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Abstract

Spin systems form an important class of undirected graphical models. For two Gibbs
distributions µ and ν induced by two spin systems on the same graph G = (V,E), we study
the problem of approximating the total variation distance dTV (µ, ν) with an ε-relative error.
We propose a new reduction that connects the problem of approximating the TV-distance to
sampling and approximate counting. Our applications include the hardcore model and the
antiferromagnetic Ising model in the uniqueness regime, the ferromagnetic Ising model, and
the general Ising model satisfying the spectral condition.

Additionally, we explore the computational complexity of approximating the total variation
distance dTV (µS , νS) between two marginal distributions on an arbitrary subset S ⊆ V .
We prove that this problem remains hard even when both µ and ν admit polynomial-time
sampling and approximate counting algorithms.

1 Introduction

The total variation distance (TV-distance) is a widely used metric for quantifying the difference
between two distributions. For two discrete distributions µ and ν defined over the sample space
Ω, the TV-distance is given by

dTV (µ, ν) ≜
1

2

∑
σ∈Ω
|µ(σ)− ν(σ)| = max

A⊆Ω
(µ(A)− ν(A)) .

Alternatively, the TV-distance can be characterized as the minimum probability of X ̸= Y ,
whereX ∼ µ and Y ∼ ν form a coupling of the two distributions. These different characterizations
provide a rich set of tools for analyzing the TV-distance. It is also closely related to other measures
of distance between distributions, such as the Wasserstein distance and the KL-divergence [MU17].
Consequently, the TV-distance is a fundamental quantity in many applications, including
randomized algorithms, statistical physics, and machine learning.

The problem of computing the TV-distance between two distributions has garnered consider-
able attention in machine learning and theoretical computer science. A straightforward approach
is to compute the TV-distance directly from its definition. This algorithm runs in O(|Ω|) time,
assuming access to the probability mass at every point in Ω. However, the problem becomes
particularly interesting when the distributions have succinct representation, as the sample space
Ω can be exponentially large relative to the size of the input. In fact, the problem is intractable
for many classes of distributions. For instance, [SV03] showed that when two distributions are
specified by circuits that sample from them, deciding whether their TV-distance is small or
large is complete for SZK (statistical zero-knowledge). More recently, Bhattacharyya, Gayen,
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Meel, Myrisiotis, Pavan, and Vinodchandran [BGM+23] proved that even for pairs of product
distributions, the exact computation of their TV-distance is #P-complete.

On the algorithmic side, the problem of approximating the TV-distance between two dis-
tributions with ε-relative error was first studied in [BGM+23], where the authors proposed an
approximation algorithm for a restricted class of product distributions. Subsequently, Feng,
Guo, Jerrum, and Wang [FGJW23] developed a simple FPRAS that works for general product
distributions. Later, a deterministic FPTAS was also introduced for the same task [FLL24].
Beyond product distributions, however, the understanding of approximating the TV-distance
remains very limited. The only progress was made in [BGM+24], which showed that for two
Bayesian networks on DAGs, an FPRAS for the TV-distance exists if exact probabilistic inference
can be performed in polynomial time. As a consequence, their algorithm can be applied when
the underlying DAG has bounded treewidth. However, the requirement of exact inference is a
strong assumption. For many natural graphical models without the bounded treewidth property,
exact inference is itself a #P-complete problem.

In this paper, we further investigate the problem of approximating the TV-distance for spin
systems, which are a fundamental class of undirected graphical models. Canonical examples
include the hardcore model and the Ising model. Our contributions can be summarized as:

• We give a new algorithm to reduce the TV-distance approximation to sampling and
approximate counting. As a result, our algorithm applies to a broad class of hardcore and
Ising models, even if the underlying graph has unbounded treewidth.

• We analyze the computational complexity of approximating the TV-distance between two
marginal distributions of spin systems. We show that this problem is #P-hard, even in
parameter regimes where both sampling and approximate counting are tractable.

1.1 Approximating the TV-distance between two Gibbs distributions

Let G = (V,E) be a graph. A spin system S (a.k.a. Markov random field) defines a distribution
over {−1,+1}V (denoted by {±}V in short) in the following way. It defines a weight function
w = wS := {±}V → R≥0 that assigns each configuration σ ∈ {±}V a weight w(σ). The spin
system S induces a Gibbs distribution µ = µS over {±}V such that

∀σ ∈ {±}V , µ(σ) ≜
w(σ)

Z
, where Z = ZS ≜

∑
τ∈{±}V

w(τ) is the partition function.

The weight function w of a spin system is a product of factors associated with each vertex and
edge on graph G, which can be computed exactly and efficiently. For a broad class of spin systems,
the following sampling and approximate counting oracles with T sp

G (ε), T ct
G (ε) = poly(n/ε) exist,

where n denotes the number of vertices in graph G.

Definition 1 (sampling and approximate counting oracles). Let S be a spin system on graph
G with Gibbs distribution µ and partition function Z. Let T sp

G , T ct
G : (0, 1) → N be two

non-increasing cost functions.

• We say S admits a sampling oracle with cost function T sp
G if given any 0 < ε < 1, it returns

a random sample X ∈ {±}V in time T sp
G (ε) with dTV (X,µ) ≤ ε.

• We say S admits an approx. counting oracle with cost function T ct
G if given any 0 < ε < 1,

it returns a random number Ẑ in time T ct
G (ε) with Pr

[
(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z

]
≥ 0.99.
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Given two spin systems Sµ and Sν on the same graph G that defines two Gibbs distributions
µ and ν respectively and an error bound 0 < ε < 1, we study the following problem.

Given the assess to sampling and approximate counting oracles for both Sµ and Sν , can we
efficiently approximate the TV-distance dTV (µ, ν) within relative error (1± ε)?

In this paper, we focuses on the following two canonical and extensively studied spin systems.

• Hardcore model: Let G = (V,E) be a graph. Let λ = (λv)v∈V ∈ RV
≥0 be external fields.

A configuration σ ∈ {±}V is said to be an independent set if Sσ = {v ∈ V | σv = +1}
forms an independent set in graph G. The hardcore model is specified by the pair (G,λ),
which defines the weight function w such that

∀σ ∈ {±}V , w(σ) ≜

{∏
v∈V :σv=+1 λv if σ is an independent set;

0 otherwise.

• Ising model: Let G = (V,E) be a graph. Let J ∈ RV×V be a symmetric interaction
matrix such that Juv ̸= 0 only if {u, v} ∈ E. Let h ∈ (R ∪ {±∞})V be the external field.
Define Hamiltonian function

∀σ ∈ {±}, H(σ) ≜
∑
{u,v}∈E

Juvσuσv +
∑
v∈V

σvhv =
1

2
⟨σ, Jσ⟩+ ⟨σ, h⟩.

The weight of a configuration σ in Ising model is defined by w(σ) ≜ exp(H(σ)).

The problem of approximating the TV-distance can be formalized as follows.

Problem 2 (Hardcore TV-distance approximation). The problem is defined as follows.

• Input : two hardcore models (G,λµ) and (G,λν) defined on the same graph G = (V,E),
which specifies two Gibbs distributions µ and ν respectively, and an error bound 0 < ε < 1.

• Output : a number d̂ such that (1− ε)dTV (µ, ν) ≤ d̂ ≤ (1 + ε)dTV (µ, ν).

Problem 3 (Ising TV-distance approximation). The problem is defined as follows.

• Input : two Ising models (G, Jµ, hµ) and (G, Jν , hν) defined on the same graph G = (V,E),
which specifies two Gibbs distributions µ and ν respectively, and an error bound 0 < ε < 1.

• Output : a number d̂ such that (1− ε)dTV (µ, ν) ≤ d̂ ≤ (1 + ε)dTV (µ, ν).

We are interested in the FPRAS (fully polynomial randomized approximation scheme), which
solves the above problems with probability at least 2/31 in time poly(n/ε).

1.1.1 General results for hardcore and Ising models

We need a marginal lower bound condition for general results. For any subset Λ ⊆ V , any
feasible partial configuration σ ∈ {±}Λ, let µσ denote the distribution µ conditional on σ. For
any v ∈ V , let µσ

v denote the marginal distribution on v projected from µσ.

Condition 4 (marginal lower bound). Let 0 < b < 1 be a parameter. We say a distribution µ
over {±}V is b-marginally bounded if for any feasible partial configuration σ ∈ {±}Λ on a subset
Λ ⊆ V , any v ∈ V , any c ∈ {±}, it holds that µσ

v (c) ≥ b if µσ
v (c) > 0.

1The success probability can be boosted to 1− δ by independently running the algorithm for O(log 1
δ
) times

and taking the median of the output.
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The marginal lower bound condition is a natural condition for spin systems. Hardcore and
Ising models with constant marginal lower bound were extensively studied in sampling and
approximate counting [Jer03, Wei06, Sly10, CLV21].

Theorem 5 (general result). Let 0 < b < 1 be a constant. There exists a randomized algorithm
that solves Problem 2 and Problem 3 with probability at least 2

3 in time

Ob

(
N2

ε2
T sp
G

(
poly(b) · ε

2

N2

)
+ T ct

G

(
poly(b) · ε

N

))
,

if two input spin systems are both b-marginally bounded and both admit sampling and approximate
counting oracles with cost functions T sp

G (·), T ct
G (·), where Ob(·) hides a factor depending only on

b, N = n = |V | for hardcore model, and N = n+m = |V |+ |E| for Ising model.

For the hardcore and Ising models with a constant marginal lower bound, the theorem
provides the first polynomial-time reduction from approximating the TV-distance to sampling
and approximate counting. Moreover, the above theorem is a simplified version, and our
technique yields a stronger result that also applies to some hardcore and Ising models with a
smaller marginal lower bound b = o(1). See Remark 38 or a more detailed discussion.

Consider a hardcore model (G,λ). Let ∆ ≥ 3 denote the maximum degree of G. The
hardcore model is said to satisfy the uniqueness condition with a constant gap 0 < η < 1 if

∀v ∈ V, λv ≤ (1− η)λc(∆), where λc(∆) ≜
(∆− 1)∆−1

(∆− 2)∆
≈ e

∆
. (1)

Previous works [CFYZ22, CE22, ŠVV09] proved that for hardcore model satisfying the uniqueness
condition in (1), it admits poly(nε ) time sampling and approximate counting oracles. To obtain
a poly(nε ) time algorithm for TV-distance estimation, one way is to consider hardcore models
in the uniqueness regime with constant marginal lower bound b = Ω(1), which requires that
∆ = O(1) and for all v ∈ V , either Ω(1) ≤ λv ≤ (1− η)λc(∆) or λv = 02.

For Ising models S = (G, J, h), the following conditions are well-known.

Condition 6. S satisfies one of the following conditions:

• Spectral condition: λmax(J) − λmin(J) ≤ 1 − η for some constant η > 0, where λmax(J)
and λmin(J) denote the max and min eigenvalues of J respectively.

• Ferromagnetic interaction with consistent field condition: Juv ≥ 0 for all edge {u, v} ∈ E
and hv ≥ 0 for all v ∈ V .

• Anti-ferromagnetic interaction at or within the uniqueness threshold: Juv = β ≤ 0 for all
{u, v} ∈ E and exp(2β) ≥ ∆−2

∆ , where ∆ is the maximum degree of G.

Previous works [AJK+22, FGW23, JS93, CCYZ24, JVV86, ŠVV09] gave poly(nε ) time sam-
pling and approximate counting oracles for Ising models satisfying Condition 6.

We have the following corollary for hardcore and Ising models from Theorem 5.

Corollary 7. Let 0 < η < 1 and ∆ ≥ 3 be two constants. There exists an FPRAS for Problem 2
if two input hardcore models are defined on graph G with maximum degree ∆ and all external
fields satisfy that Ω(1) ≤ λπ

v ≤ (1− η)λc(∆) or λπ
v = 0 for all v ∈ V and π ∈ {µ, ν}.

There exists an FPRAS for Problem 3 if two input Ising models both satisfy Condition 6 and
the marginal lower bound in Condition 4 with b = Ω(1).

2We allow λv = 0 because Condition 4 only considers the lower bound for spins c ∈ {±} with µσ
v (c) > 0.

4



The condition required by Corollary 7 is arguably significant conditions for TV-distance
estimation. Let ∆ ≥ 3 be a constant. For the hardcore model beyond the uniqueness regime
such that λv > λc(∆) for all v ∈ V , polynomial-time sampling and approximate counting oracles
do not exist unless NP = RP [Sly10]. Moreover, the technique in [BGM+25] can show that
unless NP = RP, there is no FPRAS for Problem 2 if input hardcore models are beyond the
uniqueness condition. For the completeness, we give a simplified proof in Appendix A. We can
show that this hardness result holds even for additive-error approximation.

To see the significance of Condition 6, consider the following family of Ising models. Let
Sµ = (G, J, hµ) and Sν = (G, J, hν) be two Ising models defined on the same graph G and have
the same interaction matrix J . Assume that G has constant maximum degree ∆; for all edges
{u, v} in G, Juv = β < 0 is a unified negative constant; and for all vertices v ∈ V , hµv and hνv
can take values from set {±∞, 0}. This family of Ising models has a constant marginal lower
bound. We have the following two results:

• if exp(2β) ≥ ∆−2
∆ , then FPRAS for TV-distance exists by Corollary 7;

• if exp(2β) < ∆−2
∆ , there is no FPRAS for TV-distance unless NP = RP, the hardness

result holds even for approximating the TV-distance with additive error.

Again, the hardness result can be proved by the technique in [BGM+25]. We give a simple proof
in Appendix A for the completeness.

1.1.2 Improved results for hardcore models in the uniqueness regime

Corollary 7 works for hardcore model in the uniqueness regime. However, it additionally requires
a marginal lower bound b = Ω(1). We give the following improved algorithm that removes the
marginal lower bound requirement, thus it works for the whole uniqueness regime.

Theorem 8 (improved algorithm for the whole uniqueness regime). There exists a randomized

algorithm that solves Problem 2 with probability at least 2/3 in time Õη(
∆n7

ε5/2
) if two input hardcore

models both satisfy the uniqueness condition with a constant gap η > 0, where n is the number
of vertices and Õη(·) hides a constant factor depending on η and a polylog(nε ) factor.

Next, let us further assume that the hardcore model has a constant marginal lower bound
b = Ω(1). Theorem 5 and Corollary 7 give an FPRAS in time

Ob

(
N2

ε2
T sp
G

(
poly(b) · ε

2

N2

)
+ T ct

G

(
poly(b) · ε

N

))
= Õ

(
n4

ε2

)
. (2)

The equation holds because T sp
G (δ) = O(∆n log n

δ ) [CFYZ22, CE22], T
ct
G (δ) = Õ(∆n2

δ2
) [ŠVV09],

and ∆ = O(1) due to the constant marginal lower bound assumption. For these hardcore models,
we can also give a faster algorithm than the general results in Theorem 5. Compared to the
running time in (2), the following improved algorithm reduces a factor of n in the running time.

Theorem 9 (faster algorithm further assuming constant marginal lower bound). Let 0 < η < 1

and ∆ ≥ 3 be two constants. There exists an FPRAS in time Õ(n
3

ε2
) for Problem 2 if two input

hardcore models are defined on graph G with maximum degree ∆ and all external fields satisfy
that Ω(1) ≤ λπ

v ≤ (1− η)λc(∆) or λπ
v = 0 for all v ∈ V and π ∈ {µ, ν}.

1.2 Approximating the TV-distance between two marginal distributions

One natural extension is to approximate the TV-distance between two marginal distributions
on a subset of vertices. We use the hardcore model as an example to state our results on this
problem. The same results can be extended to Ising model using a similar reduction.
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Problem 10 (k-marginal TV-distance approximation). Let k : N→ N be a function.

• Input : two hardcore models (G,λµ) and (G,λν) defined on the same graph G = (V,E),
which specifies two Gibbs distributions µ and ν respectively, a subset S ⊆ V such that
|S| = k(n), where n = |V |, and an error bound ε > 0.

• Output : a number d̂ such that dTV(µS ,νS)
1+ε ≤ d̂ ≤ (1 + ε)dTV (µS , νS), where µS and νS are

marginal distributions on S projected from µ and ν respectively.

In particular, if the function k(n) = n, then Problem 10 is the same as Problem 2.
We show that the problem is hard when k(n) = 1. In this case, the problem is to approximate

the TV-distance between two marginal distributions at a single vertex. The hardness result
holds even if two input hardcore models are in the uniqueness regime, where both sampling and
approximate counting are intractable in polynomial time.

Theorem 11. Let k(n) = 1 for all n ∈ N be a constant function. The k-marginal TV-distance
approximation is #P-Hard when two input hardcore models both satisfy the uniqueness condition,
the hardness result holds even if ε = poly(n), where n is number of vertices in G.

The above theorem is for marginal distributions at one vertex. One can simply lift the result
to the marginal distributions on a set of vertices. In particular, we have the following corollary.

Corollary 12. Let 0 < α < 1 be a constant and k(n) = n− ⌈nα⌉. The k-marginal TV-distance
approximation is #P-Hard when two input hardcore models both satisfy the uniqueness condition,
the hardness result holds even if ε = poly(n), where n is number of vertices in G.

The proofs of the hardness results are given in Section 7. The proof constructs a Turing
reduction that exactly counts the number Z of independent sets in graphs with a maximum
degree of 3, a problem known to be #P-complete [DG00]. Specifically, we show that if one can
efficiently solve the problem stated in Theorem 11, then it is possible to efficiently estimate
the probability that a vertex v is included in a uniformly random independent set, with an
exponentially small relative error of 4−n. This, in turn, solves the exact counting problem by
using the self-reducibility [JVV86] property of the hardcore model and the fact that Z ≤ 2n.

Now, let us compare our hardness results with that in [BGM+25]. The hardness results in
[BGM+25] are for approximating the TV-distance between two entire Gibbs distributions. In
contrast, our hardness results are for approximating the TV-distance between two marginal
distributions. The hardness results in [BGM+25] are NP-hard results. It considered the Gibbs
distributions in a parameter regime where sampling and approximate counting are intractable. In
contrast, our hardness results are #P-hard results. Our hardness results holds even if sampling
and approximate counting can both be solved in polynomial time.

Finally, consider approximating the TV-distance between two marginal distributions with
additive error ε. We show that this relaxed problem admits FPRAS if two input hardcore models
both satisfy the uniqueness condition.

Theorem 13. There exists a randomized algorithm such that given two hardcore distributions µ
and ν on the same graph G = (V,E) with n = |V |, any subset S ⊆ V , and any 0 < ε < 1, if µ

and ν both satisfy (1), it returns a random number d̂ in time ∆n2

ε4
· polylog(nε ) such that

Pr
[∣∣d̂− dTV (µS , νS)

∣∣ ≤ ε
]
≥ 2

3
.

