay = A = 0, we can
remove v. Hence, we can assume Q(1) = AT < (1 —n)A\.(A) for all v € V and 7 € {p, v}.

In this case, we use a different threshold 6y = ©(4-) = O(%) because A = O(1). Suppose
dpar (11, V) < g, then by (6), we have Var [W] = O(n?). It is easy to verify that g—: = 0(1).
Theorem 22 gives an algorithm in time O, (n®/e?). Let us assume D = dpar (11, ) > 6p. If we

directly apply Theorem 17 to achieve the additive error %, then the running time would be

D 1 eD
o(rg (= TeP .
< ¢ (20000) T apria (20000))

The se2cond term %%Tép (5585) = 0, (n?/<?). But the bottleneck is the first term TE! (5525) =

Oy(257) = Oy(25) = O,(n*/?). However, we can improve the first term by noting that the

2D2 262
Zy

algorithm in Theorem 17 only needs to approximate the ratio 7 with relative-error O(eD)

and we show such ratio can be approximated in time O, (n3/e2). We can construct a sequence
of A0 AM oo XD guch that M@ = \#, AO = A" and other )\Fi) are defined as follows. For
any v € V, let §, = f\‘—é For any 1 <1 </, )\gf) is defined by )\5,1) = )\ﬂéfj/e. ‘We choose ¢ such

that ¢ = ©(1 + nD). Note that 6, = 1 + O(D). We have s/t =1+ O(2). Let w; be the

weight function induced by A®). Let Z; be the partition function induced by w;. Let p; be the
Gibbs distribution induced by w;. We further define Zg; by setting AT = MY/ Define
random variable W; as

wl(X)

Wi= o
wifl(X)

where X ~ ;1.

Define W & Hle W;, where W;’s are mutually independent. It is easy to verify that

l

BIW)= 7= 7" ad Var[W] <B[W?] = [[B[W7] =
Z, Zy i=1

Zyy12¢
ZoZy

We have the following bound

Var [W
(E[W])?

2
E [V?] < Zen1 '@_0(1)'

SEWES Z 7

The last equality follows from the fact that s/t =1+ O(L). Hence, to achieve O(eD) relative-

error, we can draw O(Ez%) samples of W, each sample costs O, (nf) = O, (n +n>D) time. The

total running time is

-~ (n+n2D ~ n n? n?
o) =0 (g + 2m) —o (=)

6.3 The algorithm for marginal distributions (Proof of Theorem 13)

Theorem 13 is a simple corollary of Theorem 20.
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Proof of Theorem 15. For hardcore model (G, M), Z7 where o € {+}% is the partition function
of (G[A],N}). The set A is obtained from V by removing all vertices in S together with
all neighbors u of vertices v € S such that o, = +1. If (G, \*) satisfies the uniqueness
condition, then (G[A], \{) also satisfies the uniqueness condition. Hence, by the previous results
in [CFYZ22, CE22] and [SVV09], for both y and v, the approximate conditional counting oracle
with T (e) = O(Aa’;2 polylog®) exists and the sampling oracle with Tg¥ () = O(Anpolylog)
exists. The theorem follows from Theorem 20. O

7 Proofs of #P-hardness results

In this section, we prove Theorem 11 and Corollary 12. Our starting point is the #P-hardness
for exactly counting the number of independent sets in a graph.

Proposition 40 ([DG00, Theorem 4.2]). The following problem #Ind(3) is #P-complete.
e Input: a graph G = (V, E) with maximum degree A = 3;
e Output: the exact number of independent sets in G.

The above problem is exactly computing the partition function of (G, A) with A, = 1 for all
veV. Let n=|V]|and V = {1,2,...,n}. Let ug1 denote the uniform distribution over all
independent sets in (G, which is the hardcore distribution in G when A, = 1 for all v € V. Define

pi:PI'XN,uQ1 [Xi:O‘V].SjSZ'—l,Xj:O], (50)

which is the probability that the vertex 7 is not in a random independent set X conditional on
all j < ¢ not being in X. By definition, the total number of independent set is

1 o1
7 = =171 =.
naa(0) L5 pi

Suppose for any i € [n], we can compute p; such that
(1=4"")pi <pi < (1+47")pi. (51)
Let Z = [[j~, 3 and it holds that (1—37")Z < Z < (1+37")Z. Note that Z < 2". We have
Z -7 <3 "Z<15"<0.0l.