Theorem 13 together with two hardness results give a clear separation between the computa-
tional complexity for approximating the TV-distance with relative and additive error.
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1.3 Related work

There are a series of works on checking whether two given distributions are identical (e.g. [CMR07,
DHR08, KMO+11, BGM+25]), which can be viewed as the decision version of computing the
TV-distance, i.e., checking whether it is zero.

There are also a long line of works (e.g., see a survey in [Can15]) studying the identical
testing problem in access model, where the algorithm can only access the set of random samples
from the distributions. This setting is different from our setting, where we assume that all the
parameters of the spin systems are given as the input to the algorithm.

A series of works [BGMV20, CK14, Kie18, CR14] studied the algorithm and the hardness
of approximating the TV-distance with additive error, which is an easier problem than the
relative-error approximation.

[DMR18, AAL23, Kon24, AK24] found closed-form formulas, which approximates the TV-
distance between two high-dimensional distributions with a fixed relative error. We study
algorithms achieving an arbitrary ε-relative error approximation for spin systems.

2 Algorithm overview

In this section, we give an overview of our algorithm. Let G = (V,E) be a graph. Let Sµ and
Sν be two spin systems (either two hardcore models or two Ising models) defined on the same
graph G. Let µ and ν denote Gibbs distributions of Sµ and Sν respectively.

We first introduce the distance between parameters of two spin systems. For a vector a ∈ RV ,
denote ∥a∥∞ = maxv∈V |av|. For a matrix A ∈ RV×V , denote ∥A∥max = maxu,v∈V |Auv|.

Definition 14 (parameter distance). The parameter distance dpar(Sµ, Sν) between Sµ and Sµ,
which is denote by dpar(µ, ν) for simplicity, is defined by

• Hardcore model: for two hardcore models Sµ = (G,λµ) and Sν = (G,λν),

dpar(µ, ν) ≜ ∥λµ − λν∥∞.

• Soft-Ising model: for two soft-Ising models Sµ = (G, Jµ, hµ) and Sν = (G, Jν , hν),

dpar(µ, ν) ≜ max

{
∥Jµ − Jν∥max,max

v

|hµ(v)− hν(v)|
degv +1

}
,

where degv is the degree of v in graph G.

The above parameter distance can be computed easily. The following lemma gives the
relation between parameter distance dpar(µ, ν) and the total variation distance dTV (µ, ν). An
Ising model (G = (V,E), J, h) is said to be soft if h ∈ RV (instead of h ∈ (R ∪ {±∞})V ). We
now focus on soft-Ising model in this overview. We will show how to reduce general Ising models
to soft models in Section 6.

Lemma 15 (TV-distance lower bound). It holds that dTV (µ, ν) ≥ CTV
par · dpar(µ, ν) such that

• Hardcore model: if both µ and ν satisfy the uniqueness condition in (1), CTV
par = 1

5000 .

• Hardcore model: if both µ and ν are b-marginally bounded, CTV
par = b3.

• Soft-Ising model: if both µ and ν are b-marginally bounded, CTV
par = b2

2 .
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By Lemma 15, if dpar(µ, ν) is large, the TV-distance dTV (µ, ν) is also large. Let n = |V |
and m = |E| denote the numbers of vertices and edges in G. Define the a threshold θ = cb

poly(n)
for the parameter distance for soft-Ising and hardcore models, where cb is some parameter
depending only on the marginal lower bound b3. The specific value of θ can be found in Section 6.
Our algorithm first compute dpar(µ, ν) in time O(m+ n), and then compares dpar(µ, ν) to the
threshold θ. The algorithm considers the following two cases.

• Case dpar(µ, ν) ≥ θ: By Lemma 15, the TV-distance dTV (µ, ν) = CTV
pardpar(µ, ν) ≥

Ωb(
1

poly(n)) is large. In this case, the task of approximating dTV (µ, ν) with relative error is

the same (up to Ob(poly(n)) running time) as the task of approximating dTV (µ, ν) with
additive error. We give a general FPRAS that achieves the additive-error approximation
assuming polynomial-time sampling and approximate counting oracles for both µ and ν.

• Case dpar(µ, ν) < θ: The algorithm for this case is our main technical contribution. Let
wµ(·) and wν(·) denote the weight functions for spin systems Sµ and Sν respectively. By
the definition of parameter distance, we know that for any σ ∈ {±}V , wµ(σ) ≈ wν(σ). We
will utilize this property to design efficient approximation algorithm for TV-distance.

In Section 2.1 and Section 2.2, we will explain the main ideas of our algorithms for the above
two cases. The formal description of the algorithms are given in Sections 4 and 5.

2.1 Warm-up: additive-error approximation algorithm

Let us first consider the easy case. This case is solved by improving the algorithm in [BGMV20].
By the definition of total variation distance, we can write

dTV (µ, ν) =
∑

σ∈{±}V :µ(σ)>ν(σ)

|µ(σ)− ν(σ)| =
∑

σ∈{±}V
µ(σ)max

(
0, 1− ν(σ)

µ(σ)

)
. (3)

Define the random variable X ≜ max
(
0, 1− ν(σ)

µ(σ)

)
, where σ ∼ µ. Note that 0 ≤ X ≤ 1. We

have E [X] = dTV (µ, ν) and Var [X] ≤ 1. Additive-error approximation can be achieved if
random samples of the variable X can be efficiently generated.

However, since we can only access sampling and approximate counting oracles, we cannot
compute µ(σ) and ν(σ) exactly. Instead, our algorithm uses an alternative estimator X̂ to
approximate the random variable X. Let Zµ, wµ(·) and Zν , wν(·) denote the partition functions
and weight functions of Sµ and Sν , respectively. We first call the approximate counting oracle to
obtain Ẑµ and Ẑν , which approximate Zµ and Zν with a relative error of O(ε). The estimator
X̂ is then defined by the following process:

• Call sampling oracle to generate approximate sample σ from µ;

• X̂ = max
(
0, 1− ν̂(σ)

µ̂(σ)

)
, where ν̂(σ) = wν(σ)/Ẑν and µ̂(σ) = wµ(σ)/Ẑµ.

The error of X̂ arises from the errors in the approximate sample σ and the probabilities ν̂(·) and
µ̂(·). To illustrate the main idea of the algorithm, let us ignore the sampling error and assume

σ ∼ µ. Note that the true value ν(σ)
µ(σ) =

wν(σ)
wµ(σ)

· Zµ

Zν
. By the assumption of approximate counting

oracle, ν̂(σ)
µ̂(σ) ≥ (1−O(ε)) ν(σ)µ(σ) , which implies E[X̂] ≤ Eσ∼µ[max(0, 1− (1−O(ε)) ν(σ)µ(σ))], which is

at most Eσ∼µ[max(0, 1− ν(σ)
µ(σ))] + O(ε)Eσ∼µ

ν(σ)
µ(σ) = E [X] + O(ε). A similar analysis gives the

3The value of b is not given in the input, but we can compute b efficiently (see Lemma 35).
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lower bound E[X̂] ≥ E [X]−O(ε). Since 0 ≤ X̂ ≤ 1 so the variance is at most 1, this achieves
the additive error approximation of the TV-distance.

The algorithm in Theorem 13 estimates the TV-distance between two marginal distributions
with additive error, which follows a similar approach. The key difference is that it requires
approximating the marginal probabilities νS(σ) and µS(σ) for σ ∈ {±}S , where S ⊆ V . For
the hardcore model within the uniqueness regime, we have not only an efficient approximate
counting oracle but also efficient oracles for approximating the conditional partition function
Zσ =

∑
τ∈{±}V :τS=σ w(τ), which give the efficient approximation of µS(σ) and νS(σ).

Additive-error approximation algorithms were also studied in [BGMV20], where a similar
algorithm was proposed. Their approach assumes that the values of µ(σ) and ν(σ) can be
computed exactly, allowing the use of the estimator X. In contrast, our algorithm demonstrates
that approximated values of µ(σ) and ν(σ) suffice. Consequently, our additive-error algorithm (see
Theorem 17 for a formal statement) improves upon some results in [BGMV20]. For instance,
while [BGMV20] applies to ferromagnetic Ising models on bounded tree-width graphs with
consistent external fields, our result removes the bounded tree-width restriction and applies to
general graphs (see Corollary 18).

2.2 Approximation algorithm for instances with small parameter distance

Consider the case where dpar(µ, ν) < θ. The total variation distance dTV (µ, ν) can be very
small (e.g., exp(−Ω(n))). We cannot use additive-error approximation algorithm to efficiently
achieve a relative-error approximation. The main challenge lies in the term 1− ν(σ)/µ(σ) in (3).
With approximate counting oracles, we can approximate ν(σ)/µ(σ) with relative error, but
there is no guarantee of relative accuracy for 1 − ν(σ)/µ(σ). Due to this difficulty, previous
works mainly studied graphical models on bounded treewidth graphs [BGM+24] and product
distributions [FGJW23], where ν(σ) and µ(σ) can be computed exactly.

We overcome this challenge by designing an alternative estimator with good concentration
property. We use the hardcore model as an example to illustrate the main idea. Assume both µ
and ν are hardcore models (G,λµ) and (G,λν) satisfying uniqueness condition in (1). For the
simplicity of the overview, let us further assume that for any for v ∈ V , 0 < λµ

v ≤ λν
v . In words,

ν is obtained by increasing some external fields of µ by a small amount. We will deal with the
general case in later technical sections.

Basic case without small external fields Let us start with a simple case where λµ
v = Θ( 1

∆)
for all v ∈ V . The uniqueness condition guarantees that λµ

v = O( 1
∆). The assumption additionally

requires that every λµ
v cannot be too small. By the definitions of total variation distance and

Gibbs distributions, we can compute

dTV (µ, ν) =
1

2

∑
σ∈{±}V

µ(σ)

∣∣∣∣1− ν(σ)

µ(σ)

∣∣∣∣ = Zµ

2Zν
·
∑

σ∈{±}V
µ(σ)

∣∣∣∣Zν

Zµ
− wν(σ)

wµ(σ)

∣∣∣∣ . (4)

The first term
Zµ

2Zν
can be approximated with relative error by approximate counting oracle. For

the second term, we consider the following random variable, which also appears in the previous
work of approximate counting [ŠVV09],

W ≜
wν(σ)

wµ(σ)
, where σ ∼ µ.

Note that E [W ] = Zν
Zµ

. By (4), our task is reduced to estimate the value of E [|E [W ]−W |]. We

are in the case that 0 ≤ λν
v − λµ

v ≤ dpar(µ, ν) < θ = 1
poly(n) , so that for any σ ∈ {±}V , wµ(σ)

wν(σ)
≈ 1.

9



We will utilize this property to show that W has a good concentration property. Formally,

1 ≤ wν(σ)

wµ(σ)
≤

∏
v∈V :σv=+1

λν
v

λµ
v
≤

∏
v∈V :σv=+1

(
1 +

dpar(µ, ν)

λµ
v

)

(⋆) ≤ 1 +O

( ∑
v∈V :σv=+1

dpar(µ, ν)

λµ
v

)
≤ 1 +O(n∆) · dpar(µ, ν). (5)

In inequality (⋆), we use the fact that λµ
v = Ω( 1

∆) so that
dpar(µ,ν)

λµ
v

= O(∆θ), since we choose

θ = 1
poly(n) small enough, then

dpar(µ,ν)
λµ
v
≪ 1

n and the inequality can be verified as follows

∏
v∈V :σv=+1

(
1 +

dpar(µ, ν)

λµ
v

)
≤ exp

( ∑
v∈V :σv=+1

dpar(µ, ν)

λµ
v

)
︸ ︷︷ ︸

≪n·(1/n)=o(1)

= 1 +O

( ∑
v∈V :σv=+1

dpar(µ, ν)

λµ
v

)
.

By Lemma 15, dTV (µ, ν) = Ω(dpar(µ, ν)). This implies W enjoys a very good concentration
property such that

1 ≤W ≤ 1 +O(n∆) · dTV (µ, ν) =⇒ Var [W ] ≤ O(n2∆2) · (dTV (µ, ν))2. (6)

Now, our algorithm can be outline as follows.

• Call approximate counting oracles to obtain Ẑµ and Ẑν with relative error O(ε).

• Draw T = poly(n/ε) samples W1, . . . ,WT from W independently.

• Compute W̄ = 1
T

∑T
i=1Wi. (approximate E [W ])

• Compute Ē = 1
T

∑T
i=1 |Wi − W̄ |. (approximate E [|W −E [W ] |])

• Return d̂ =
Ẑµ

2Ẑν
Ē.

Using the variance bound in (6), we can prove that with high probability, Ē approximates
E [|W −E [W ] |] with an additive error of O(ε) · dTV (µ, ν). By (5), we can also verify that
Zµ

Zν
= O(1). Hence, we can bound the error as follows

d̂ ≤ (1 +O(ε))
Zν

2Zµ
· (E [|W −E [W ] |] +O(ε) · dTV (µ, ν)) ≤ (1 +O(ε))dTV (µ, ν) .

A similar analysis gives the lower bound d̂ ≥ (1−O(ε))dTV (µ, ν). This achieves the relative-error
approximation of the TV-distance. The above technique can be generalized to Ising models and
hardcore models with a marginal lower bound.

General case containing small external fields For the general case, there may exist vertex
v ∈ V such that the external field λµ

v ≪ dpar(µ, ν). In this case, the inequality (⋆) in (5) may
not hold. In fact, it will cause a fundamental problem to the above algorithm. Consider the
case that λµ

v = exp(−n) and λν
v = λµ

v +D for all v ∈ V , where D > 0. If we draw polynomial
number of samples σ ∼ µ, typically, every sample σ corresponds to the empty set, i.e., σu = −1

10



for all u ∈ V . Hence, with high probability, all Wi in the above algorithm are wν(∅)
wµ(∅) = 1 and the

algorithm will return d̂ = 0. However, the true TV-distance dTV (µ, ν) > 0 is positive.
Let us first consider a special case such that for all v ∈ V , λµ

v < κ and λν
v < κ, where

κ = poly( εn) ≪
1
n is very small. The total variation distance is the sum of 1

2 |µ(σ) − ν(σ)| for
all independent sets σ ∈ {±}V . In this special case, all external fields are tiny, so that large
independent sets appear with very low probability. Let ∥σ∥+ be the number of +1 in σ. We can
show that there is a constant t = O(1) depending on κ such that

1

2

∑
σ∈{±}V :∥σ∥+≥t+1

|µ(σ)− ν(σ)| ≤ O(ε) · dTV (µ, ν) .

In words, to approximate the total variation distance, we only need to consider the independent
sets with size at most t. Now, we define a distribution µ′ as the distribution µ restricted on the
independent sets with size at most t. Similarly, we can define ν ′ from ν. Since t is a constant, we
can enumerate all independent sets with size at most t and compute the total variation distance
between µ′ and ν ′. We can show that dTV (µ′, ν ′) approximate dTV (µ, ν) with ε relative error.

For the most general case, we divide the vertices into two groups. The big group B contains
all vertices v ∈ V such that min{λµ

v , λν
v} > κ. The small group S contains all vertices v ∈ V

such that min{λµ
v , λν

v} ≤ κ for a small κ = poly( εn). The total variation distance is

dTV (µ, ν) =
1

2

∑
σ∈{±}V

|µ(σ)− ν(σ)| = 1

2

∑
x∈{±}B

∑
y∈{±}S

|µB(x)µ
x
S(y)− νB(x)ν

x
S(y)|

=
∑

x∈{±}B
µB(x) ·

1

2

∑
y∈{±}S

∣∣∣∣ νB(x)µB(x)
νxS(y)− µx

S(y)

∣∣∣∣︸ ︷︷ ︸
f(x)

.

In a high level, our algorithm will draw independent samples x ∼ µB from the marginal
distribution and approximately compute the value of f(x). The algorithm finally outputs the
average value of f(x) over all samples. To make the idea work, we need to deal with the following
two main technical challenging.

• We need to bound the variance of f(x) where x ∼ µB to show that polynomial number of
samples are sufficient for approximation. To achieve a good bound, we use the Poincaré
inequality for hardcore model in uniqueness regime [CFYZ21] to control the variance.

• Given a sample x ∼ µB, we also need to approximately compute the value of f(x). We
need to (1) approximate two distributions µx

S and νxS over {±}S ; and (2) approximate the

ratio νB(x)
µB(x) . For the first task, note that both µx

S and νxS are hardcore distributions on the

induced subgraph G[S] such that for all v ∈ S, the external fields are small. Hence, we can
approximate them using distributions over independent sets of size at most t = O(1). A
similar idea will also be use for the second task: to estimate marginal probabilities µB(x)
and νB(x), we also need to consider the total weight of all independent sets I in G[S]
such that I ∪ {v ∈ B | xv = +1} forms a independent set in G. Again, we show that the
approximation algorithm only needs to consider all such I with |I| ≤ t = O(1).

All the technical details for general case are given in Section 5.2.

Organization of the paper Lemma 15 is proved in Section 3. The additive error approxima-
tion algorithm is given in Section 4. The algorithm for instances with small parameter distance
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in given in Section 5. In Section 6, we put all the pieces together to prove all algorithmic results.
Our hardness results on approximating TV-distance for marginal distributions is proved in
Section 7.

3 Parameter distance v.s. total variation distance

In this section, we prove Lemma 15. We first prove the result for the hardcore model in
Section 3.1, and then prove the result for the soft-Ising model in Section 3.2.

3.1 Analysis for the hardcore model

Recall that our problem setting is: Let G = (V,E) be a graph, and (G,λµ) and (G,λν) are two
hardcore models on the same graph, satisfying the uniqueness condition in (1). Let µ and ν
denote distributions of (G,λµ) and (G,λν) respectively. The parameter distance dpar(µ, ν) for
hardcore model is defined by dpar(µ, ν) ≜ ∥λµ − λν∥∞. Now we prove the first hardcore model
part of Lemma 15:

dTV (µ, ν) ≥ CTV
par · dpar(µ, ν), where CTV

par =
1

5000
.

Let i ∈ V be one vertex such that |λµ
i − λν

i | = dpar(µ, ν). Without loss of generality, we can
assume that λµ

i − λν
i = dpar(µ, ν). Otherwise, we can flip the roles of µ and ν in the following

proof. Define two collections of independent sets of V :

H1 : = {S is an independent set of G | i ∈ S},
H2 : = {S \ {i} | S ∈ H1}.

In this proof, we use µ(S) to denote the probability of σ ∈ {±}V in µ such that σi = +1 if and
only if i ∈ S. Define µ(H1) =

∑
S∈H1

µ(S) and µ(H2), ν(H1), ν(H2) in a similar way. It is easy
to verify that

µ(H1)

µ(H2)
= λµ

i ,
ν(H1)

ν(H2)
= λν

i .

Then, we consider two cases depending on the value of |µ(H2)− ν(H2)|. The simple case is
|µ(H2)− ν(H2)| ≥ CTV

par · dpar(µ, ν), then dTV (µ, ν) ≥ |µ(H2)− ν(H2)| ≥ CTV
par · dpar(µ, ν).

The main case is |µ(H2) − ν(H2)| < CTV
par · dpar(µ, ν). In this case we show that |µ(H1) −

ν(H1)| ≥ CTV
par · dpar(µ, ν), which also implies dTV (µ, ν) ≥ |µ(H1) − ν(H1)| ≥ CTV

par · dpar(µ, ν).
We can lower bound the value of |µ(H1)− ν(H1)| as follows:

µ(H1)− ν(H1) = λµ
i · µ(H2)− λν

i · ν(H2)

= (λν
i + dpar(µ, ν))µ(H2)− λν

i · ν(H2)

= λν
i (µ(H2)− ν(H2)) + dpar(µ, ν) · µ(H2)

> dpar(µ, ν) · µ(H2)− λν
i · CTV

par · dpar(µ, ν). (7)

Because (G,λµ) and (G,λν) satisfy the uniqueness condition, we have for all vertex i ∈ V , all

x ∈ {µ, ν}, λx
i ≤ λc(∆) = (∆−1)∆−1

(∆−2)∆ ≤ 4 because ∆ ≥ 3. Let N(i) denotes the set of neighbors of

i in graph G = (V,E). By definition of H2, µ(H2) is the probability of j /∈ S for all j ∈ N(i)∪{i}
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and S ∼ µ is a random independent set from the hardcore model (G,λµ). Suppose there is a
total ordering < among all vertices in V . We have

µ(H2) = PrS∼µ [i /∈ S]
∏

j∈N(i)

PrS∼µ [j /∈ S | (i /∈ S) ∧ (∀k ∈ N(i) with k < j, k /∈ S)]

≥ 1

1 + λµ
i

∏
j∈N(i)

(
1

1 + λµ
j

)
≥
(

1

1 + 4/(∆− 2)

)∆+1

=

(
1− 4

∆ + 2

)∆+1

>
1

1000
. (8)

Also note that λν
i ≤ 4 by the uniqueness condition. Recall CTV

par = 1
5000 . By (7) and (8), we have

µ(H1)− ν(H1) > dpar(µ, ν) · µ(H2)− λν
i · CTV

par · dpar(µ, ν)

> dpar(µ, ν)

(
1

1000
− 4

5000

)
= CTV

par · dpar(µ, ν).

Next, we prove the second part of the hardcore model with CTV
par = b3. Now, we do not have

the uniqueness condition but we have a marginal lower bound b and the the hardcore model
is soft. The proof is similar. We only need to show how to lower bound the value in (7). We
first upper bound λν

i in (7). Consider the pinning that all neighbors of i are fixed as −1, then
the probability of i taking −1 is 1

1+λν
i
≥ b. Thus, λv

i ≤ 1−b
b . Next, we lower bound the value of

µ(H2). Let N(i) denote all neighbors of i. Note that i takes value + only if all neighbors of i
take the value −. Recall that we assume that λµ

i − λν
i = dpar(µ, ν) in the beginning of the proof.

We can assume that dpar(µ, ν) > 0, otherwise dTV (µ, ν) = 0 and the lemma is trivial. We have
λµ
i > 0 so that µi(+) > 0. By the marginal lower bound, µi(+) ≥ b. The vertex i takes value +

only if all neighbors take the value −. We have

b ≤ µi(+) ≤ PrS∼µ [∀j ∈ N(i), j /∈ S] .

On the other hand, the value of µ(H2) can be lower bound by

µ(H2) = PrS∼µ [∀j ∈ N(i) ∪ {i}, j /∈ S]

= PrS∼µ [∀j ∈ N(i), j /∈ S]PrS∼µ [i /∈ S | ∀j ∈ N(i), j /∈ S]

≥ b2.

We can set CTV
par = b3 so that

µ(H1)− ν(H1) > dpar(µ, ν) · µ(H2)− λν
i · CTV

par · dpar(µ, ν)

≥ dpar(µ, ν)

(
b2 − 1− b

b
· b3
)

= CTV
par · dpar(µ, ν).

3.2 Analysis for the soft-Ising model

Recall that our problem setting is: Let G = (V,E) be a graph, and (G, Jµ, hµ) and (G, Jν , hν)
are two soft-Ising models on the same graph. Let µ and ν denote distributions of (G, Jµ, hµ)
and (G, Jν , hν) respectively. The parameter distance dpar(µ, ν) for soft-Ising model is defined by

dpar(µ, ν) ≜ max

{
∥Jµ − Jν∥max,max

v

|hµv − hνv |
degv +1

}
.
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Now we prove the soft-Ising model part of Lemma 15: if both µ and ν are b-marginally
bounded for 0 < b < 1, then

dTV (µ, ν) ≥ f(b) · dpar(µ, ν), where f(b) =
1

2
b2.

Before proving the above, we first present the following lemma.

Lemma 16. Let µ and ν be any two distributions on {±}V , and S ⊆ V be a subset of vertices.
Let 0 < δ < 1. If for any σ ∈ {±}S, dTV (µσ, νσ) ≥ δ, then dTV (µ, ν) ≥ δ/2.

Proof. For any two distributions p, q on space Ω, by the definition of total variation distance,∑
x∈Ω

min(p(x), q(x)) = 1− dTV (p, q) ,∑
x∈Ω

max(p(x), q(x)) = 1 + dTV (p, q) .

Under the assumption of the lemma, we have

1− dTV (µ, ν) =
∑

σ∈{±}V
min(µ(σ), ν(σ))

=
∑

σ∈{±}S

∑
τ∈{±}V \S

min(µ(σ)µ(τ | σ), ν(σ)ν(τ | σ))

≤
∑

σ∈{±}S
max(µ(σ), ν(σ))

∑
τ∈{±}V \S

min(µ(τ | σ), ν(τ | σ))

(since dTV (µσ, νσ) ≥ δ) ≤
∑

σ∈{±}S
max(µ(σ), ν(σ))(1− δ)

= (1 + dTV (µS , νS))(1− δ),

≤ 1− δ + dTV (µS , νS)

which implies

dTV (µ, ν) ≥ δ − dTV (µS , νS) . (9)

On the other hand, we have

dTV (µ, ν) ≥ dTV (µS , νS) . (10)

Then Lemma 16 follows by combining (9) and (10).

According to the definition of the parameter distance, there are 2 cases:

• It exists {u, v} ∈ E such that |Jµ
u,v − Jν

u,v| = dpar(µ, ν).

• It exists v ∈ V such that |hµv − hνv | = dpar(µ, ν) · (degv +1).

For the first case, we will show that

∀σ ∈ {±}V \{u,v}, dTV (µσ, νσ) ≥ 2f(b)dpar(µ, ν), (11)

and for the second case, we will show that

∀σ ∈ {±}V \{v}, dTV (µσ, νσ) ≥ 2f(b)dpar(µ, ν). (12)

Assuming (11) and (12) hold, using Lemma 16, we can directly derive the result of the total
variation distance lower bound for soft-Ising model claimed in Lemma 15.

Next, we will prove (11) and (12), respectively to complete the entire proof.
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Proof. [Proof of eq.(11)] Recall that µ, ν are both b-marginal bounded which is defined in
Condition 4. Thus for any σ ∈ {±}V \{u,v}, for any τ ∈ {±}{u,v}, we have µσ(u = τu, v = τv) =
µσ
u(τu) · µσ∧u←τu

v (τv) ≥ b2. The same local lower bound also holds for the distribution ν.
Define cµu = hµu +

∑
{u,w}∈E,w ̸=v J

µ
u,wσw and cµv = hµv +

∑
{v,w}∈E,w ̸=u J

µ
v,wσw be the influence

coefficient of the external field σ on u, v in the distribution µ. Similarly, let cνu and cνv denote
the corresponding influence coefficients in the distribution ν.

According to the definition of the Ising model, when the external field σ is fixed, the local
distribution of u, v in the distribution µ is follows:

µσ(u = +, v = +) = exp(Jµ
u,v + cµu + cµv − sµ),

µσ(u = +, v = −) = exp(−Jµ
u,v + cµu − cµv − sµ),

µσ(u = −, v = +) = exp(−Jµ
u,v − cµu + cµv − sµ),

µσ(u = −, v = −) = exp(Jµ
u,v − cµu − cµv − sµ),

where sµ = log(exp(Jµ
u,v+cµu+cµv )+exp(−Jµ

u,v+cµu−cµv ))+exp(−Jµ
u,v−cµu+cµv )+exp(Jµ

u,v−cµu−cµv )).
Using the same method, we define sν , and the local distribution of u, v in the distribution ν

can be expressed in terms of cνu, c
ν
v and sν , as in the above equation.

Let, p = Jµ
u,v + cµu + cµv − sµ and q = Jν

u,v + cνu + cνv − sν , then

dTV (µσ, νσ) ≥ |µσ(u = +, v = +)− νσ(u = +, v = +)|

= | exp(p)− exp(q)| =
∫ max{p,q}

x=min{p,q}
exp(x)dx

≥
∫ max{p,q}

x=min{p,q}
exp(p)dx = exp(p) · |p− q|

(by marginal lower bound) ≥ b2 · |p− q|. (13)

Based on this, we can derive the following lower bound on the total variation distance
between µσ and νσ:

dTV (µσ, νσ) ≥ b2 · |(Jµ
u,v + cµu + cµv − sµ)− (Jν

u,v + cνu + cνv − sν)|. (14)

Using the same method, consider the distribution differences in µσ and νσ for the remaining
three cases (u = +, v = −), (u = −, v = +) and (u = −, v = −), we can also obtain the following
lower bounds:

dTV (µσ, νσ) ≥ b2 · | − (−Jµ
u,v + cµu − cµv − sµ) + (−Jν

u,v + cνu − cνv − sν)|, (15)

dTV (µσ, νσ) ≥ b2 · | − (−Jµ
u,v − cµu + cµv − sµ) + (−Jν

u,v − cνu + cνv − sν)|, (16)

dTV (µσ, νσ) ≥ b2 · |(Jµ
u,v − cµu − cµv − sµ)− (Jν

u,v − cνu − cνv − sν)|. (17)

Note that the absolute value operation satisfies the triangle inequality, by combining inequal-
ities (14), (15), (16) and (17), we have

4dTV (µσ, νσ) ≥ b2 · 4|Jµ
u,v − Jν

u,v|.

Then for the case that |Jµ
u,v − Jν

u,v| = dpar(µ, ν), the lower bound of local total variation
distance in (11) is proven.

Proof. [Proof of eq.(12)] For the case that |hµv − hνv | = dpar(µ, ν) · (degv +1). Define cµ =
hµv +

∑
{u,v}∈E Jµ

u,vσv and cν = hνv +
∑
{u,v}∈E Jν

u,vσv be the influence coefficient of the external
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field σ on v in the distribution µ and ν respectively, note that for each {u, v} ∈ E, |Jµ
u,v − Jν

u,v|
is bounded by dpar(µ, ν), then

|cµ − cν | ≥ |hµv − hνv | −
∑
{u,v}∈E

|Jµ
u,v − Jν

u,v|

≥ (degv +1)dpar(u, v)−
∑
{u,v}∈E

dpar(µ, ν) = dpar(µ, ν).

According to the definition of the Ising model, when the external field σ is fixed, the local
distribution on v in the distribution µ is follows:

µσ(v = +) = exp(cµ − sµ), µσ(v = −) = exp(−cµ − sµ),

where sµ = log(exp(cµ) + exp(−cµ)).
Using the same method, we define sν , and the local distribution of u, v in the distribution ν

can be expressed in terms of cν and sν , as in the above equation.
Recall that µ, ν are both b-marginal bounded, applying the same method in (13), we can

derive the following lowerbound on the total variation distance between µσ and νσ:

dTV (µσ, νσ) ≥ b · |(cµ − sµ)− (cν − sν)|, (18)

dTV (µσ, νσ) ≥ b · | − (−cµ − sµ) + (−cν − sν)|. (19)

By combining the above inequalities, we have

2dTV (µσ, νσ) ≥ b · 2|cµ − cν | ≥ 2b · dpar(µσ, νσ).

Note 0 < b < 1, then the lower bound of local total variation distance in (12) is proven.

4 Additive-error approximation algorithm

4.1 TV-distance between two Gibbs distributions

We first present an algorithm can achieves the additive-error approximation to the total variation
distance between two general Gibbs distributions, which covers Ising and hardcore models
as special cases. Let µ over {0, 1}V be a Gibbs distribution over graph G = (V,E). For
any configuration σ ∈ {0, 1}V , µ(σ) = wµ(σ)/Zµ, where wµ(·) is the weight function and
Zµ =

∑
τ∈{0,1}V wµ(σ). Let T

wt
G ∈ N. We say the Gibbs distribution µ admits a weight oracle

with cost Twt
G is given any σ ∈ [q]V , it returns the exact weight wµ(σ) in time Twt

G . Note that
both Ising and hardcore models, as well as most Gibbs distributions, admit weight oracle with
cost Twt

G = O(|V | + |E|). Recall the sampling and approximate counting oracles are defined
in Definition 1.

Theorem 17. There exists an algorithm such that given two general Gibbs distributions µ and ν
on the same graph G = (V,E) and an error bound ε > 0, if µ and ν both admit weight, sampling,
and approximate counting oracles with cost Twt

G and cost functions T sp
G (·) and T ct

G (·) respectively,

then it returns a random d̂ in time O(T ct
G ( ε4) +

1
ε2
(Twt

G + T sp
G ( ε4))) such that

Pr
[
dTV (µ, ν)− ε ≤ d̂ ≤ dTV (µ, ν) + ε

]
≥ 2

3
.
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Proof. Define a random variable X ∈ [0, 1] such that X = max
(
0, 1− ν(σ)

µ(σ)

)
, where σ ∼ µ.

dTV (µ, ν) =
∑

σ:µ(σ)>ν(σ)

|µ(σ)− ν(σ)| =
∑

σ:µ(σ)>ν(σ)

µ(σ)

∣∣∣∣1− ν(σ)

µ(σ)

∣∣∣∣
=
∑
σ

µ(σ)max

(
0, 1− ν(σ)

µ(σ)

)
= E [X] .

By the definition of X, we have 0 ≤ X ≤ 1, so Var [X] ≤ 1. Ideally, we want to draw independent
samples of X and take average to approximate dTV (µ, ν). However, the main issue is that given
a σ ∼ µ, we cannot compute neither µ(σ) nor ν(σ) exactly. Alternatively, we will define another
random variable X̂ ∈ [0, 1] that approximate the random variable X.

Call the approximate counting oracles of µ and ν to obtain Ẑµ and Ẑν that approximate
partition functions Zµ and Zν with relative error bound ε

4 . We may assume both counting oracles

succeed, which happens with probability at least 0.98. Define the random variable X̂ ∈ [0, 1] by
the following process.

1. Call sampling oracle of µ to obtain one sample σ ∈ {±}V such that dTV (σ, µ) ≤ ε
4 .

2. Call weight oracles of both µ and ν to obtain exact weights wµ(σ), wν(σ). Compute
µ̂(σ) = wµ(σ)/Ẑµ and ν̂(σ) = wν(σ)/Ẑν .

3. Define X̂ = max(0, 1− ν̂(σ)/µ̂(σ)), in particular, X̂ = 0 if µ̂(σ) = 0.

Let T = 64
ε2
. Our algorithm is the following simple process:

• Draw T independent samples X̂1, X̂2, . . . , X̂T of random variable X̂.

• Output the average d̂ = 1
T

∑T
i=1 X̂i.

It is easy to see the running time of our algorithm is 2T ct
G ( ε4) + T · (T sp

G ( ε4) + 2Twt
G +O(1)).

To prove the correctness of our algorithm, we only need to show that∣∣∣E [X̂]−E [X]
∣∣∣ = ∣∣∣E [X̂]− dTV (µ, ν)

∣∣∣ ≤ 7ε

8
. (20)

Note that 0 ≤ X̂ ≤ 1 so that Var
[
X̂
]
≤ 1. By Hoeffding’s inequality, it is easy to show that

with probability at least 0.9, |d̂− E[X̂]| ≤ ε/8. Combining with (20) proves the theorem.
Now, we only need to verify (20). We introduce a new random variable X∗ in analysis. In

the definition of X̂, assume we replace the sample σ in Item 1 with a perfect sampler of the
distribution µ. Let X∗ denote the resulting random variable. We first compare E [X∗] with
E [X]. The difference between X∗ and X comes from the error of computing the ratio of µ(σ)

and ν(σ). Note that ν(σ)
µ(σ) =

wν(σ)
wµ(σ)

· Zµ

Zν
and ν̂(σ)

µ̂(σ) =
wν(σ)
wµ(σ)

· Ẑµ

Ẑν
. By the definition of approximate

counting oracle, for σ with µ(σ) > 0,(
1− 5ε

8

)
ν(σ)

µ(σ)
≤ ν̂(σ)

µ̂(σ)
≤
(
1 +

5ε

8

)
ν(σ)

µ(σ)
.
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We can compute the expectation as

E [X∗] =
∑

σ:µ(σ)>0

µ(σ)max

(
0, 1− ν̂(σ)

µ̂(σ)

)
≤

∑
σ:µ(σ)>0

µ(σ)max

(
0, 1−

(
1− 5ε

8

)
ν(σ)

µ(σ)

)

≤
∑

σ:µ(σ)>0

µ(σ)

(
max

(
0, 1− ν(σ)

µ(σ)

)
+

5ε

8

ν(σ)

µ(σ)

)
≤ dTV (µ, ν) +

5ε

8

∑
σ:µ(σ)>0

ν(σ)

≤ dTV (µ, ν) +
5ε

8
.

Using the same way, we could verify the other direction. We have

|E [X∗]−E [X] | = |E[X∗]− dTV (µ, ν) | ≤ 5ε

8
. (21)

Next, we compare X∗ to X̂. The only difference is that they sample σ from different
distributions. Let µ′ be the distribution defined by the approximate sampling oracle. Define a
function f such that for any σ ∈ {±}V , f(σ) = max(0, 1− ν̂(σ)/µ̂(σ)), where we set f(σ) = 0
if µ̂(σ) = 0. We have |E(X̂)− E(X∗)| =

∣∣Eσ∼µ[f(σ)]−Eσ∼µ′ [f(σ)]
∣∣. Define A = {σ | µ(σ) >

µ′(σ)} and B = {σ | µ(σ) < µ′(σ)}. We can write

|E(X̂)−E(X∗)| =

∣∣∣∣∣∑
σ∈A

(µ′(σ)− µ(σ))f(σ) +
∑
σ∈B

(µ′(σ)− µ(σ))f(σ)

∣∣∣∣∣
(⋆) ≤ max

(∑
σ∈A

(µ(σ)− µ′(σ))f(σ),
∑
σ∈B

(µ′(σ)− µ(σ))f(σ)

)
(by f(σ) ∈ [0, 1]) ≤ dTV

(
µ, µ′

)
≤ ε

4
, (22)

where in inequality (⋆), we use
∑

σ∈A(µ
′(σ)− µ(σ))f(σ) ≤ 0 and

∑
σ∈B(µ

′(σ)− µ(σ))f(σ) ≥ 0.
Finally, (20) holds due to (21) and (22).