We can round Z to the nearest integer to recover Z. Hence, #Ind(3) can be reduced to the
following high-accuracy marginal estimation problem.

Problem 41. The high-accuracy marginal estimation problem is defined by
e Input: a graph G = (V, E) with n vertices and maximum degree A = 3;

e Output: n numbers (p;);c[,) such that for all i € [n], (1 —47")p; < p; < (14+47")p;.
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7.1 Hardness of approximating the TV-distance on a single vertex

We first prove Theorem 11. Let k(n) =1 for all n € N be a constant function. We show that if
there is a poly(n) time algorithm for Problem 10 if the input error bound ¢ = poly(n) and both
two input hardcore models satisfy the uniqueness condition, then Problem 41 can also be solved
in poly(n) time. Theorem 11 follows from Proposition 40.

Fix an integer ¢ € [n]. Let G; denote the induced graph G|[S;], where S; = {j € [n] | j > i}
is the set of vertices with label at least i. Let u( denote the uniform distribution over all
independent set in graph G;. In other words, 1 is the Gibbs distribution of hardcore model
(Gi,1). Then p; in (50) is the marginal distribution on vertex i projected from p(. If the
maximum degree of G; is at most 2, then G is a set of disconnected lines or circles and p; can
be computed exactly in polynomial time. We can assume the maximum degree of G; is 3.

Let a > 0. Define vector A* € RS by

o p
Xp=gma 2T (52)
0 if j #1.

Let v denote the Gibbs distribution of (G;, A*). Note that \.(3) = 4 > 1. The following
observation is easy to verify.

Observation 42. Both ") and v® satisfies the uniqueness condition in (1) if o < %

By the definition of v, it is easy to see v?*(+1) = o and
drv (1", 177) = 11" (+1) — af = pi - ol

@)
| dTV(lu-iz—e% ) <
d< (1—|—5)dTV(,uZ(2), v{), where € = poly(n). By Observation 42, if the polynomial-time algorithm
for the problem in Theorem 11 exists, then A(«) runs in poly(n) time. We then can use the
following algorithm to solve Problem 10 for p; in poly(n) time. Thus, the hardness result in

Theorem 11 follows from Proposition 40.

Let A(a) be the algorithm such that given a € [0, ], it returns a number d such that

Algorithm 1: Algorithm for high-accuracy marginal estimation

1 Let o « % and € = poly(n) be the parameter assumed by algorithm A;

2 for t from 1 to 50n(1 +¢)? do

3 d+— A(o);

a—a—d/(1+e);

if the bit length of « is more than 100n, then round « up to the nearest number that
has bit length at most 100n;

SN

6 return p; = a.

The above algorithm runs in poly(n) time. We show that the output p satisfies (51).

Let a4 be the value of «a after the t-th iteration. We first show that p; < oy for all t. At
the beginning, oy = 1/2. Since 19 is a uniform distribution over all independent sets, we have
ugl)(—kl) < 3. By the assumption of algorithm A, A(ay)/(1+¢) < dTV(ugl),yf‘t) = oy — p;.
Hence, a1 > o — Alow) /(1 4+ €) > p;.

We next bound the value of ay — p;. At the beginning, ag = % so that ag —p; < % Note that

A(at)
1+4¢

427900 < — QP 4 9790 where 27997 is an upper bound of rounding

Q41 < O — (1+e)2
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error. The inequality implies that

Qi1 —Pi < <1 - 2) (ar —pi) +27°".

(I+¢)
Note that p; = a0, (14¢)2- Solving the recurrence implies that
. 50n(1+¢)*\ 1 2 5-90 —40
OSPi—pz‘Sexp<—(1+€)2 ‘§+(1+£) ST L 2T

Note that p; is at least 1/2™. Hence, the output p satisfies (51).

Remark. In the above proof, while the TV-distance between the two Gibbs distributions ,u(i)
and v is large (because their parameter distance is 1), the TV distance between their marginal
distributions at vertex ¢ can be arbitrarily small. This highlights the distinction between the
TV-distance of marginal distributions and the TV-distance of the entire distribution.

7.2 Hardness of approximating the TV-distance on a subset of vertices

We now prove Corollary 12. Let G; be the graph defined as above. Let n; = n — i + 1 denote
the number of vertices in G;. One can construct a graph G with by adding a set A of ¢
isolated vertices to G;. Let N = n; + £. Let k(-) be the function in Corollary 12. Note that
E(N) = N — [N®]. Since « is a constant, one can set £ = n?(1/®) = poly(n) so that k(N) < .
Hence, the size of G/ is a polynomial in n.

Let MSIQW be the hardcore model on G; such that the external fields on vertices in G; are 1
and the external fields on X are 0. Let v%,, be the hardcore model on G such that the external
fields on vertices in G; are A% and the external fields on A are 0. Let S be a subset of vertices
containing vertex ¢ and k(IN) — 1 vertices in A. It holds that

drv (Mr(fgws, VI?GW,S) =dyv (;UZ('Z)> Via> :
In words, the total variation distance between marginal distributions on S projected from MEQW
and vy, is the same as the total variation distance between marginal distributions on vertex
i projected from p(? and v®. Note that both MEfQ)W and vy, satisfy the uniqueness condition.

Corollary 12 can be verified by going through the same reduction for Theorem 11.
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A NP-hardness of approximating the TV-distance

In this section, we prove the hardness results of approximating the TV-distance between two
Gibbs distributions beyond the uniqueness threshold. The proof is based on the technique
developed in [BGM™25]. We define the following instance family for TV-distance approximation.

Problem 43. Let A >3 and A > A\ (A) = %
e Input: two hardcore models (G, \*) and (G, \) defined on the same graph G = (V, E) with
maximum degree at most A, which specifies two Gibbs distributions p and v respectively,

and an error bound 0 < € < 1. There exists a vertex v* € V such that the external fields
Ny =N = X for all v # v*, A =00, and Ao, = \.

be two constants.

e Output: a number d such that |dpv (1, v) — d| < e.

The two input hardcore models are not in the uniqueness regime because A > A.(A). The
output only requires to approximate the TV-distance up to an additive error of £, which is
weaker requirement than the relative-error approximation. The hardness result for this problem
implies the hardness of relative-error approximation.

Theorem 44. There is no FPRAS for Problem 43 unless NP = RP.

To prove Theorem 44, we need the following lemma, which can be abstracted from the proofs
in [BGM™25].

Lemma 45 ([BGM*25]). Let i be a distribution over {+}V. Let v € V and ¢ € {£} with
po(c) > 0. Let u¥¢ be the distribution over {}V obtained from u by conditioning on v taking
value c¢. Then, dpv (p, u*¢) = py(—c).