Theorem 17 implies the following corollary for concrete models.

Corollary 18. There exist an FPRAS for approximating TV-distances with additive error
for following models: (1) Hardcore model satisfying uniqueness condition; (2) Ising model
with spectral condition; (3) Ferromagnetic interaction with consistent field condition; and (4)
Anti-ferromagnetic interaction at or within the uniqueness threshold.

The definitions of the conditions can be found in (1) and Condition 6. In contrast to the
relative-error approximation, the above corollary does not require a marginal lower bound for the
Ising model. Furthermore, since the proof of Theorem 17 does not use Lemma 15, Corollary 18
holds for general (not necessarily soft) Ising models.

4.2 TV-distance between two marginal distributions

In this subsection, we present an algorithm can achieves the additive-error approximation to
the total variance distance between two marginal distributions. Let µ over {±}V be a Gibbs
distribution over graph G = (V,E), and S is a subset of V . For any configuration σ, let σ be a
partial configuration over {±}S . Recall that µS(σ) ∝ Zσ, where Zσ is the conditional partition
function of σ defined as

Zσ ≜
∑

τ∈{±}V :τS=σ

wµ(τ).

18



Definition 19 (approximate conditional counting oracle). Let S be a spin system on graph G
with Gibbs distribution µ. Let T ct

G : (0, 1)→ N be a function. We say S admits a conditional
counting oracle with cost function T ct

G (·) if given any 0 < ε < 1, and any partial configuration

σ ∈ {±}S on a subset S ⊆ V , it returns a random number Ẑσ
µ in time T ct

G (ε) such that

Zσ
µ (1− ε) ≤ Ẑσ

µ (σ) ≤ Zσ
µ (1 + ε) with probability at least 0.99.

The oracle above is stronger than the approximate counting oracle in Definition 1. The
approximate counting oracle only answers the query for S = ∅, while the conditional counting
oracle can answer the query for any subset S ⊆ V .

Theorem 20. There exists an algorithm such that given two general Gibbs distributions µ and
ν on the same graph G = (V,E) with n = |V |, any subset S ⊆ V , and any ε > 0, if µ and
ν both admit sampling and conditional counting oracles with cost functions T sp

G (·) and T ct
G (·)

respectively, then it returns a random number d̂ in time O( 1
ε2

log 1
ε ) · (T

ct
G ( ε8) + T sp

G ( ε8)) such that

Pr
[∣∣d̂− dTV (µS , νS)

∣∣ ≤ ε
]
≥ 2

3
.

Proof. Define a random variable Y ∈ [0, 1] such that Y = max
(
0, 1− νS(σ)

µS(σ)

)
, where σ ∼ µS .

dTV (µS , µS) =
∑

σ∈{±}S
max (0, µS(σ)− νS(σ))

=
∑

σ∈{±}S
µS(σ)max

(
0, 1− νS(σ)

µS(σ)

)
= E [Y ] .

The random variable Y satisfies that 0 ≤ 1 ≤ Y so Var [Y ] ≤ 1. Similar to the proof
of Theorem 17, we want to draw independent sample of Y and take average to approximate
dTV (µS , νS). However, here µS(σ) = Zσ

µ/Zµ and νS(σ) = Zσ
ν /Zν . An additional problem is that

we cannot exactly compute the weight Zσ
µ and Zσ

ν for each partial configuration σ ∼ µS .
First note that we can boost the success probability of conditional counting oracle from

0.99 to 1− δ by calling it independently for O(log 1
δ ) times and take the median. Let δ = ε2

320 .

Call conditional counting oracles with S = V to obtain Ẑµ and Ẑν that approximate partition
functions Zµ and Zν with relative error bound ε

8 . We may assume both counting oracles succeed,

which happens with probability at least 1− δ. Similarly, we first define the random variable Ŷ
by the following process:

1. Call sampling oracle of µ to obtain one sample σ ∈ {±}V such that dTV (σ, µ) ≤ ε
8 , and

we use σS ∈ {±}S as our sample.

2. Call conditional counting oracles to obtain ẐσS
µ and ẐσS

ν with an error bound ε/8 and

success probability 1− δ. Compute µ̂S(σS) = ẐσS
µ /Ẑµ and ν̂S(σS) = ẐσS

ν /Ẑν .

3. Define Ŷ = max (0, 1− ν̂S(σS)/µ̂S(σS)), and in particular, Ŷ = 0 if µ̂S(σ) = 0.

Let T = 64
ε2
, we present our algorithm by following process:

• Draw T samples Ŷ1, Ŷ2, . . . , Ŷn of random variable Ŷ .

• Output the average d̂ = 1
T

∑T
i=1 Ŷi.
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The running time of our algorithm is (T ct
G ( ε8) + T sp

G ( ε8)) · T ·O(log 1
δ ).

We now analyze the approximation error. First note that the probability that all conditional
counting oracles success is (1 − ε2

320)
2T+2 > 0.98 and dTV (σ, µ) ≤ ε

8 implies dTV (σS , µS) ≤ ε
8 .

Compared to the proof of Theorem 17, the difference is that we can only compute ẐσS
µ and ẐσS

ν

approximately. However, the error can still be bounded. We prove that: for σS with µS(σS) > 0,(
1− 5ε

8

) νS(σS)
µS(σS)

≤ ν̂S(σS)
µ̂S(σS)

≤
(
1 + 5ε

8

) νS(σS)
µS(σS)

. Since ν̂S(σS)
µ̂S(σS)

= Ẑ
σS
ν

Ẑ
σS
µ

Ẑµ

Ẑν
and νS(σS)

µS(σS)
= Z

σS
ν

Z
σS
µ

Zµ

Zν
,

ν̂S(σS)

µ̂S(σS)
=

ẐσS
ν

ẐσS
µ

Ẑµ

Ẑν

≤
ZσS
ν (1 + ε

8)

ZσS
µ (1− ε

8)

Zµ(1 +
ε
8)

Zν(1− ε
8)

<

(
1 +

5ε

8

)
νS(σS)

µS(σS)
.

The other side of the inequality can be proved similarly. The rest of the proof follows from the
proof of Theorem 17.

Theorem 13 is a simple corollary of Theorem 20, which is proved in section 6.3.

5 The algorithm for instances with small parameter distance

Let µ and ν be two general Gibbs distributions (including hardcore and Ising models) on the
same graph G = (V,E) with n = |V |. Let wµ(σ) and wν(σ) be the weights of µ and ν on
configuration σ ∈ {±}V . In this section, we focus on the case where the parameter distance
dpar(µ, ν) is small. We will first give a basic algorithm for instances satisfying Condition 21, and
then verify the Condition 21 for Ising models with small parameter distance. We next give a
more advanced algorithm for hardcore models with small parameter distance.

5.1 Basic algorithm

Define random variable

W ≜
wν(σ)

wµ(σ)
, where σ ∼ µ. (23)

Condition 21. Let K,L ≥ 1 be two parameters. Two Gibbs distributions µ and ν satisfy that

• ν is absolutely continuous with respect to µ: for all σ ∈ {±}V , if µ(σ) = 0, then ν(σ) = 0;

•
√

Var [W ] ≤ KdTV (µ, ν);

• E [W ] ≥ 1
L .

Theorem 22. There exists an algorithm such that given two Gibbs distributions µ and ν on the
same graph G = (V,E), and any 0 < ε < 1, if µ and ν satisfy Condition 21 with K and L, and
both admit sampling and approximate counting oracles with cost functions T sp

G (·) and T ct
G (·), then

it returns a random number d̂ in time O(T ct
G ( ε4) + T · T sp

G ( 1
100T )), where T = O(L

2K2

ε2
), such that

Pr
[
(1− ε)dTV (µ, ν) ≤ d̂ ≤ (1 + ε)dTV (µ, ν)

]
≥ 2

3
.

Proof. Since ν is absolutely continuous with respect to µ (ν ≪ µ), we can compute that:

dTV (µ, ν) =
1

2

∑
σ∈{±}V

|µ(σ)− ν(σ)| = 1

2

∑
σ∈{±}V :µ(σ)>0

µ(σ)

∣∣∣∣1− ν(σ)

µ(σ)

∣∣∣∣
=

1

2

∑
σ∈{±}V :µ(σ)>0

µ(σ)

∣∣∣∣1− wν(σ)

wµ(σ)

Zµ

Zν

∣∣∣∣ = Zµ

2Zν

∑
σ∈{±}V :µ(σ)>0

µ(σ)

∣∣∣∣Zν

Zµ
− wν(σ)

wµ(σ)

∣∣∣∣
=

Zµ

2Zν
E [|E [W ]−W |] , (24)
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where in the last step we use the fact that if ν ≪ µ, then E [W ] =
∑

σ∈{±}V :µ(σ)>0
wµ(σ)
Zµ

wν(σ)
wµ(σ)

=
Zν
Zµ

. We next use sampling oracles to define a random variable Ŵ ∈ [0,+∞), which serves as an

approximation of the random variable W in (23). Define

T ≜

⌈
104L2K2

ε2

⌉
.

1. Call the sampling oracle of µ to obtain a random σ ∈ {±}V such that dTV (σ, µ) ≤ 1
100T .

2. Compute Ŵ = wν(σ)
wµ(σ)

. In particular, if wµ(σ) = 04, then we set Ŵ = 0.

Given the random variable Ŵ , our algorithm is given by the following processes:

Basic algorithm for instances satisfying Condition 21

• Call approximate counting oracles to obtain Ẑµ and Ẑν with error ε
4 .

• Draw T samples Ŵ1, . . . , ŴT from Ŵ independently.

• Compute W̄ = 1
T

∑T
i=1 Ŵi.

• Compute Ē = 1
T

∑T
i=1 |Ŵi − W̄ |.

• Return d̂ =
Ẑµ

2Ẑν
Ē.

The total running time of the above algorithm is

2T ct
G

(ε
4

)
+O

(
T · T sp

G

(
1

100T

))
.

We remark that if both sampling and approximate counting can be solved in polynomial time,
i.e., for any δ ∈ (0, 1), T ct

G (δ), T sp
G (δ) = poly(nδ ), where n is the number of vertices in G, then

the above running time is poly(nLKε ).
We now prove the correctness of the algorithm. First, due to the definition of approximate

counting oracle, with probability at least 0.98, we can bound the error from ẐµẐν as follows:(
1− 3ε

4

)
Zµ

Zν
≤ (1− ε/4)Zµ

(1 + ε/4)Zν
≤ Ẑµ

Ẑν

≤ (1 + ε/4)Zµ

(1− ε/4)Zν
<

(
1 +

3ε

4

)
Zµ

Zν
. (25)

Suppose we can access a perfect sampler of µ and we draw perfect samples W1, . . . ,WT of W .

For each pair of Wi and Ŵi, there exists a coupling of Wi, Ŵi such that Pr
[
Wi ̸= Ŵi

]
≤ 1

100T .

Then with probability at least 0.99, Wi = Ŵi for all 1 ≤ i ≤ T . Consider an ideal algorithm that
can use the perfect samples W1, . . . ,WT . Our real algorithm can be coupled successfully with
the ideal algorithm with probability at least 0.99. If we can show the ideal algorithm outputs
correct result with probability at least 0.96, then our real algorithm outputs correct result with
probability at least 0.95 > 2/3.

Now we assume all Wi are perfect samples of W . We compute W̄ = 1
T

∑T
i=1Wi and similarly

Ē and d̂. We only need to prove that (1− ε)d ≤ d̂ ≤ (1+ ε)d with probability at least 0.9, where
d = dTV (µ, ν). For every random variable Wi, by triangle inequality, we have

|E [W ]−Wi| − |W̄ −E [W ] | ≤ |W̄ −Wi| ≤ |E [W ]−Wi|+ |W̄ −E [W ] |.
4This case can happen because our sampling oracle is approximate.

21



Note that Ē = 1
T

∑T
i=1 |W̄ −Wi|. We have(

1

T

T∑
i=1

|E [W ]−Wi|

)
− |W̄ −E [W ] | ≤ Ē ≤

(
1

T

T∑
i=1

|E [W ]−Wi|

)
+ |W̄ −E [W ] |. (26)

By definition of W̄ , we have E
[
W̄
]
= E [W ] and Var

[
W̄
]
= Var[W ]

T . By Chebyshev’s inequality,

Pr

[
|W̄ −E [W ] | ≥ εd

10L

]
≤

100L2Var
[
W̄
]

ε2d2
=

100L2Var [W ]

Tε2d2
≤ 100L2K2d2

Tε2d2
≤ 0.01, (27)

where the second inequality follows from Condition 21. Next, consider the random variable

R ≜ |E [W ]−W |.

By the definition of R and the variance bound in Condition 21, we know that

Var [R] ≤ E
[
R2
]
= E

[
(E [W ]−W )2

]
= Var [W ] ≤ K2d2.

Note that 1
T

∑T
i=1 |E [W ] − Wi| is the average of T i.i.d. random samples of R. Denote

R̄ ≜ 1
T

∑T
i=1 |E [W ]−Wi|. Note that Var

[
R̄
]
= Var[R]

T . By Chebyshev’s inequality, we have

Pr

[∣∣R̄−E [R]
∣∣ ≥ εd

10L

]
≤ 100L2Var [R]

Tε2d2
≤ 100L2K2d2

Tε2d2
≤ 0.01. (28)

Combining (26), (27), (28), and a union bound, we have

Pr

[
|Ē −E [R] | ≤ εd

5L

]
≥ 0.98. (29)

Assume two good events in (29) and (25) both hold, which happens with probability at least

0.96. The final output d̂ =
Ẑµ

2Ẑν
Ē satisfies

d̂ =
Ẑµ

2Ẑν

Ē ≤ (1 + 3ε/4)Zµ

2Zν
·
(
E [R] +

εd

5L

)
≤
(
1 +

3ε

4

)
Zµ

2Zν
E [R] +

Zµ

ZνL
· ε

10
·
(
1 +

3ε

4

)
· d.

By (24), we have
Zµ

2Zν
E [R] = d. By Condition 21, we have

Zµ

ZνL
= 1

LE[W ] ≤ 1. Therefore,

d̂ ≤
(
1 +

3ε

4

)
d+

ε

10
·
(
1 +

3ε

4

)
· d < (1 + ε)d.

A similar argument gives a lower bound d̂ ≥ (1− ε)d.

5.2 Advanced algorithm for hardcore model

We give the following algorithm for hardcore models with small parameter distance.

Theorem 23. Let θ = 10−10 ε1/4

n5/2 . There exists an algorithm such that given two hardcore models
µ and ν on the same graph G = (V,E), and any 0 < ε < 1, if µ and ν both satisfy uniqueness

condition in (1) and dpar(µ, ν) < θ, then it returns a random number d̂ in time Õ
(
n7

ε2
+ n6.5

ε9/4

)
such that (1− ε)dTV (µ, ν) ≤ d̂ ≤ (1 + ε)dTV (µ, ν) with probability at least 2/3.
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Let λµ and λν be external fields of two hardcore models µ and ν, respectively. For simplicity
of the notation, we denote

D = dpar(µ, ν) = ∥λµ − λν∥∞ < θ = 10−10
ε1/4

n5/2
,

d = dTV (µ, ν) .

As discussed in the algorithm overview, we divide the vertices of G into two parts: the ”big”
vertices and the ”small” vertices. Define the threshold parameter

κ ≜ 10−9
ε1/4

n3/2
= Θ

(
ε1/4

n3/2

)
.

Define two sets of vertices B and S in graph G:

B = {v ∈ V | min{λµ
v , λ

ν
v} ≥ κ} ,

S = V \B = {v ∈ V | min{λµ
v , λ

ν
v} < κ} .

Recall µB and νB are the marginal distributions of µ and ν on B, respectively. Let ΩB ⊆ {±}B
be the support of both µB and νB. By the definition of B, for any x ∈ ΩB, all vertices v ∈ B
with xv = +1 forms an independent set in G. For any x ∈ ΩB, let µ

x
S and νxS be the marginal

distributions of µ and ν on S conditioned on x. The TV-distance between µ and ν can be
represented by

d =
1

2

∑
σ∈{±}V

|µ(σ)− ν(σ)| = 1

2

∑
x∈ΩB

∑
y∈{±}S

|µB(x)µ
x
S(y)− νB(x)ν

x
S(y)|

=
1

2

∑
x∈ΩB

µB(x)
∑

y∈{±}S

∣∣∣∣ νB(x)µB(x)
νxS(y)− µx

S(y)

∣∣∣∣. (30)

Define the function f : ΩB → R as

f(x) ≜
1

2

∑
y∈{±}S

∣∣∣∣ νB(x)µB(x)
νxS(y)− µx

S(y)

∣∣∣∣ . (31)

The calculation shows that dTV (µ, ν) = Ex∼µB [f(x)]. In a high-level view, our algorithm wants
to draw i.i.d. samples x ∼ µB and compute values f(x) and then output the average value.
Formally, we have the following lemmas. Let n denote the number of vertices in G.

Lemma 24. The variance Varx∼µB [f(x)] = Oη(d
2) · (n3 + n/κ), where Oη holds a constant

depending only on the gap η in the uniqueness condition in (1).

Lemma 25. There exists a randomized data structure satisfies that

• the data structure can be constructed in time Õ(n
7

ε2
+ n6.5

ε9/4
) and the construction succeeds

with probability at least 0.99;

• if the data structure is constructed successfully, then given any x ∈ ΩB, it deterministically
answers an f̂(x) ≥ 0 in time O(n4) such that

|f̂(x)− f(x)| ≤ ε

50
· d.
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Lemma 24 can be used to control the variance of f(x). Lemma 25 is the main technical part
of our algorithm. We first assume both Lemma 24 and Lemma 25 hold and prove Theorem 23.
The proofs of Lemma 24 and Lemma 25 are given in Section 5.2.1 and 5.2.2, respectively.

Proof of Theorem 23. Let T = O(n
3+n/κ
ε2

) = O(n
3

ε2
+ n5/2

ε9/4
) be large enough.

The algorithm for hardcore model

• Construct the data structure in Lemma 25;

• Draw T independent approximate samples x1, x2, . . . , xT from the marginal distri-
bution µB with dTV (µB, xi) ≤ 1

100T .

• Use the data structure to compute f̂(x1), f̂(x2), . . . , f̂(xT ).

• Return d̂ = 1
T

∑T
i=1 f̂(xi).

Consider an ideal algorithm A∗ that draw perfect samples x1, . . . , xT and exactly compute
the values of f(x1), . . . , f(xT ). Let d

∗ denote the output 1
T

∑T
i=1 f(xi). We have E [d∗] = d and

the variance of d∗ is
VarµB [f ]

T . By our choice of T and the variance bound in Lemma 24, using
Chebyshev’s inequality, we have

Pr
[
|d∗ − d| ≥ ε

10
d
]
≤ 0.01.

Consider our real algorithm A. All the approximate samples x1, . . . , xT in A can be coupled
successfully with perfect samples with probability at least 1 − T · 1

100T = 0.99. Also that the
data structure in A is constructed successfully, which happen with probability at least 0.99.
By Lemma 25, there exists a coupling of A and A∗ such that with probability at least 0.98,
|d̂− d∗| ≤ ε

50d. Hence, using a union bound, we have

Pr
[
(1− ε)d ≤ d̂ ≤ (1 + ε)d

]
≥ 0.97 >

2

3
.

The total running time is bounded by

Õ

(
n7

ε2
+

n6.5

ε9/4

)
+O

(
n4 · T

)
= Õ

(
n7

ε2
+

n6.5

ε9/4

)
.

5.2.1 Analyze the variance of the estimator (Proof of Lemma 24)

Before we prove the lemma, we first remark that one can show for any x ∈ ΩB, |f(x)−1| ≤ O(nκd),

which implies the O(n
2

κ2 d
2) variance bound. This bound gives a polynomial-time algorithm but

the degree of polynomial is higher. If we use this bound, then in the proof of Theorem 23, it
requires O( n2

κ2ε2
) samples x ∼ µB and Lemma 25 computes each value of f̂(x) in a super-linear

time. Alternatively, we give a more technical analysis to achieve a better dependency on κ,
which gives a better running time of our algorithm.

We bound the variance of f(x) by bounding the second moment of EµB

[
f2
]
= Ex∼µB

[
f2(x)

]
.
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We first need the following upper bound on the value of f(x):

f(x) =
1

2

∑
y∈{±}S

∣∣∣∣ νB(x)µB(x)
νxS(y)− µx

S(y)

∣∣∣∣
(by triangle inequality) ≤ 1

2

∣∣∣∣ νB(x)µB(x)
− 1

∣∣∣∣ ∑
y∈{±}S

νxS(y) +
1

2

∑
y∈{±}S

|νxS(y)− µx
S(y)|

=
1

2

∣∣∣∣ νB(x)µB(x)
− 1

∣∣∣∣+ dTV (νxS , µ
x
S) .

We have the following upper bound on the dTV (νxS , µ
x
S).

Lemma 26. for any x ∈ ΩB, it holds that dTV (νxS , µ
x
S) ≤ 4nD.

The proof of Lemma 26 will be given later. Assume Lemma 26 holds. Since f(x) ≥ 0, we
can upper bound

EµB

[
f2
]
≤ 1

4
Ex∼µB

[(
νB(x)

µB(x)
− 1

)2
]
+ 4nDEx∼µB

[∣∣∣∣ νB(x)µB(x)
− 1

∣∣∣∣]+ 16n2D2

=
1

4
Ex∼µB

[(
νB(x)

µB(x)
− 1

)2
]
+ 8nD · dTV (νB, µB) + 16n2D2

≤ 1

4
Ex∼µB

[(
νB(x)

µB(x)
− 1

)2
]
+ 4 · 108n2d2, (32)

where the last inequality follows from the fact d = dTV (µ, ν) > dTV (µB, νB) and d ≥ 1
5000D.

Define a function h(x) = νB(x)
µB(x) . We have EµB [h] = 1. Our task is reduced to bound the

variance VarµB [h] = Varx∼µB [h(x)]. We will use the following Poincaré inequality (i.e. the
spectral gap of the Glauber dynamics) for the marginal distribution µB. For any subset Λ ⊆ V ,
recall that ΩΛ denotes the support of µΛ.

Lemma 27 (CFYZ21). Since the hardcore model (G,λµ) is in the uniqueness regime in (1)
with constant gap η > 0. For any function g : ΩB → R, it holds that

VarµB [g] ≤ Cη

∑
v∈B

∑
σ∈ΩB−v

µB−v(σ)Varµσ
B
[g] ,

where B − v denote the set B \ {v} and Cη is a constant depending on η.

The Poincaré inequality in [CFYZ21] is stated from the entire Gibbs distribution µ. One
can lift it to marginal distribution µB. For the completeness, we give a proof in Appendix B.

Fix a vertex v ∈ B and a σ ∈ ΩB−v. Let σ
v+ denote a configuration in {±}B obtained by

extending σ further by setting v to +1. Define σv− similarly. By the definition of variance and
the definition of the function h = νB

µB
, we can write

Varµσ
B
[h] = µσ

v (+1)µσ
v (−1)(h(σv+)− h(σv−))2

=

(
νB−v(σ)

µB−v(σ)

)2

µσ
v (+1)µσ

v (−1)
(
νσv (+1)

µσ
v (+1)

− νσv (−1)
µσ
v (−1)

)2

.

Note that Varµσ
B
[h] = 0 if either µσ

v (+1) = 0. We assume that µσ
v (+1) > 0, then for every

neighbor u of vertex v, it must hold that if u ∈ B, then σu = −1. We claim the following bounds.
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Claim 28. The following bounds hold

• λµ
v/10 ≤ µσ

v (+1) ≤ λµ
v ;

• |µσ
v (+1)− νσv (+1)| ≤ 80nDµσ

v (+1) + 4D;

• νB−v(σ)
µB−v(σ)

≤ 2.

Assume the above claim holds, which will be proved later. Let p = µσ
v (+1). By our choices

of parameters, since D ≤ θ is sufficient small, µσ
v (+1) ≥ κ

10 ≥ 100nDµσ
v (+1) + 4D. We have(

νσv (+1)

µσ
v (+1)

− νσv (−1)
µσ
v (−1)

)2

≤
(
4D + 80nDµσ

v (+1)

p(1− p)

)2

.

Using Claim 28, the variance can be bounded by

Varµσ
B
[h] ≤ 4p(1− p)

(80nDp+ 4D)2

p2(1− p)2
= O(D2) · (20np+ 1)2

p(1− p)
≤ O(D2) · (n2p+ n+ 1/p)

≤ O(D2) ·
(
n2 +

1

κ

)
.

Using Lemma 27 and the above upper bound, we have

VarµB [h] ≤ Cη

∑
v∈B

∑
σ∈ΩB−v

µB−v(σ)Varµσ
B
[h]

≤ Oη(D
2)
∑
v∈B

(
n2 +

1

κ

)
(by Lemma 15 ) = Oη(d

2) ·
(
n3 +

n

κ

)
. (33)

Hence, using (32), the variance of f(x) is at most

VarµB [f ] ≤ EµB

[
f2
]
≤ VarµB [h] +Oη(n

2d2) = Oη(d
2) ·
(
n3 +

n

κ

)
.

Proofs of technical lemmas and claims We first give two general lemmas (Lemma 29 and
Lemma 30) that will be used in later proofs. We then prove all technical lemmas and claims
appeared in the proof of Lemma 24.

Define the conditional partition function. Fix a configuration x ∈ {±}B. Define Zx
S,µ as the

conditional partition function defined by

Zx
S,µ ≜

∑
y∈{±}S :µ(x+y)>0

∏
v∈S:yv=+1

λµ
v .

Intuitively, Zx
S,µ is the total weights of y ∈ {±}S such that x+ y is a valid configuration (forms

an independent set in G), where x+ y ∈ {±}V is the concatenation of x and y. Alternatively,
Zx
S,µ can be interpreted as follows. Let NG(v) denote the set of neighbors of v in G. Given x,

one can remove all vertices v ∈ S from S such that there exists u ∈ NG(v) ∩B with xu = +1.
Let Sx ⊆ S denote the set of remaining vertices:

Sx = S \ {v ∈ S | ∃u ∈ NG(v) ∩B s.t. xu = +1}. (34)

Then Zx
S,µ is the partition function for the hardcore model in induced subgraph G[Sx]. The

following property of the conditional partition function will be used in our proofs.
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Lemma 29. Suppose κ+ θ < 1/(10n). For any x ∈ {±}B, it holds that

• 1 ≤ Zx
S,µ, Z

x
S,ν < 2;

• |Zx
S,µ − Zx

S,ν | ≤ 2nD.

Proof. Since the empty set contributes the weight 1 to both Zx
S,µ, so Zx

S,µ ≥ 1. For the upper
bound, Let λmax = maxv∈S max{λµ

v , λν
v}. By the definition of S, we have λmax ≤ κ + D <

κ+ θ < 1
10n . Hence Zx

S,µ ≤ (1 + 1/(10n))n < 2. The same bound holds for Zx
S,ν .

For any independent set I in graph G[Sx], the difference of the weights is
∣∣∏

v∈I λ
ν
v −

∏
v∈I λ

µ
v

∣∣.
We first show the difference of the weights of I is at most (λmax+D)|I|−λ|I|max. Assume λν

v = λµ
v+δv,

where |δv| ≤ D. Then∣∣∣∣∣∏
v∈I

λν
v −

∏
v∈I

λµ
v

∣∣∣∣∣ =
∣∣∣∣∣∏
v∈I

(λµ
v + δv)−

∏
v∈I

λµ
v

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

A⊆I:A ̸=∅

∏
v∈A

δv
∏

u∈I\A

λµ
u

∣∣∣∣∣∣
≤

∑
A⊆I:A ̸=∅

∏
v∈A

D
∏

u∈I\A

λmax

= (λmax +D)|I| − λ|I|max. (35)

The number of independent sets of size k in G[Sx] is at most
(
n
k

)
, where n is the number of

vertices in G. We have

|Zx
S,ν − Zx

S,µ| ≤
n∑

k=0

(
n

k

)
(λmax +D)k −

n∑
k=0

(
n

k

)
λk
max

= (1 + λmax +D)n − (1 + λmax)
n

= (1 + λmax)
n

((
1 +

D

1 + λmax

)n

− 1

)
by (λmax, D < 1/(10n)) ≤ 2nD. (36)

This proves the lemma.

The second general lemma we will use is the following bound on the marginal ratio.

Lemma 30. Suppose κ+ θ < 1/(10n) and θ/κ < 1/(10n). For any x ∈ ΩB, it holds that∣∣∣∣ νB(x)µB(x)
− 1

∣∣∣∣ ≤ 10nD

κ
.

Proof. Define g(x) = νB(x)
µB(x) . For x ∈ ΩB ⊆ {±}B and y ∈ {±}S , we use x+ y to denote a full

configuration in {±}V obtained by concatenating x and y. We have

µB(x) =
∑

y∈{±}S
µ(x+ y) =

∏
v∈B:xv=1 λ

µ
v · Zx

S,µ

Zµ
, and

νB(x) =
∑

y∈{±}S
ν(x+ y) =

∏
v∈B:xv=1 λ

ν
v · Zx

S,ν

Zν
.

Then we have

g(x) =
νB(x)

µB(x)
=

( ∏
v∈B:xv=1

λν
v

λµ
v

)
·
Zx
S,ν

Zx
S,µ

· Zµ

Zν
.
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Denote α =
∏

v∈B:xv=1
λν
v

λµ
v
, β =

Zx
S,ν

Zx
S,µ

and γ =
Zµ

Zν
. We analyze each term one by one.

We have D/κ ≤ θ/κ ≤ 1/(10n) and

α ≤
∏

v∈B:xv=1

λµ
v +D

λµ
v
≤
(
1 +

D

κ

)|B|
≤
(
1 +

D

κ

)n

≤ 1 +
2nD

κ
.

A similar argument gives a lower bound α ≥ 1− 2nD
κ .

For the second term β, using Lemma 29, we have

|β − 1| =

∣∣∣∣∣Zx
S,ν

Zx
S,µ

− 1

∣∣∣∣∣ = |Zx
S,ν − Zx

S,µ|
Zx
S,µ

≤ |Zx
S,ν − Zx

S,µ| ≤ 2nD.

Finally, for γ =
Zµ

Zν
, we have the following equivalent form

γ =
Zµ

Zν
=

∑
x∈ΩB

(
∏

v∈B:xv=+1 λ
µ
v · Zx

S,µ)∑
x∈ΩB

(
∏

v∈B:xv=+1 λ
ν
v · Zx

S,ν)
.

Using the bound for α and β, since θ/κ < 1/(10n) and θ + κ < 1/(10n), we have

1− 4nD

κ
< γ ≤

(
1 +

2nD

κ

)
(1 + 2nD) < 1 +

4nD

κ
. (37)

Combining the bounds for α, β and γ, since D/κ ≤ θ/κ < 1/(10n), we have

1− 10nD

κ
< g(x) ≤

(
1 +

2nD

κ

)
(1 + 2nD)

(
1 +

4nD

κ

)
< 1 +

10nD

κ
.

Proof of Lemma 26. For any y ∈ {±}S such that y+ x forms an independent set, we can bound

|νxS(y)− µx
S(y)| ≤

∣∣∣∣∣
∏

v∈S:yv=+1 λ
ν
v

Zx
S,ν

−
∏

v∈S:yv=+1 λ
µ
v

Zx
S,µ

∣∣∣∣∣
(by Zx

S,µ, Z
x
S,ν ≥ 1) ≤

∣∣∣∣∣∣Zx
S,µ

∏
v∈S:yv=+1

λν
v − Zx

S,ν

∏
v∈S:yv=+1

λµ
v

∣∣∣∣∣∣
(triangle ineq.) ≤ Zx

S,µ

∣∣∣∣∣∣
∏

v∈S:yv=+1

λν
v −

∏
v∈S:yv=+1

λµ
v

∣∣∣∣∣∣+ ∣∣Zx
S,µ − Zx

S,ν

∣∣ ∏
v∈S:yv=+1

λµ
v . (38)

We bound each term separately. Recall that λmax = maxv∈S max{λµ
v , λν

v} < κ+θ. By Lemma 29,
we have Zx

S,µ < 2. Using (35), we have

Zx
S,µ

∣∣∣∣∣∣
∏

v∈S:yv=+1

λν
v −

∏
v∈S:yv=+1

λµ
v

∣∣∣∣∣∣ ≤ 2
(
(λmax +D)∥y∥+ − λ∥y∥+max

)
, (39)

where ∥y∥+ is the number of +1s in y. For the second term, using Lemma 29, we have∏
v∈S:yv=+1

λµ
v

∣∣Zx
S,µ − Zx

S,ν

∣∣ ≤ 2nDλ∥y∥+max . (40)
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The number of independent sets of size k is at most
(
n
k

)
. We have

dTV (νxS , µ
x
S) =

1

2

∑
y∈{±}S

|νxS(y)− µx
S(y)|

≤
n∑

k=0

(
n

k

)(
(λmax +D)k − λk

max

)
+ nD

n∑
k=0

(
n

k

)
λk
max

(by the same calculation as (36)) ≤ 2nD + nD(1 + λmax)
n

(by λmax < 1/(10n)) < 4nD.

This proves the upper bound on TV distance.

Proof of Claim 28. Recall that σ is a configuration in ΩB−v, and σv+ , σv− are configurations
in {±}B. For simplicity of the notation, we use Z+

µ to denote Zσv+

S,µ and Z−µ to denote Zσv−
S,µ .

Similarly, we define Z+
ν , Z−ν . We have

|µσ
v (+1)− νσv (+1)| =

∣∣∣∣∣ λµ
vZ+

µ

Z−µ + λµ
vZ

+
µ
− λν

vZ
+
ν

Z−ν + λν
vZ

+
ν

∣∣∣∣∣ =
∣∣∣∣∣ λµ

vZ+
µ Z−ν − λν

vZ
+
ν Z−µ

(Z−µ + λµ
vZ

+
µ )(Z−ν + λν

vZ
+
ν )

∣∣∣∣∣
≤
∣∣λµ

vZ
+
µ Z−ν − λν

vZ
+
ν Z−µ

∣∣
≤ Z+

ν Z−µ |λµ
v − λν

v |+ λµ
v |Z+

µ Z−ν − Z+
ν Z−µ |.

Using Lemma 29, we have Z+
ν Z−µ |λ

µ
v − λν

v | ≤ 4D. We also know that |Z+
µ − Z+

µ | ≤ 2nD and
|Z−µ − Z−ν | ≤ 2nD. Therefore, by using the triangle inequality, we have

|Z+
µ Z−ν − Z+

ν Z−µ | ≤ Z+
µ |Z−ν − Z−µ |+ Z−µ |Z+

µ − Z+
ν | ≤ 8nD.

Therefore, we have

|µσ
v (+1)− νσv (+1)| ≤ 4D + 8nDλµ

v .

Next, we bound the value of µσ
v (+1). To sample from the distribution µσ

v , one can first
sample all the neighbors u ∈ NG(v) \B of v, then sample the value of v further conditional on
the configuration of NG(v). Suppose with probability q, all vertices u ∈ NG(v) \B are sampled
to be −1. Note that q ≥ ( 1

1+λmax
)n ≥ ( 1

1+κ+D )n. Since κ + θ < 1/(4n) and D < θ, we have

q ≥ 1
2 . Conditional on this event, v takes value +1 with probability λµ

v

1+λµ
v
≥ λµ

v
5 , where we use

the fact that λµ
v ≤ λc(∆) ≤ 4. We have the lower bound µσ

v (+1) ≥ 1
10λ

µ
v . On the other hand, we

have the upper bound µσ
v (+1) ≤ λµ

v

1+λµ
v
≤ λµ

v . Combining together, we have

λµ
v

10
≤ µσ

v (+1) ≤ λµ
v .

The above bound implies

|µσ
v (+1)− νσv (+1)| ≤ 4D + 80nDµσ

v (+1).

For the last bound, using Lemma 30, we have

νB−v(σ)

µB−v(σ)
=

νB(σ
v+) + νB(σ

v−)

µB(σv+) + µB(σv−)
≤ 1 +

10nD

κ
< 2,

where the last inequality follows from the fact that D/κ < 1/(10n).
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5.2.2 Approximate the value of the estimator (Proof of Lemma 25)

Define ∥y∥+ be the number of +1s in y. Let t ≥ 0 be an integer. The specific choice of t will be
fixed later. Define the truncated function ft of f defined by

ft(x) ≜
1

2

∑
y∈{±}S :∥y∥+≤t

∣∣∣∣ νB(x)µB(x)
νxS(y)− µx

S(y)

∣∣∣∣ .
Compared to f in (31), ft only includes the size at most t independent sets of the induced

subgraph G[Sx], where Sx is defined in (34). We have the following relation between ft and f .