Proof. For any o € {+}V with o, = ¢, we have u"*(c) > u(o). For any 7 € {+}V with 7, = —¢,
we have p”“(7) = 0 < p(7). Therefore, drv (p, u*¢) = 32 epiyvir, = 1(T) = pu(—c). O
Proof. [Proof of Theorem 44] Let A > 3 and A > A\(A) = % be two constants. By the
hardness results in [SS12, GSV16], unless NP = RP, there is no FPRAS for approximating
the partition function of the hardcode model S = (G, (\y)yev) with e-relative error, where
Ay = A for all v € V and G has the maximum degree A. By the standard counting-to-sampling
reduction [JVV86], approximating the partition function Zg is equivalent to approximating
the probability of m(c?), where 7 is the Gibbs distribution of S and ¢2 = —1 for all v € V.
In other words, 0 corresponds to the empty set. Let us number all the vertices in V as
{1,2,--- ,n}. To approximate m(c?), we need to approximate the probability p; = m;(—1 | Vj <
i,j takes value — 1) with relative error O(%). This probability is the same as the marginal
probability of 7 in the induced subgraph G[V '\ {1,2,--- ,i — 1}]. We show how to approximate
p1 =m(—1). We let S* =S and define S” for S by changing A} to co. By Lemma 45, we have
dry (pn,v) = p1(—=1) = m(—1). It is easy to verify that m(—1) > 1%\ = Q(1) has a constant
lower bound. Hence, if we can solve Problem 43 with O(e/n)-additive error, we can approximate
m1(—1) with O(g/n)-relative error. The same argument can be applied to other probabilities by
considering the instances in induced subgraphs. Hence, if Problem 43 admits an FPRAS, then
there is an FPRAS for approximating the partition function of S. O
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For the Ising model, one can also verify the instance family stated after Corollary 7 is a hard
instance family for approximating the TV-distance with additive error. The proof is similar
to the one for the hardcore model. Let A > 3 be a constant and 8 < 0 be a constant with
exp(28) < A . Let S = (G, J, h) such that J,, = g for all {u,v} € E and h, =0 for all v € V.
The starting point is the NP-hardness of approximating the partition function of S [SS12, GSV16].
Then one can go through the same reduction to estimate p; = m;(—1 | Vj < i, takes value — 1).
We can construct S# = (G, J,h*) and S = (G, J,h") such that for all j < ¢, hé-‘ = hY = —o0,
for all k > i, h}, = h{ =0, and h!' = 0, h} = co. By Lemma 45, we have drv (i, ) = p;. One
can verify p; = Q(1) so that O(g/n)-additive error approximation of drv (i, v) is equivalent to
O(g/n)-relative error approximation of p;. The hardness result follows from the same argument
as in the proof of Theorem 44.

B Poincaré inequality for marginal distribution

The Poincaré inequality for hardcore model in the uniqueness regime is established in [CFYZ21].
The paper considers the hardcore model (G, \) such that all A, are the same. By verifying the
technical condition in [CFYZ21, Theorem 1.9], the following Poincaré inequality also holds for
hardcore model with different A, satisfying (1). For any function g : 2 — R, where Q is the
support of the distribution, we have

Varu <C Z Z v —o( Varu lg] -

VEV 0€Qy _y

Let ¢’ : Qp — R be an arbitrary function. Define g(x) = ¢'(zp) for all z € Q. It holds that
E.lg] =Euy [¢] and E, [92] = By [(9/)2]- We have

Var,, [¢'] = Var,[g] < C, Z Z pv—y(o)Var,e [g]
VvEV 0E€Qy _y

(g9(o) depends on og) = C, Z Z pv—v(o)Var,e [g] .

VEB 0EQy _y

Fix a partial assignment 7 € Qp_,. Note that E,r [g] = Euz [¢'] and Eyr [¢%] = Euz [(¢)?]

B

We have Var,- [g] = Var,z, [¢]. Let X ~ u7 and Y = g(X). By the law of total variance,
Var,,r. [g'] = Var,- [g| = Var [Y]
=E[Var]Y | Xy_,)] + Var [E[Y | Xy _,]]
>E[Var[Y | Xy_,]|

Z :U‘V U Varu [g]
o€Q,

—v

where O, C {:l:}V*” is the support of pj,_,. Combining with the above inequality, we have

Var,,, [¢] SCnZ Z HB—v( Z Wy —(0)Var,e [g]

VEBTEQR_, JEQ"’/ .
/
<y Z Z 1By Varﬂ [g}
vEBTEQRB

This proves the Poincaré inequality for the marginal distribution.

Alternatively, one can also use the fact the the Poincaré inequality is equivalent to the decay
of y?-divergence in the down walk of Glauber dynamics. The results follows from the data
processing inequality. See [FGJW23, Section 6.1] for more details.
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