Lemma 31. Suppose κ+ θ < 1/(10n) and θ/κ < 1/(10n). For any integer t ≥ 0, any x ∈ ΩB,

0 ≤ f(x)− ft(x) ≤ 106
(
1 +

n

10

)t+1
κtnt+2 · d ≜ η(κ, t) · d. (41)

Proof. First, by definition, f(x)− ft(x) ≥ 0. Recall that g(x) = νB(x)
µB(x) . Let Ω

x
S ⊆ {±}S be the

set over all y such that x+ y forms an independent set in G. We have

f(x)− ft(x) =
1

2

∑
y∈Ωx

S :∥y∥+≥t+1

|g(x)νxS(y)− µx
S(y)|

(by Lemma 30) ≤ 1

2

∑
y∈Ωx

S :∥y∥+≥t+1

|νxS(y)− µx
S(y)|+

5nD

κ
·

∑
y∈Ωx

S :∥y∥+≥t+1

νxS(y)

Recall that λmax = maxv∈S max{λµ
v , λν

v}. Using the result in (38), (39) and (40), we have

∑
y∈Ωx

S :∥y∥+≥t+1

|νxS(y)− µx
S(y)| ≤

n∑
k=t+1

(
n

k

)(
(λmax +D)k − λk

max

)
+ nD

n∑
k=t+1

(
n

k

)
λk
max.

Let ϕ = κ+D. Then λmax ≤ ϕ and (λmax +D)k − λk
max ≤ (ϕ+D)k − ϕk = ϕk((1 +D/ϕ)k − 1).

Note that D/ϕ < θ/κ < 1/(4n). The last term is at most ϕk · (2kD)/ϕ ≤ ϕk−1 · (2nD). Then

f(x)− ft(x) ≤
nD

κ

n∑
k=t+1

(
n

k

)
ϕk +

nD

2

n∑
k=t+1

(
n

k

)
ϕk +

5nD

κ

n∑
k=t+1

(
n

k

)
ϕk ≤ 8nD

κ

n∑
k=t+1

(
n

k

)
ϕk

≤ 8nD

κ

∑
k≥t+1

(nϕ)k

Note that ϕ < κ+ θ < 1/(4n) and ϕn < 1/10. Also note that ϕ ≤ (1 + 1/n)κ. The last term is
at most 10nD

κ (1 + 1/(10n))t+1 κt+1nt+1. The lemma holds by using D ≤ 5000d.

Next, we give our algorithm to approximate ft(x). We can expand ft as follows

ft(x) ≜
1

2

∑
y∈{±}S :∥y∥+≤t

∣∣∣∣ νB(x)µB(x)
νxS(y)− µx

S(y)

∣∣∣∣
=

1

2

∑
y∈{±}S :∥y∥+≤t

∣∣∣∣∣
( ∏

v∈B:xv=1

λν
v

λµ
v

)
·
Zx
S,ν

Zx
S,µ

· Zµ

Zν
· νxS(y)− µx

S(y)

∣∣∣∣∣ . (42)

We now introduce the approximation of Zx
S,ν , Z

x
S,µ, µ

x
S , ν

x
S in the above formula. Let Ωx ⊆

{±}S be the set of all y ∈ {±}S such that x + y forms an independent set in graph G For
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any integer t ≥ 0, let Ωx
t be all y ∈ Ωx such that ∥y∥+ ≤ t. Define µ̃x

S,t as the distribution µx
S

restricted on Ωx
t . Formally,

∀y ∈ Ωx
t , µ̃x

S,t(y) =

∏
v∈S:yv=+1 λ

µ
v

Z̃x
S,µ(t)

and Z̃x
S,µ(t) =

∑
τ∈Ωx

t

∏
v∈S:τv=+1

λµ
v . (43)

Similarly, we can define ν̃xS,t and Z̃x
S,ν(t) from νxS . The following approximation lemmas hold.

Lemma 32. Suppose κ + θ < 1/(10n) and θ/κ < 1/(10n). For any integer t ≥ 0 and any
x ∈ ΩB, it holds that∣∣∣∣∣Zx

S,ν

Zx
S,µ

−
Z̃x
S,ν(t)

Z̃x
S,µ(t)

∣∣∣∣∣ ≤ η(κ, t) · d and

∣∣∣∣∣Zx
S,µ

Zx
S,ν

−
Z̃x
S,µ(t)

Z̃x
S,ν(t)

∣∣∣∣∣ ≤ η(κ, t) · d,

where η(κ, t) is defined in (41).

Proof. Due to the symmetry, we only consider the first term in our proof. Define Ωx
>t = Ωx \Ωx

t .
Because Zx

S,µ, Z̃
x
S,µ(t) ≥ 1, similar to the proof of Lemma 31, we have∣∣∣∣∣Zx

S,ν

Zx
S,µ

−
Z̃x
S,ν(t)

Z̃x
S,µ(t)

∣∣∣∣∣ ≤ ∣∣∣Z̃x
S,µ(t)Z

x
S,ν − Zx

S,µZ̃
x
S,ν(t)

∣∣∣
=

∣∣∣∣∣∣
∑
τ∈Ωx

t

∏
v∈S:τv=+1

λµ
v

∑
φ∈Ωx

∏
u∈S:φu=+1

λν
u −

∑
τ∈Ωx

t

∏
v∈S:τv=+1

λν
v

∑
φ∈Ωx

∏
u∈S:φu=+1

λµ
u

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
τ∈Ωx

t

∑
φ∈Ωx

>t

 ∏
v∈S:τv=+1

λµ
v

∏
u∈S:φu=+1

λν
u −

∏
v∈S:τv=+1

λν
v

∏
u∈S:φu=+1

λµ
u

∣∣∣∣∣∣
≤

t∑
i=0

n∑
j=t+1

(
n

i

)(
n

j

)(
(λmax +D)i+j − λi+j

max

)
.

In the proof of Lemma 31, we already show that (λmax +D)k − λk
max ≤ ϕk−1 · (2kD), where

ϕ = κ+ θ. Note that
(
n
j

)
≤ nj/(t+ 1)! and for any k, there are at most (t+ 1) pairs (i, j) s.t.

i+ j = k. We have∣∣∣∣∣Zx
S,ν

Zx
S,µ

−
Z̃x
S,ν(t)

Z̃x
S,µ(t)

∣∣∣∣∣ ≤ 2(n+ t)D

ϕt!

n+t∑
k=t+1

nk · ϕk ≤ 4nD

κ

∑
k≥t+1

(nϕ)t.

The last term is at most η(κ, t) · d.

Lemma 33. Suppose κ+ θ < 1/(10n) and θ/κ < 1/(10n). For any integer t ≥ 0, it holds that∑
y∈Ωx

t

|µ̃x
S,t(y)− µx

S(y)| ≤ η(κ, t) · d and
∑
y∈Ωx

t

|ν̃xS,t(y)− νxS(y)| ≤ η(κ, t) · d.

Proof. Due to the symmetry of µ and ν, we only prove the first term here. We know that
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Z̃x
S,µ(t) ≤ Zx

S,µ,∑
y∈Ωx

t

|µ̃x
S,t(y)− µx

S(y)| =
∑
y∈Ωx

t

|
∏

v∈S:yv=1 λ
µ
v

Z̃x
S,µ(t)

−
∏

v∈S:yv=1 λ
µ
v

Zx
S,µ

| =
Zx
S,µ − Z̃x

S,µ(t)

Z̃x
S,µ(t)Z

x
S,µ

∑
y∈Ωx

t

∏
v∈S:yv=1

λµ
v

=
Zx
S,µ − Z̃x

S,µ(t)

Z̃x
S,µ(t)Z

x
S,µ

Z̃x
S,µ(t) =

Zx
S,µ − Z̃x

S,µ(t)

Zx
S,µ

≤ Zx
S,µ − Z̃x

S,µ(t)

=
∑

y∈Ωx
>t

∏
v∈S:yv=1

λµ
v ≤

∑
y∈Ωx

>t

λ∥y∥+max ≤
n∑

k=t+1

(
n

k

)
ϕk ≤ 1

(t+ 1)!

∑
k≥t+1

(nϕ)k.

The last term is at most η(κ, t) · d.

Now, we are ready to give our algorithm. First consider the ratio R = Zν
Zµ

in (42). We have
the following algorithm to approximate R.

Lemma 34. If η(κ, t) ≤ ε
200 , θ/κ < 1/(10n), and θ + κ < 1/(10n), where η(κ, t) is defined

in (41), then there exists a randomized algorithm that computes a random number R̃ in time

T ′ · T sp
G (T ′/103) + T ′ ·O(nt), where T ′ = O(n

3+n/κ
ε2

) and T sp
G (·) is the cost of sample oracle for

µ, such that with probability at least 0.99,∣∣∣∣R̃− Zν

Zµ

∣∣∣∣ ≤ ε

100
d. (44)

We first prove Lemma 25 assuming Lemma 34. Lemma 34 will be proved later.

Proof of Lemma 25. We fix the parameter t = 4. Recall that κ = 10−9 ε1/4

n3/2 and θ = 10−10 ε1/4

n5/2 .

We can verify that η(κ, t) = 106
(
1 + n

10

)t+1
κtnt+2 ≤ ε

200 , θ + κ < 1/(10n), and θ/κ < 1/(10n).

In the construction step, we use Lemma 34 to compute the random number R̃. We say the
construction step succeeds if (44) is satisfied, which happens with probability at least 0.99.

In the query step, given any x ∈ ΩB, our data structure answers the following f̂(x):

f̂(x) =
1

2

∑
y∈Ωx

t

∣∣∣∣∣
( ∏

v∈B:xv=1

λν
v

λµ
v

)
·
Z̃x
S,ν(t)

Z̃x
S,µ(t)

· R̃ · ν̃xS,t(y)− µ̃x
S,t(y)

∣∣∣∣∣ . (45)

We bound the approximation error of f̂ . Define A =
(∏

v∈B:xv=1
λν
v

λµ
v

)
· Z̃x

S,ν(t)

Z̃x
S,µ(t)

· R̃ and

B =
(∏

v∈B:xv=1
λν
v

λµ
v

)
· Z

x
S,ν

Zx
S,µ
· Zν
Zµ

. By Lemma 29 and the analysis in the proof of Lemma 30, we

have
(∏

v∈B:xv=1
λν
v

λµ
v

)
< (1 + θ/κ)n < 2,

Zx
S,ν

Zx
S,µ
≤ 2, and Zν

Zµ
≤ 2. Also note that d ≤ 1. Using

Lemma 32 and our assumption on R̃, it holds that

|A−B| ≤ ε

25
d.

Using triangle inequality, we can bound

|f t(x)− f̂(x)| ≤ B
∑
y∈Ωx

t

|ν̃xS,t(y)− νxS(y)|+ |A−B|
∑
y∈Ωx

t

ν̃xS,t(y) +
∑
y∈Ωx

t

|µ̃x
S,t(y)− µx

S(y)|.

Using the fact B ≤ 8 and Lemma 33, we have |f t(x)− f̂(x)| ≤ ε
10d. By Lemma 31,

|f(x)− f̂(x)| ≤ ε

8
d.
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The construction step takes time T ′ · T sp
G (T ′/103) + T ′ · O(n4), where T ′ = O(n

3

ε2
+ n5/2

ε9/4
).

Since the hardcore model satisfies the uniqueness condition in (1), we have T sp
G (T ′/103) =

Oη(∆n log n
ε ) [CFYZ22, CE22]. The total construction time is Õ(n

7

ε2
+ n6.5

ε9/4
). For each query, the

running time is dominated by computing distributions µ̃x
S,t and ν̃xS,t, which is O(nt) = O(n4).

Finally, we prove Lemma 34.

Proof of Lemma 34. Recall our definition of µB and νB is that for any x ∈ ΩB,

µB(x) =

∏
v∈B:xv=1 λ

µ
vZx

S,µ

Zµ
, νB(x) =

∏
v∈B:xv=1 λ

ν
vZ

x
S,ν

Zν
.

We can compute that

Zν

Zµ
=
∑
x∈ΩB

µB(x)

∏
v∈B:xv=1 λ

ν
vZ

x
S,ν∏

v∈B:xv=1 λ
µ
vZx

S,µ

= Ex∼µB

[∏
v∈B:xv=1 λ

ν
vZ

x
S,ν∏

v∈B:xv=1 λ
µ
vZx

S,µ︸ ︷︷ ︸
≜Q(x)

]
.

We estimate Zν/Zµ by sampling x from µB, approximating Q(x) and taking the average. We

propose the algorithm as follow. Let T ′ = O(n
3+n/κ
ε2

) be a sufficiently large integer.

• Draw T ′ independent approximate samples x1, · · · , xT ′ from µB with dTV (µB, xi) ≤ 1
1000T ′ .

• Compute Q̃(x) =
∏

v∈B:xv=1 λ
ν
v Z̃

x
S,ν(t)∏

v∈B:xv=1 λ
µ
v Z̃

x
S,µ(t)

for x = x1, · · ·xT ′ , where Z̃x
S,µ(t), Z̃

x
S,ν(t) are defined

in (43).

• Compute R̃ = 1
T ′
∑T ′

i=1 Q̃(xi).

First, for any x ∈ ΩB, by Lemma 32, since η(κ, t) ≤ ε
200 and D/κ ≤ θ/κ ≤ 1/(10n),

∣∣∣Q(x)− Q̃(x)
∣∣∣ = ∣∣∣∣∣

∏
v∈B:xv=1 λ

ν
vZ

x
S,ν∏

v∈B:xv=1 λ
µ
vZx

S,µ

−
∏

v∈B:xv=1 λ
ν
vZ̃

x
S,ν(t)∏

v∈B:xv=1 λ
µ
v Z̃x

S,µ(t)

∣∣∣∣∣ =
∣∣∣∣∣Zx

S,ν

Zx
S,µ

−
Z̃x
S,ν(t)

Z̃x
S,µ(t)

∣∣∣∣∣ ∏
v∈B:xv=1

λν
v

λµ
v

≤ ε

200
d

(
κ+D

κ

)n

≤ εd

150
.

Recall h(x) = νB(x)/µB(x), the variance of Q(x) is

VarµB [Q] = Varx∼µB

[∏
v∈B:xv=1 λ

ν
vZ

x
S,ν∏

v∈B:xv=1 λ
µ
vZx

S,µ

]
= Varx∼µB

[
ZννB(x)

ZµµB(x)

]
=

Z2
ν

Z2
µ

VarµB [h] .

In (37), we showed that
Zµ

Zν
≤ 1 + 4nD

κ , which implies Z2
ν

Z2
µ
≤
(
1 + 4nD

κ

)2 ≤ e4/5. In (33), we also

proved that VarµB [h] ≤ Oη(d
2) ·
(
n3 + n

κ

)
. We can conclude that

VarµB [Q] ≤ Oη(d
2) ·
(
n3 +

n

κ

)
.

Assume that we have an ideal algorithm that draw perfect samples x1, . . . , xT ′ and exactly

compute Q(x1), · · · , Q(xT ′) and compute R∗ = 1
T ′
∑T ′

i=1Q(xi). Note T ′ = O(n
3+n/κ
ε2

). By
Chebyshev’s inequality, if T ′ is sufficiently large, we have

Pr

[
|R∗ − Zν/Zµ| ≥

εd

300

]
≤ 0.005.
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Note that
∣∣∣Q(x)− Q̃(x)

∣∣∣ ≤ εd
150 for all x ∈ ΩB. All the approximate samples x1, · · ·xT ′ can be

coupled successfully with perfect samples with probability at least 1− T ′ · 1
1000T ′ = 0.999. We

can couple our algorithm with ideal algorithm such that |R∗− R̃| ≤ εd
150 with probability at least

0.99. By a union bound, with probability at least 0.99,∣∣∣∣R̃− Zν

Zµ

∣∣∣∣ ≤ εd

150
+

εd

300
=

εd

100
.

The running time of our algorithm is T ′ · T sp
G (T ′/103) + T ′ ·O(nt) because each Q̃(x) can be

computed in time O(nt).

6 Proofs of algorithmic results

6.1 The general algorithm (Proof of Theorem 5)

Compute marginal lower bound In our main theorem, the input instance is promised to
be b-marginally bounded for some parameter b. However, the specific value of b is not given to
the algorithm. The following algorithm computes the tight value of marginal lower bound.

Lemma 35. There exists an algorithm such that given any hardcore or Ising model µ in graph
G = (V,E), it returns a value b in time at most (1/b)O(1/b)n for hardcore model and in time at
most O(n+m) for Ising model such that

b = min{µσ
v (c) | v ∈ V, σ is a feasible partial pinning, and µσ

v (c) > 0}. (46)

The proof of Lemma 35 will be given later. With this lemma, we can assume that the value
of b is known to the algorithm.

Pre-processing step For Ising model, we need the following pre-processing step to reduce
the general Ising model to the soft-Ising model. Recall that an Ising model (G = (V,E), J, h) is
said to be soft if h ∈ RV instead of h ∈ (R ∪ {±∞})V . There are three cases:

1. Case 1: If there exists v such that (hµv = +∞, hνv = −∞) or (hµv = −∞, hνv = +∞), we can
direct compute that dTV (µ, ν) = 1.

2. Case 2: If there exists v such that (hµv = ±∞, hνv ≠ ±∞) or (hµv ̸= ±∞, hνv = ±∞), without
loss of generality, we consider the case (hµv = +∞, hνv ̸= ±∞). We have

dTV (µ, ν) ≥ |µv(−)− νv(−)| = |0− νv(−)| = νv(−) ≥ b,

where the last inequality due to the marginal lower bound. We use additive-error algorithm
in Theorem 17 with additive error bε in this case. The running time is

O

(
T ct
G

(
bε

4

)
+

1

b2ε2

(
Twt
G + T sp

G

(
bε

4

)))
= O

(
T ct
G

(
bε

4

)
+

1

b2ε2

(
T sp
G

(
bε

4

)))
, (47)

where the equation holds because Twt
G = O(n+m) and we can assume T sp

G (·), T ct
G (·) is at

least Ω(n+m) since the algorithm needs to read all vertices and all edges.

3. Case 3: For all v ∈ V , if hνv = ±∞ or hµv = ±∞, then hνv = hµv . These vertices are fixed to
some value with probability 1. By the standard self-reducibility, one can remove all these
vertices and change external fields of neighbors to obtain two soft-Ising models. Formally,
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one can go through all vertices v ∈ V whose value is fixed as c ∈ {±}, for every free
neighbor u of v, update hµu ← hµu + Jµ

uvc and hνu ← hνu + Jν
uvc.

We remark that (1) the new soft-Ising models also have the same marginal lower bound
because we only remove vertices whose marginal lower bound is 1; (2) to sample from the
soft-Ising model, one can call sampling oracle on original model and do a projection; to
approximately count the partition function, one can use the approximating counting oracle
on the original model, because two partition functions differ only by an easy-to-compute
factor.

We also do the pre-processing step for hardcore model. A hardcore model (G,λ) is said to
be soft if λ ∈ RV

>0 instead of λ ∈ RV
≥0. There two cases.

1. Case 1: There exists v such that (λµ
v = 0, λν

v > 0) or (λµ
v > 0, λν

v = 0), then dTV (µ, ν) ≥ b.
We use additive-error algorithm to solve the problem in time (47).

2. Case 2: For all v, λµ
v = 0 if and only if λν

v = 0. We can simply remove all such vertices
and work on the soft-hardcore model on the remaining graph. Again, the marginal lower
bound and sampling/approximate counting oracles also work for new soft-hardcore model.

The main algorithm Since we work on soft models, b ≤ 1
2 . Define the parameters

CTV
par =

{
b3 hardcore model,
b2

2 Ising model.
, and θ =

{
b

2(1−b)n hardcore model,
1

2(n+3m) Ising model.

The algorithm computes the parameter distance dpar(µ, ν) in time O(n+m). If dpar(µ, ν) ≥ θ,
then by Lemma 15, dTV (µ, ν) ≥ θCTV

par , we use additive-error algorithm in Theorem 17 with

additive error θCTV
parε. Similar to (47), the running time is

O

(
T ct
G

(
θCTV

parε

4

)
+

1

(θCTV
parε)

2

(
T sp
G

(
θCTV

parε

8

)))
. (48)

Next, assume that dpar(µ, ν) < θ. We use the basic algorithm in Theorem 22. We have the
following two lemmas for the soft-hardcore and soft-Ising models.

Lemma 36. Let µ and ν be two soft-hardcore models satisfying b-marginal lower bound and
dpar(µ, ν) ≤ θ. Then µ and ν satisfy Condition 21 with K = 4n/(bCTV

par ) and L = 2.

Lemma 37. Let µ and ν be two soft-Ising models satisfying dpar(µ, ν) ≤ θ and dTV (µ, ν) ≥
CTV
pardpar(µ, ν). Then µ and ν satisfy Condition 21 with K = 4(n+m)/CTV

par and L = 2.

Assuming the above two lemmas, we can use Theorem 22 to solve the problem in time

O

(
T ct
G

(ε
4

)
+ T · T sp

G

(
1

100T

))
, where T = O

(
L2K2

ε2

)
. (49)

The final running time of our algorithm is dominated by the maximum of (47), (48), (49), and
the running time in Lemma 35. Since both T sp

G , T ct
G are non-increasing functions, the running

time of our algorithm is at most

Cb ·
N2

ε2
T sp
G

(
ε2

CbN2

)
+ T ct

G

(
ε

CbN

)
+ C ′bN,
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where Cb, C
′
b ≥ 1 are parameters depending only on b and for hardcore model, N = n; for Ising

model, N = n+m. For hardcore model

Cb = poly

(
1

b

)
, C ′b =

(
1

b

)O( 1
b
)

;

and for Ising model,

Cb = poly

(
1

b

)
, C ′b = O(1).

The parameter C ′b comes from the running time in Lemma 35.

Remark 38. Theorem 5 presents a simplified version that assumes the marginal lower bound b
to be a constant. However, our algorithm applies to both the Ising and hardcore models with an
arbitrary marginal lower bound b, where b may depend on the size of the input. The running
time of our algorithm is given by

poly

(
1

b

)
· N

2

ε2
T sp
G

(
poly(b)ε2

N2

)
+ T ct

G

(
poly(b)ε

N

)
+ C ′bN,

• Ising model: The parameter C ′b = O(1), so a polynomial-time reduction from TV-distance
estimation to sampling and approximate counting exists for the Ising model with marginal
lower bound b ≥ 1

poly(n) .

• Hardcore model: The parameter C ′b = (1/b)O(1/b), which comes from the running time
in Lemma 35. One can improve the last term C ′bN to poly(n) · T ct

G ( 1
10) by assuming a

slightly stronger approximate counting oracle. In Theorem 5, we only assume approximate
counting oracles for µ and ν. If we further assume that approximate counting oracles work
for all conditional distributions induced by µ and ν, then by going through the proof of
Lemma 35, we can obtain an algorithm that computes b′ in time poly(n) ·T ct

G ( 1
10), such that

with high probability, the value b′ satisfies b
2 ≤ b′ ≤ b for b defined in (46). This b′ is also

a marginal lower bound and provides a constant approximation to the true lower bound.
We can then use this b′ in the remainder of the algorithm. All the subsequent proofs follow
for this b′. Hence, given the stronger approximate counting oracle, the polynomial-time
reduction exists for the hardcore model with marginal lower bound b ≥ 1

poly(n) .

Finally, we give the proofs of technical lemmas. We need the following property about the
soft hardcore model.

Lemma 39. Let 0 < b < 1. Suppose a soft-hardcore model (G,λ) is b-marginally bounded. For
any vertex v ∈ V , let degfreev denote the number of free neighbors u of v such that λu > 0. For
any v ∈ V , it holds that degfreev ≤ ln b

ln(1−b) .

Proof. Let N2(v) denote the set of vertices with distance 2 to vertex v ∈ V in graph G. Let
σ be a pinning that fixes all vertices in N2(v) to the value −1. Let N free(v) = {v1, v2, . . . , vℓ}
denote the set of free neighbors of v, where ℓ = degfreev . Let µ denote the Gibbs distribution.
Conditional on σ, v takes value + only if all free neighbors of v take the value −. Since the
hardcore model is soft, v takes + with a positive probability so that the marginal lower bound
appiles. We have

b ≤ µσ
v (+) ≤

ℓ∏
j=1

µvj (− | σ and (∀k < j, vk ← −)).
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For any free neighbor vj , conditional on σ and vk ← − for all k < j, vj takes + with a positive
probability so that vj takes + with probability at least b. Hence,

b ≤ (1− b)deg
free
v .

Note that 1− b < 1. This proves the upper bound of the free degree.

Proof of Lemma 35. For hardcore model, if λu = 0 for some u ∈ V , we fix u = − and consider
the remained subgraph. If the subgraph has no vertices, we just return b = 1.

When c = −, for each any partial configuration τ on Λ ⊆ V where v /∈ Λ, consider the
marginal probability µτ

v(−). Then µτ
v(−) is a convex combination of µσ

v (−)’s, where σ is a partial
configuration on V \ {v}. For any σ, µσ

v (−) is positive. Due to the conditional independence, we
only need to consider the worst pinning of on N(v), where N(v) is the set of all neighbors of the
vertex v. It is easy to see µσ

v (−) ≥ 1
1+λµ

v
, and equality is achieved when σ fixes the values of all

neighbors to be −.
Now we consider the case c = + and fix a vertex v. Consider a partial configuration σ ∈ {±}Λ

for subset Λ ⊆ V \ {v}. If there exists a vertex u ∈ N(v) such that u ∈ Λ, to make µσ
v (+)

nonzero, σ(u) must be −. Assume u ∈ N(v) and σv = −. We consider another subset σ′ on
Λ′ = Λ \ {u} such that σ′Λ′ = σΛ′ . Define the notation

wµ(σ, v = +) =
∑

τ∈{±}V :τΛ=σ∧τv=+

wµ(τ).

We have wµ(σ, v = +) = wµ(σ
′, v = +), because τv = + forces all vertices in N(v) to take the

value −. On the other hand, wµ(σ, v = −) ≤ wµ(σ
′, v = −), because u in σ0 is free and it can

either take − or +. Our goal is to find a condition such that v takes + with the minimum
positive probability. We can assume N(v) ∩ Λ = ∅. Again, µσ

v (+) is a convex combination over
all µτ

v(+), where the feasible partial configuration τ ∈ {±}V \(N(v)∪v) that fixes the value of all
vertices except N(v) ∪ {v}. We only need to consider the worst case of τ . Note that

wµ(τ, v = +)

wµ(τ, v = −)
=

λµ
v∑

ρ∈{±}N(v),wµ(τ,ρ,−)>0

∏
u∈N(v),ρu=+ λµ

u
.

It is easy to verify when τ = τ0 such that for all u ∈ V \ (N(v) ∪ v), τ0(u) = −, the above
ratio obtains its minimum, because other τ may forbid some possible ρ in the summation. Our
algorithm for computing the value of b is:

• Compute b0 =
1

1+maxv∈V (λµ
v )
.

• For each v ∈ V , compute mv = µτ0
v (+) by enumerating all independent sets of N(v).

• Output b = min{b0,minv∈V {mv}}.

By lemma 39, because we already remove all vertices with zero λv, we have N(v) ≤ ln(b)
ln(1−b) .

Let k = maxv∈V |N(v)| = O(1b log
1
b ). The running time of the algorithm is

O(n2kk2) =

(
1

b

)O( 1
b
)

n.

The running time O(k2k) is for the exact computation of the µτ0
v (+). As stated in Remark 38,

given the approximate counting oracle for conditional distributions, we can compute an approxi-
mate value pv such that 1

2µ
τ0
v (+) ≤ pv ≤ µτ0

v (+) with high probability.
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For Ising model, similar to the pre-processing step, we can first remove all v with |hv| =∞
and then change the external fields on all neighbors of v. After this step, we only need to
consider a soft-Ising model (G, J, h) in the remaining graph G.

We also analyze when µσ
v (c) obtains the minimum. Since we deal with soft-Ising model, any

σ ∈ {±}V appears with positive probability. Since µσ
v (c) is a convex combination of µτ

v(c), where
τ is a pinning on V \ {v}. Due to the conditional independence, if all N(v) is fixed, then other
vertices do not influence on the marginal distribution at v. Hence, to minimize µσ

v (c), we only
need to consider σ ∈ {±}N(v). The marginal distribution can be written as

µσ
v (c)

µσ
v (−c)

=
exp(

∑
u∈N(v) Jvuσuc+ hvc)

exp(−
∑

u∈N(v) Jvuσuc− hvc)
= exp

2
∑

u∈N(v)

Jvuσuc+ 2hvc

 .

To find a σ that minimizes
∑

u∈N(v) J
µ
vuσuc, we greedily assign σu ∈ {±} according to the sign

of Jvu. The final result is for any c ∈ {±},

min
σ∈{±}N(v)

µσ
v (c) =

g(v, c)

g(v, c) + 1/g(v, c)
, where g(v, c) = exp

hvc−
∑

u∈N(v)

|Jvu|

 .

Our algorithm is:

• For each v ∈ V , compute g(v) = minc∈{±}
g(v,c)

g(v,c)+1/g(v,c) .

• Output b = minv∈V {g(v)}.
The running time is O(n+m).

Proof of Lemma 36. For all σ ∈ {±}V , if µ(σ) > 0, σ corresponds to an independent set of G.
Because ν is soft-hardcore, then ν(σ) > 0, so ν is absolutely continuous with respect to µ.

For each v ∈ V , consider σ = (−1)V \v. Because µ and ν are both soft-hardcore models and

satisfy the b-marginal lower bound, µσ
v (+), µσ

v (−), νσv (+), νσv (−) ≥ b. We have λx
u

1+λx
u
, 1
λx
u+1 ≥ b

for all v ∈ V , x ∈ {µ, ν}, which means

b

1− b
≤ λx

v ≤
1− b

b
.

The above inequality means that b ≤ 1
2 . We can compute the ratio of the weight

wν(σ)

wµ(σ)
=

∏
v:σ(v)=+

λν
v

λµ
v
≤

∏
v:σ(v)=+

λµ
v + dpar(µ, ν)

λµ
v

≤
(
λµ
v + dpar(µ, ν)

λµ
v

)n

≤
(
1 +

(1− b)dpar(µ, ν)

b

)n

.

For hardcore model, dpar(µ, ν) ≤ θ = b
2(1−b)n , so

wν(σ)

wµ(σ)
≤ 1 +

3n(1− b)dpar(µ, ν)

b
.

Similarly, wν(σ)
wµ(σ)

≥ 1− n(1−b)dpar(µ,ν)
b . By Lemma 15, dTV (µ, ν) ≥ CTV

pardpar(µ, ν), then√
Var [W ] ≤ 4n(1− b)dpar(µ, ν)

b
≤ 4n(1− b)

bCTV
par

dTV (µ, ν) <
4n

bCTV
par

dTV (µ, ν) , and

E [W ] ≥ min
σ

wν(σ)

wµ(σ)
≥ 1− 1

2
=

1

2
.

This verifies Condition 21.
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Proof of Lemma 37. Since both µ and ν are soft-Ising models, the absolutely continuous condi-
tion ν ≪ µ holds. Let Jµ, hµ and Jν , hν be the interaction matrices and external field vectors of
µ and ν, respectively. Denote D = dpar(µ, ν). For any σ ∈ {±}V , we have

wν(σ)

wµ(σ)
= exp

∑
u∈V

(hνu − hµu)σu +
∑
{u,v}∈E

(Jν
uv − Jµ

uv)σuσv

 .

By the definition of parameter distance in Definition 14, we have

∣∣∣∣∣∣
∑
u∈V

(hνu − hµu)σu +
∑
{u,v}∈E

(Jν
uv − Jµ

uv)σuσv

∣∣∣∣∣∣ ≤
∑
u∈V
|hνu − hµu|+

∑
{u,v}∈E

|Jν
uv − Jµ

uv|

≤

∑
u∈V

(degu+1) +
∑
{u,v}∈E

1

D

= (n+ 3m)D,

it implies

exp(−(n+ 3m)D) ≤ wν(σ)

wµ(σ)
≤ exp((n+ 3m)D).

For soft-Ising model, θ = 1
2(n+3m) and D < θ, so that

1− (n+ 3m)D ≤ wν(σ)

wµ(σ)
≤ 1 + 3(n+ 3m)D.

Hence,
√
Var [W ] ≤ 4(n+ 3m)D ≤ 4(n+3m)

CTV
par

dTV (µ, ν), and E [W ] ≥ 1− 1
2 = 1

2 .

6.2 The improved algorithms for hardcore model in the uniqueness regime

Proof of Theorem 8. Consider a hardcore model (G,λ), where λ ∈ RV
≥0, that satisfies the

uniqueness condition. Define threshold θ for hardcore model as

θ = 10−10
ε1/4

n5/2
= Θ

(
ε1/4

n5/2

)
.

If dpar(µ, ν) > θ, then by Lemma 15, we know that dTV (µ, ν) ≥ θ
5000 . we use the algorithm

Theorem 17 to achieve the additive error εD
5000 . For the hardcore model in the uniqueness regime,

we have T sp
G (δ) = Oη(∆n log n

δ ) and T ct
G (δ) = Õη(

∆n2

δ2
). Note that Twt

G = O(n). The running
time for this case is at most

O

(
T ct
G

(
εD

20000

)
+

1

ε2D2

(
n+ T sp

G

(
εD

20000

)))
= Õη

(
∆n2

ε2θ2

)
= Õη

(
∆n7

ε5/2

)
.

If dpar(µ, ν) ≤ θ, we use Theorem 23 with running time Õη

(
n7

ε2
+ n6.5

ε9/4

)
. The over all running

time is the maximum of two cases, which is Õη

(
∆n7

ε5/2

)
.

The choice of θ is closely related to the choices of t and κ in the proof of Lemma 25. We
choose the parameters to minimize the exponent on n in the running time of Theorem 8.
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Proof of Theorem 9. Now, we further assume that ∆ = O(1) and λπ
v = Ω(1) or 0 for all v ∈ V

and π ∈ {µ, ν}. We do a similar pre-processing step as that in Section 6.1. Suppose there exists
v such that (λµ

v = Ω(1), λν
v = 0) or (λµ

v = Ω(1), λν
v = 0). Say we are in the first case. Then

νv(+) = 0 and µv(−) ≥ λµ
v

1+λµ
v
( 1
1+λc(∆))

∆ = Ω(1). The total variation dTV (µ, ν) = Ω(1). We can

use Theorem 17 to solve the problem in time Õ(n
2

ε2
). For all v ∈ V with λµ

v = λν
v = 0, we can

remove v. Hence, we can assume Ω(1) = λπ
v ≤ (1− η)λc(∆) for all v ∈ V and π ∈ {µ, ν}.

In this case, we use a different threshold θ0 = Θ( 1
∆n) = Θ( 1n) because ∆ = O(1). Suppose

dpar(µ, ν) ≤ θ0, then by (6), we have Var [W ] = O(n2). It is easy to verify that Zν
Zµ

= Θ(1).

Theorem 22 gives an algorithm in time Õη(n
3/ε2). Let us assume D = dpar(µ, ν) > θ0. If we

directly apply Theorem 17 to achieve the additive error εD
5000 , then the running time would be

O

(
T ct
G

(
εD

20000

)
+

1

ε2D2
T sp
G

(
εD

20000

))
.

The second term 1
ε2D2T

sp
G

(
εD

20000

)
= Õη(n

3/ε2). But the bottleneck is the first term T ct
G

(
εD

20000

)
=

Õη(
n2

ε2D2 ) = Õη(
n2

ε2θ20
) = Õη(n

4/ε2). However, we can improve the first term by noting that the

algorithm in Theorem 17 only needs to approximate the ratio Zν
Zµ

with relative-error O(εD)

and we show such ratio can be approximated in time Õη(n
3/ε2). We can construct a sequence

of λ(0), λ(1), · · · , λ(ℓ) such that λ(0) = λµ, λ(ℓ) = λν and other λ(i) are defined as follows. For

any v ∈ V , let δv = λν
v

λµ
v
. For any 1 ≤ i ≤ ℓ, λ

(i)
v is defined by λ

(i)
v = λµ

v δ
i/ℓ
v . We choose ℓ such

that ℓ = Θ(1 + nD). Note that δv = 1 ± O(D). We have δ
1/ℓ
v = 1 ± O( 1n). Let wi be the

weight function induced by λ(i). Let Zi be the partition function induced by wi. Let µi be the

Gibbs distribution induced by wi. We further define Zℓ+1 by setting λ
(ℓ+1)
v = λµ

v δ
(ℓ+1)/ℓ
v . Define

random variable Wi as

Wi =
wi(X)

wi−1(X)
, where X ∼ µi−1.

Define W ≜
∏ℓ

i=1Wi, where Wi’s are mutually independent. It is easy to verify that

E [W ] =
Zν

Zµ
=

Zℓ

Z0
, and Var [W ] ≤ E

[
W 2
]
=

ℓ∏
i=1

E
[
W 2

i

]
=

Zℓ+1Zℓ

Z0Z1
.

We have the following bound

Var [W ]

(E [W ])2
≤

E
[
W 2
]

(E [W ])2
≤ Zℓ+1

Zℓ
· Z0

Z1
= O(1).

The last equality follows from the fact that δ
1/ℓ
v = 1±O( 1n). Hence, to achieve O(εD) relative-

error, we can draw O( 1
ε2D2 ) samples of W , each sample costs Õη(nℓ) = Õη(n+ n2D) time. The

total running time is

Õη

(
n+ n2D

ε2D2

)
= Õη

(
n

ε2θ20
+

n2

ε2θ0

)
= Oη

(
n3

ε2

)
.

6.3 The algorithm for marginal distributions (Proof of Theorem 13)

Theorem 13 is a simple corollary of Theorem 20.
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Proof of Theorem 13. For hardcore model (G,λµ), Zσ
µ where σ ∈ {±}S is the partition function

of (G[Λ], λµ
Λ). The set Λ is obtained from V by removing all vertices in S together with

all neighbors u of vertices v ∈ S such that σv = +1. If (G,λµ) satisfies the uniqueness
condition, then (G[Λ], λµ

Λ) also satisfies the uniqueness condition. Hence, by the previous results
in [CFYZ22, CE22] and [ŠVV09], for both µ and ν, the approximate conditional counting oracle

with T ct
G (ε) = O(∆n2

ε2
polylogn

ε ) exists and the sampling oracle with T sp
G (ε) = O(∆npolylogn

ε )
exists. The theorem follows from Theorem 20.

7 Proofs of #P-hardness results

In this section, we prove Theorem 11 and Corollary 12. Our starting point is the #P-hardness
for exactly counting the number of independent sets in a graph.

Proposition 40 ([DG00, Theorem 4.2]). The following problem #Ind(3) is #P-complete.

• Input: a graph G = (V,E) with maximum degree ∆ = 3;

• Output: the exact number of independent sets in G.

The above problem is exactly computing the partition function of (G,λ) with λv = 1 for all
v ∈ V . Let n = |V | and V = {1, 2, . . . , n}. Let µG,1 denote the uniform distribution over all
independent sets in G, which is the hardcore distribution in G when λv = 1 for all v ∈ V . Define

pi = PrX∼µG,1
[Xi = 0 | ∀1 ≤ j ≤ i− 1, Xj = 0] , (50)

which is the probability that the vertex i is not in a random independent set X conditional on
all j < i not being in X. By definition, the total number of independent set is

Z =
1

µG,1(0)
=

n∏
i=1

1

pi
.

Suppose for any i ∈ [n], we can compute p̂i such that

(1− 4−n)pi ≤ p̂i ≤ (1 + 4−n)pi. (51)

Let Ẑ =
∏n

i=1
1
p̂i

and it holds that (1− 3−n)Z ≤ Ẑ ≤ (1 + 3−n)Z. Note that Z ≤ 2n. We have

|Ẑ − Z| ≤ 3−nZ ≤ 1.5−n < 0.01.

We can round Ẑ to the nearest integer to recover Z. Hence, #Ind(3) can be reduced to the
following high-accuracy marginal estimation problem.

Problem 41. The high-accuracy marginal estimation problem is defined by

• Input: a graph G = (V,E) with n vertices and maximum degree ∆ = 3;

• Output: n numbers (p̂i)i∈[n] such that for all i ∈ [n], (1− 4−n)pi ≤ p̂i ≤ (1 + 4−n)pi.
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7.1 Hardness of approximating the TV-distance on a single vertex

We first prove Theorem 11. Let k(n) = 1 for all n ∈ N be a constant function. We show that if
there is a poly(n) time algorithm for Problem 10 if the input error bound ε = poly(n) and both
two input hardcore models satisfy the uniqueness condition, then Problem 41 can also be solved
in poly(n) time. Theorem 11 follows from Proposition 40.

Fix an integer i ∈ [n]. Let Gi denote the induced graph G[Si], where Si = {j ∈ [n] | j ≥ i}
is the set of vertices with label at least i. Let µ(i) denote the uniform distribution over all
independent set in graph Gi. In other words, µ(i) is the Gibbs distribution of hardcore model
(Gi,1). Then pi in (50) is the marginal distribution on vertex i projected from µ(i). If the
maximum degree of Gi is at most 2, then Gi is a set of disconnected lines or circles and pi can
be computed exactly in polynomial time. We can assume the maximum degree of Gi is 3.

Let α ≥ 0. Define vector λα ∈ RSi by

λα
j =

{
α

1−α if j = i;

0 if j ̸= i.
(52)

Let να denote the Gibbs distribution of (Gi, λ
α). Note that λc(3) = 4 > 1. The following

observation is easy to verify.

Observation 42. Both µ(i) and να satisfies the uniqueness condition in (1) if α ≤ 1
2 .

By the definition of να, it is easy to see ναi (+1) = α and

dTV

(
µ
(i)
i , ναi

)
= |µ(i)

i (+1)− α| = |pi − α|.

LetA(α) be the algorithm such that given α ∈ [0, 12 ], it returns a number d̂ such that
dTV(µ

(i)
i ,ναi )

1+ε ≤
d̂ ≤ (1+ε)dTV(µ

(i)
i , ναi ), where ε = poly(n). By Observation 42, if the polynomial-time algorithm

for the problem in Theorem 11 exists, then A(α) runs in poly(n) time. We then can use the
following algorithm to solve Problem 10 for pi in poly(n) time. Thus, the hardness result in
Theorem 11 follows from Proposition 40.

Algorithm 1: Algorithm for high-accuracy marginal estimation

1 Let α← 1
2 and ε = poly(n) be the parameter assumed by algorithm A;

2 for t from 1 to 50n(1 + ε)2 do

3 d̂← A(α);
4 α← α− d̂/(1 + ε);
5 if the bit length of α is more than 100n, then round α up to the nearest number that

has bit length at most 100n;

6 return p̂i = α.

The above algorithm runs in poly(n) time. We show that the output p̂ satisfies (51).
Let αt be the value of α after the t-th iteration. We first show that pi ≤ αt for all t. At

the beginning, α0 = 1/2. Since µ(i) is a uniform distribution over all independent sets, we have

µ
(i)
i (+1) ≤ 1

2 . By the assumption of algorithm A, A(αt)/(1 + ε) ≤ dTV(µ
(i)
i , ναt

i ) = αt − pi.
Hence, αt+1 ≥ αt −A(αt)/(1 + ε) ≥ pi.

We next bound the value of αt− pi. At the beginning, α0 = 1
2 so that α0− pi ≤ 1

2 . Note that

αt+1 < αt − A(αt)
1+ε + 2−90n ≤ αt − αt−pi

(1+ε)2
+ 2−90n, where 2−90n is an upper bound of rounding
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error. The inequality implies that

αt+1 − pi ≤
(
1− 1

(1 + ε)2

)
(αt − pi) + 2−90n.

Note that p̂i = α50n(1+ε)2 . Solving the recurrence implies that

0 ≤ p̂i − pi ≤ exp

(
−50n(1 + ε)2

(1 + ε)2

)
· 1
2
+ (1 + ε)2 · 2−90n < 2−40n.

Note that pi is at least 1/2
n. Hence, the output p̂ satisfies (51).

Remark. In the above proof, while the TV-distance between the two Gibbs distributions µ(i)

and να is large (because their parameter distance is 1), the TV distance between their marginal
distributions at vertex i can be arbitrarily small. This highlights the distinction between the
TV-distance of marginal distributions and the TV-distance of the entire distribution.

7.2 Hardness of approximating the TV-distance on a subset of vertices

We now prove Corollary 12. Let Gi be the graph defined as above. Let ni = n− i+ 1 denote
the number of vertices in Gi. One can construct a graph G′i with by adding a set Λ of ℓ
isolated vertices to Gi. Let N = ni + ℓ. Let k(·) be the function in Corollary 12. Note that
k(N) = N − ⌈Nα⌉. Since α is a constant, one can set ℓ = nΩ(1/α) = poly(n) so that k(N) ≤ ℓ.
Hence, the size of G′i is a polynomial in n.

Let µ
(i)
new be the hardcore model on G′i such that the external fields on vertices in Gi are 1

and the external fields on λ are 0. Let ναnew be the hardcore model on G′i such that the external
fields on vertices in Gi are λα and the external fields on Λ are 0. Let S be a subset of vertices
containing vertex i and k(N)− 1 vertices in Λ. It holds that

dTV

(
µ
(i)
new,S , ν

α
new,S

)
= dTV

(
µ
(i)
i , ναi

)
.

In words, the total variation distance between marginal distributions on S projected from µ
(i)
new

and ναnew is the same as the total variation distance between marginal distributions on vertex

i projected from µ(i) and να. Note that both µ
(i)
new and ναnew satisfy the uniqueness condition.

Corollary 12 can be verified by going through the same reduction for Theorem 11.
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Zürich.

References

[AAL23] Jamil Arbas, Hassan Ashtiani, and Christopher Liaw. Polynomial time and private
learning of unbounded gaussian mixture models. In ICML, volume 202 of Proceedings
of Machine Learning Research, pages 1018–1040. PMLR, 2023.

[AJK+22] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong
Vuong. Entropic independence: optimal mixing of down-up random walks. In STOC,
pages 1418–1430. ACM, 2022.

43



[AK24] Ariel Avital and Aryeh Kontorovich. Sharp bounds on aggregate expert error. arXiv
preprint arXiv:2407.16642, 2024.

[BGM+23] Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pa-
van, and N. V. Vinodchandran. On approximating total variation distance. In IJCAI,
pages 3479–3487. ijcai.org, 2023.

[BGM+24] Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pa-
van, and N. V. Vinodchandran. Total variation distance meets probabilistic inference.
In ICML. OpenReview.net, 2024.

[BGM+25] Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pa-
van, and N. V. Vinodchandran. Computational explorations of total variation
distance. In ICLR. OpenReview.net, 2025.

[BGMV20] Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, and N. V. Vinodchandran.
Efficient distance approximation for structured high-dimensional distributions via
learning. In NeurIPS, 2020.

[Can15] Clément L. Canonne. A survey on distribution testing: Your data is big. but is it
blue? Electron. Colloquium Comput. Complex., TR15-063, 2015.

[CCYZ24] Xiaoyu Chen, Zongchen Chen, Yitong Yin, and Xinyuan Zhang. Rapid mixing at
the uniqueness threshold. CoRR, abs/2411.03413, 2024.

[CE22] Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving
mixing bounds for markov chains (extended abstract). In FOCS, pages 110–122.
IEEE, 2022.

[CFYZ21] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Rapid mixing of
glauber dynamics via spectral independence for all degrees. In FOCS, pages 137–148.
IEEE, 2021.

[CFYZ22] Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Optimal mixing for
two-state anti-ferromagnetic spin systems. In FOCS, pages 588–599. IEEE, 2022.

[CK14] Taolue Chen and Stefan Kiefer. On the total variation distance of labelled markov
chains. In LICS, pages 33:1–33:10. ACM, 2014.

[CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics:
Entropy factorization via high-dimensional expansion. In STOC, pages 1537–1550.
ACM, 2021.

[CMR07] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence
of probabilistic automata. Int. J. Found. Comput. Sci., 18(4):761–779, 2007.

[CR14] Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions un-
derlying aggregated data. In ICALP, volume 8572 of Lecture Notes in Computer
Science, pages 283–295. Springer, 2014.

[DG00] Martin E. Dyer and Catherine S. Greenhill. On markov chains for independent sets.
J. Algorithms, 35(1):17–49, 2000.

[DHR08] Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of
labeled markov chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008.

44



[DMR18] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation dis-
tance between high-dimensional gaussians with the same mean. arXiv preprint
arXiv:1810.08693, 2018.

[FGJW23] Weiming Feng, Heng Guo, Mark Jerrum, and Jiaheng Wang. A simple polynomial-
time approximation algorithm for the total variation distance between two product
distributions. TheoretiCS, 2, 2023.

[FGW23] Weiming Feng, Heng Guo, and Jiaheng Wang. Swendsen-Wang dynamics for the
ferromagnetic Ising model with external fields. Inf. Comput., 294:105066, 2023.

[FLL24] Weiming Feng, Liqiang Liu, and Tianren Liu. On deterministically approximating
total variation distance. In SODA, pages 1766–1791. SIAM, 2024.

[GSV16] Andreas Galanis, Daniel Stefankovic, and Eric Vigoda. Inapproximability of the
partition function for the antiferromagnetic ising and hard-core models. Comb.
Probab. Comput., 25(4):500–559, 2016.

[Jer03] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity.
Springer Science & Business Media, 2003.

[JS93] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for
the Ising model. SIAM J. Comput., 22(5):1087–1116, 1993.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–
188, 1986.

[Kie18] Stefan Kiefer. On computing the total variation distance of hidden markov models.
In ICALP, volume 107 of LIPIcs, pages 130:1–130:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[KMO+11] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James
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A NP-hardness of approximating the TV-distance

In this section, we prove the hardness results of approximating the TV-distance between two
Gibbs distributions beyond the uniqueness threshold. The proof is based on the technique
developed in [BGM+25]. We define the following instance family for TV-distance approximation.

Problem 43. Let ∆ ≥ 3 and λ > λc(∆) = (∆−1)∆−1

(∆−2)∆ be two constants.

• Input : two hardcore models (G,λµ) and (G,λν) defined on the same graph G = (V,E) with
maximum degree at most ∆, which specifies two Gibbs distributions µ and ν respectively,
and an error bound 0 < ε < 1. There exists a vertex v∗ ∈ V such that the external fields
λµ
v = λν

v = λ for all v ̸= v∗, λν
v∗ =∞, and λµ

v∗ = λ.

• Output : a number d̂ such that |dTV (µ, ν)− d̂| ≤ ε.

The two input hardcore models are not in the uniqueness regime because λ > λc(∆). The
output only requires to approximate the TV-distance up to an additive error of ε, which is
weaker requirement than the relative-error approximation. The hardness result for this problem
implies the hardness of relative-error approximation.

Theorem 44. There is no FPRAS for Problem 43 unless NP = RP.

To prove Theorem 44, we need the following lemma, which can be abstracted from the proofs
in [BGM+25].

Lemma 45 ([BGM+25]). Let µ be a distribution over {±}V . Let v ∈ V and c ∈ {±} with
µv(c) > 0. Let µvc be the distribution over {±}V obtained from µ by conditioning on v taking
value c. Then, dTV (µ, µvc) = µv(−c).

Proof. For any σ ∈ {±}V with σv = c, we have µvc(σ) ≥ µ(σ). For any τ ∈ {±}V with τv = −c,
we have µvc(τ) = 0 ≤ µ(τ). Therefore, dTV (µ, µvc) =

∑
τ∈{±}V :τv=−c µ(τ) = µv(−c).

Proof. [Proof of Theorem 44] Let ∆ ≥ 3 and λ > λc(∆) = (∆−1)∆−1

(∆−2)∆ be two constants. By the

hardness results in [SS12, GSV16], unless NP = RP, there is no FPRAS for approximating
the partition function of the hardcode model S = (G, (λv)v∈V ) with ε-relative error, where
λv = λ for all v ∈ V and G has the maximum degree ∆. By the standard counting-to-sampling
reduction [JVV86], approximating the partition function ZS is equivalent to approximating
the probability of π(σ∅), where π is the Gibbs distribution of S and σ∅

v = −1 for all v ∈ V .
In other words, σ∅ corresponds to the empty set. Let us number all the vertices in V as
{1, 2, · · · , n}. To approximate π(σ∅), we need to approximate the probability pi ≜ πi(−1 | ∀j <
i, j takes value − 1) with relative error O( εn). This probability is the same as the marginal
probability of i in the induced subgraph G[V \ {1, 2, · · · , i− 1}]. We show how to approximate
p1 = π1(−1). We let Sµ = S and define Sν for S by changing λν

1 to ∞. By Lemma 45, we have
dTV (µ, ν) = µ1(−1) = π1(−1). It is easy to verify that π1(−1) ≥ 1

1+λ = Ω(1) has a constant
lower bound. Hence, if we can solve Problem 43 with O(ε/n)-additive error, we can approximate
π1(−1) with O(ε/n)-relative error. The same argument can be applied to other probabilities by
considering the instances in induced subgraphs. Hence, if Problem 43 admits an FPRAS, then
there is an FPRAS for approximating the partition function of S.
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For the Ising model, one can also verify the instance family stated after Corollary 7 is a hard
instance family for approximating the TV-distance with additive error. The proof is similar
to the one for the hardcore model. Let ∆ ≥ 3 be a constant and β < 0 be a constant with
exp(2β) < ∆−2

∆ . Let S = (G, J, h) such that Juv = β for all {u, v} ∈ E and hv = 0 for all v ∈ V .
The starting point is the NP-hardness of approximating the partition function of S [SS12, GSV16].
Then one can go through the same reduction to estimate pi ≜ πi(−1 | ∀j < i, j takes value − 1).
We can construct Sµ = (G, J, hµ) and Sν = (G, J, hν) such that for all j < i, hµj = hνj = −∞,
for all k > i, hµk = hνk = 0, and hµi = 0, hνi =∞. By Lemma 45, we have dTV (µ, ν) = pi. One
can verify pi = Ω(1) so that O(ε/n)-additive error approximation of dTV (µ, ν) is equivalent to
O(ε/n)-relative error approximation of pi. The hardness result follows from the same argument
as in the proof of Theorem 44.

B Poincaré inequality for marginal distribution

The Poincaré inequality for hardcore model in the uniqueness regime is established in [CFYZ21].
The paper considers the hardcore model (G,λ) such that all λv are the same. By verifying the
technical condition in [CFYZ21, Theorem 1.9], the following Poincaré inequality also holds for
hardcore model with different λv satisfying (1). For any function g : Ω → R, where Ω is the
support of the distribution, we have

Varµ [g] ≤ Cη

∑
v∈V

∑
σ∈ΩV −v

µV−v(σ)Varµσ [g] .

Let g′ : ΩB → R be an arbitrary function. Define g(x) = g′(xB) for all x ∈ Ω. It holds that
Eµ [g] = EµB [g′] and Eµ

[
g2
]
= EµB

[
(g′)2

]
. We have

VarµB

[
g′
]
= Varµ [g] ≤ Cη

∑
v∈V

∑
σ∈ΩV −v

µV−v(σ)Varµσ [g]

(g(σ) depends on σB) = Cη

∑
v∈B

∑
σ∈ΩV −v

µV−v(σ)Varµσ [g] .

Fix a partial assignment τ ∈ ΩB−v. Note that Eµτ [g] = Eµτ
B
[g′] and Eµτ

[
g2
]
= Eµτ

B

[
(g′)2

]
.

We have Varµτ [g] = Varµτ
B
[g′]. Let X ∼ µτ and Y = g(X). By the law of total variance,

Varµτ
B

[
g′
]
= Varµτ [g] = Var [Y ]

= E [Var [Y | XV−v]] +Var [E [Y | XV−v]]

≥ E [Var [Y | XV−v]]

=
∑

σ∈Ωτ
V −v

µτ
V−v(σ)Varµσ [g] ,

where Ωτ
V−v ⊆ {±}V−v is the support of µτ

V−v. Combining with the above inequality, we have

VarµB

[
g′
]
≤ Cη

∑
v∈B

∑
τ∈ΩB−v

µB−v(τ)
∑

σ∈Ωτ
V −v

µτ
V−v(σ)Varµσ [g]

≤ Cη

∑
v∈B

∑
τ∈ΩB−v

µB−v(τ)Varµτ
B

[
g′
]
.

This proves the Poincaré inequality for the marginal distribution.
Alternatively, one can also use the fact the the Poincaré inequality is equivalent to the decay

of χ2-divergence in the down walk of Glauber dynamics. The results follows from the data
processing inequality. See [FGJW23, Section 6.1] for more details.
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